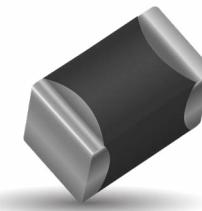


Miniature AC Varistor – MAV


Low Power AC and Low Capacitance DC Circuit Protection

GENERAL DESCRIPTION

KYOCERA AVX Miniature AC Varistors are designed for use in low power AC circuit protection. MAV series devices are an ideal solution to transient suppression in LC resonant circuits intended for signal & power transfer. The KYOCERA AVX part provides low loss in the resonant circuit yet is able to clamp large amounts of transients in a bi-directional manner.

The ability to handle large transients makes the MAV series useful in low power AC circuit protection and the AEC Q200 qualification allows for use in automotive applications.

Low capacitance makes these parts useful also for higher DC voltage data lines and other capacitance sensitive applications.

GENERAL CHARACTERISTICS

- Operating Temperature: -55 to +125°C
- Working Voltage: 70Vdc / 52Vac
- Case Size: 0402, 0603, 0405 2xArray

FEATURES

- 110 Pk-Pk @ 125kHz capability
- AEC Q200 qualified
- ESD rated to 25kV (HBM ESD Level 6)
- EMI/RFI attenuation in off state
- Bi-Directional protection

APPLICATIONS

- LC resonant circuits
- AC sampling circuitry
- Transformer secondaries
- GFI modules
- Immobilizers
- Keyless entry
- Data lines
- Capacitance sensitive applications and more

HOW TO ORDER

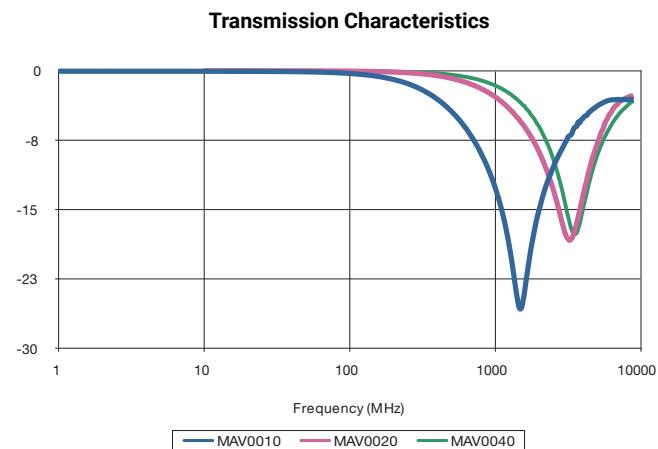
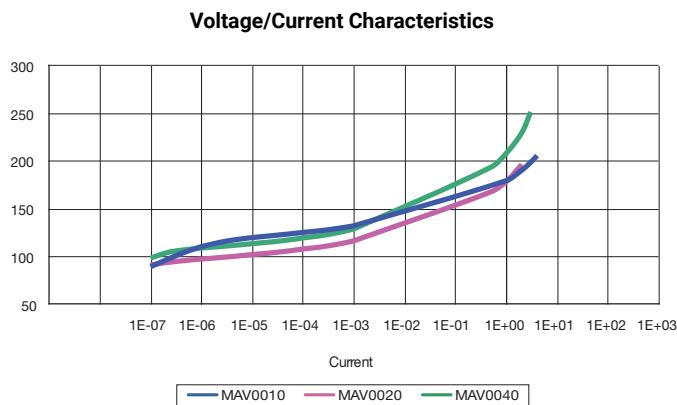
MAV	002	0	W
Series	Size	Capacitance	Packaging
		0 = Low	
	001 = 0603		D = 7" reel (1,000 pcs)
	002 = 0405		R = 7" reel (4,000 pcs)
	004 = 0402		T = 13" reel (10,000 pcs)
			W = 7" Reel (10,000 pcs 0402 only)

P
Termination
T

P = Plated Sn over Ni barrier

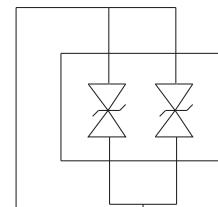
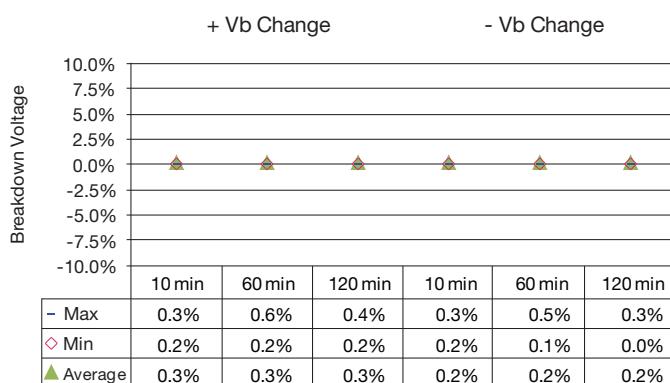
ANTENNAGUARD CATALOG PART NUMBERS/ELECTRICAL VALUES

Part Number	VW (DC)	VW (AC)	VB	VC	IVC	ET	IP	IL	Cap	Elements
MAV0010_P	70	52	120 ±15%	225	1	0.015	2	10	22pF Max	1
MAV0020_P	70	52	120 ±15%	225	1	0.020	3	10	8pF Max	2
MAV0040_P	70	52	120 ± 15%	225	1	0.020	1	10	6pF Max	1

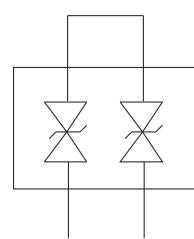
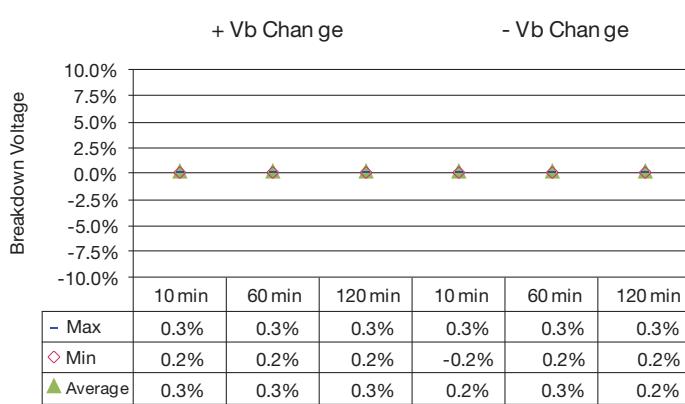


Packaging Code

V_w (DC)	DC Working Voltage [V]	I_L	Maximum leakage current at the working voltage [μ A]
V_w (AC)	AC Working Voltage [V]	E_T	Transient Energy Rating [J, 10x100 μ S]
V_B	Breakdown Voltage [V @ 1mA _{dc}]	I_p	Peak Current Rating [A, 8x10 μ S]
V_c	Clamping Voltage [V @ IVC]	Cap	Maximum capacitance @ 1MHz and 0.5V _{RMS}

Miniature AC Varistor – MAV



Low Power AC and Low Capacitance DC Circuit Protection

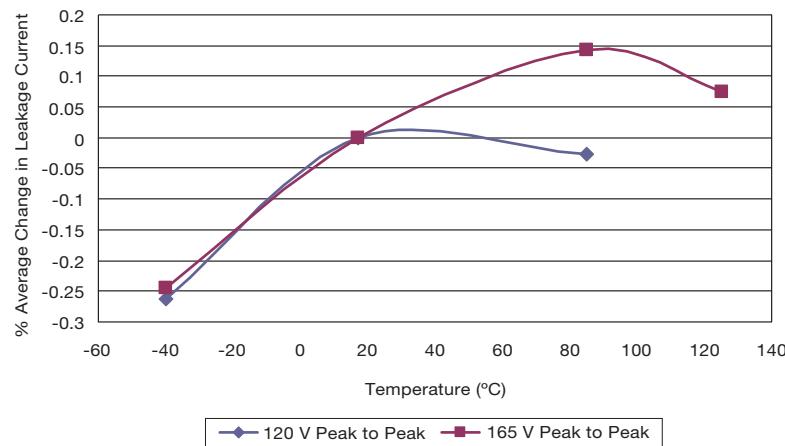
TYPICAL PERFORMANCE CURVES



TYPICAL PERFORMANCE CURVES

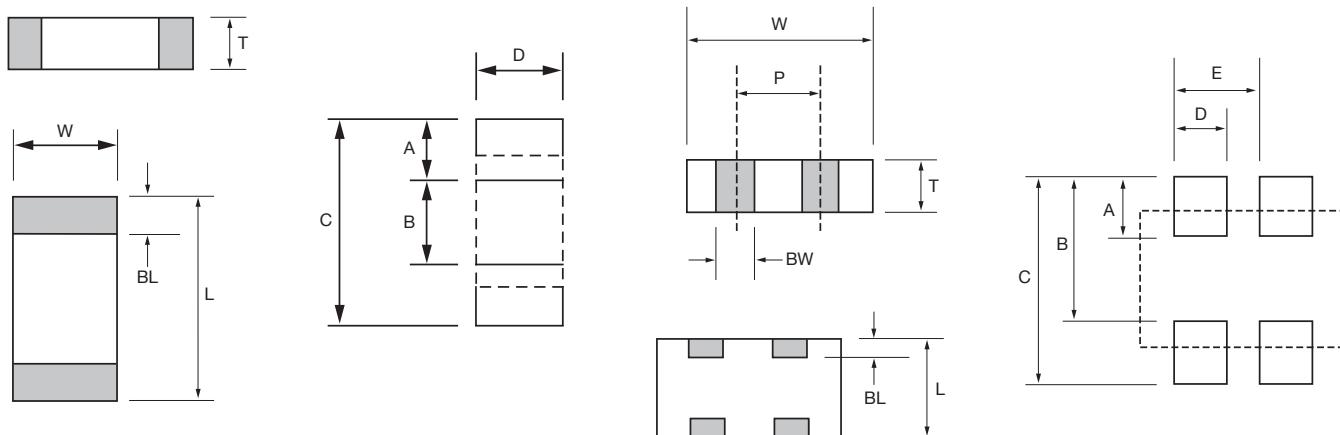
Impact of AC Voltage on Breakdown Voltage
Parallel 110VPP @ 125 kHz

Apply 110V pp
125KHz Sine wave
(Parallel)

Impact of AC Voltage on Breakdown Voltage
Series 110VPP @ 125 kHz



Apply 110V pp
125KHz Sine wave
(Series)


Miniature AC Varistor – MAV

Low Power AC and Low Capacitance DC Circuit Protection

IMPACT OF AC VOLTAGE ON LEAKAGE CURRENT

PHYSICAL DIMENSIONS AND RECOMMENDED PAD LAYOUT

L	W	T	BW	BL	P	A	B	C	D	E
MAV0010										
1.60 ± 0.15 (0.063±0.006)	0.80 ± 0.15 (0.032±0.006)	0.90 Max (0.035) Max	N/A	0.35 ± 0.15 (0.014±0.006)	N/A	0.89 (0.035)	0.76 (0.030)	2.54 (0.100)	0.76 (0.030)	N/A
MAV0020										
1.00 ± 0.15 (0.039±0.006)	1.37 ± 0.15 (0.054±0.006)	0.66 Max (0.026) Max	0.36 ± 0.10 (0.014±0.004)	0.20 ± 0.10 (0.008±0.004)	0.64 REF (0.025)REF	0.46 (0.018)	0.74 (0.029)	1.20 (0.047)	0.30 (0.012)	0.64 (0.025)
MAV0040										
1.00±0.10 (0.040±0.004)	0.50±0.10 (0.020±0.004)	0.60 Max (0.024) Max	N/A	0.25±0.15 (0.010±0.006)	N/A	0.61 (0.024)	0.51 (0.020)	1.70 (0.067)	0.51 (0.020)	N/A