



# LB11861MC

Monolithic Digital IC

## Single-Phase Full-Wave Fan Motor Driver

**ON Semiconductor®**

<http://onsemi.com>

### Overview

The LB11861MC is a single-phase bipolar drive motor driver that easily implements direct PWM motor drive systems with excellent efficiency. The LB11861MC is optimal for fan motor drive in personal computer power supply systems and CPU cooling fan systems.

### Features

- Single-phase full-wave drive (16V, 1.2A transistors are built in)
- External PWM control pin incorporated (f=16k to 50kHz)
  - External PWM signal DUTY control to enable speed control to stop, medium speed, and full speed
  - Slow-Decay regeneration to enable low power consumption and high-efficiency rotation control
- Soft switching circuit incorporated
  - Soft-SW circuit achieving small loss, low noise, and low vibration at a time of phase shift
- Built-in regenerative diode (Di); only requires a minimal number of external components.
- Built-in lock protection and automatic recovery circuits
- FG (speed detection) outputs incorporated
- Built-in thermal shutdown circuit.

## Specifications

### Absolute Maximum Ratings at $T_a = 25^\circ\text{C}$

| Parameter                       | Symbol        | Conditions                         | Ratings     | Unit             |
|---------------------------------|---------------|------------------------------------|-------------|------------------|
| $V_{CC}$ maximum output voltage | $V_{CC}$ max  |                                    | 18          | V                |
| OUT pin maximum output current  | $I_{OUT}$ max |                                    | 1.2         | A                |
| OUT pin output voltage          | $V_{OUT}$ max |                                    | 18          | V                |
| PWM-IN input pin voltage        | VPWM-IN max   |                                    | $V_{CC}$    | V                |
| FG output pin output voltage    | VFG max       |                                    | 18          | V                |
| FG output current               | IFG max       |                                    | 10          | mA               |
| Allowable power dissipation     | $P_d$ max     | When mounted on a circuit board *1 | 0.8         | W                |
| Operating temperature           | $T_{opr}$     |                                    | -30 to +90  | $^\circ\text{C}$ |
| Storage temperature             | $T_{stg}$     |                                    | -55 to +150 | $^\circ\text{C}$ |

\*1 Specified circuit board :  $114.3 \times 76.1 \times 1.6\text{mm}^3$ , glass epoxy.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

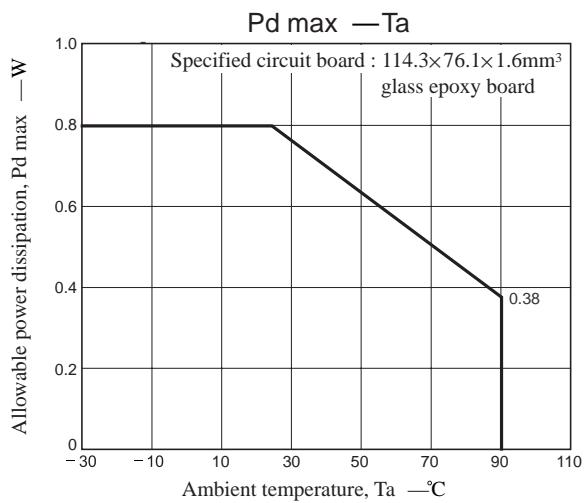
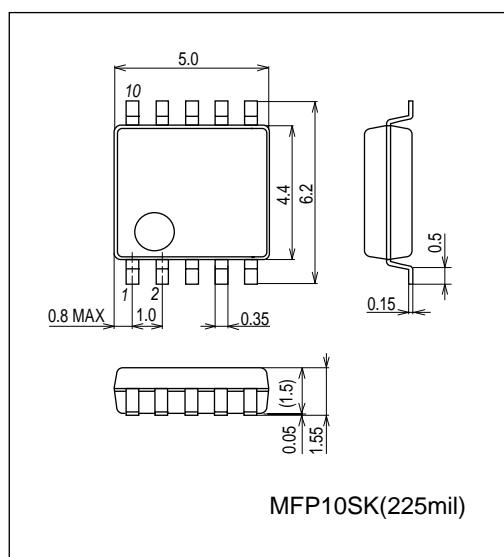
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

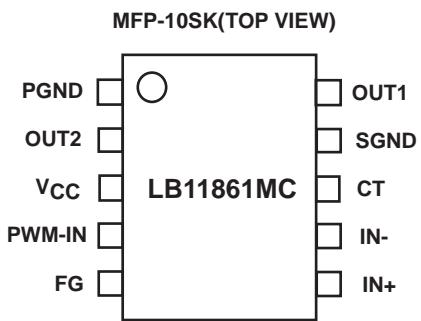
### Recommended Operating Conditions at $T_a = 25^\circ\text{C}$

| Parameter                                         | Symbol           | Conditions | Ratings         | Unit |
|---------------------------------------------------|------------------|------------|-----------------|------|
| $V_{CC}$ supply voltage                           | $V_{CC}$         |            | 4.5 to 16       | V    |
| VPWM-IN input H voltage range                     | VPWM-IN-H        |            | 2.5 to $V_{CC}$ | V    |
| VPWM-IN input L voltage range                     | VPWM-IN-L        |            | 0 to 1          | V    |
| Hall sensor input common-mode input voltage range | VI <sub>CM</sub> |            | 0.2 to 3        | V    |

### Electrical Characteristics Unless otherwise specified $T_a = 25^\circ\text{C}$ , $V_{CC} = 12\text{V}$



| Parameter                          | Symbol              | Conditions                                        | Ratings |      |      | Unit             |
|------------------------------------|---------------------|---------------------------------------------------|---------|------|------|------------------|
|                                    |                     |                                                   | min     | typ  | max  |                  |
| Circuit current                    | $I_{CC1}$           | Drive mode                                        | 15      | 24.5 | 29   | mA               |
|                                    | $I_{CC2}$           | Lock protection mode                              | 6       | 11   | 16   | $\mu\text{A}$    |
| CT pin high-level voltage          | V <sub>CTH</sub>    |                                                   | 3.45    | 3.6  | 3.75 | V                |
| CT pin low-level voltage           | V <sub>CTL</sub>    |                                                   | 1.4     | 1.55 | 1.7  | V                |
| ICT charge current                 | I <sub>CT1</sub>    |                                                   | 1.7     | 2.2  | 2.8  | $\mu\text{A}$    |
| ICT discharge current              | I <sub>CT2</sub>    |                                                   | 0.17    | 0.22 | 0.28 | $\mu\text{A}$    |
| ICT charge/discharge current ratio | R <sub>CT</sub>     |                                                   | 8       | 10   | 11.5 |                  |
| OUT output low saturation voltage  | V <sub>OL</sub>     | $I_O = 200\text{mA}$                              |         | 0.2  | 0.3  | V                |
| OUT output high saturation voltage | V <sub>OH</sub>     | $I_O = 200\text{mA}$                              |         | 0.9  | 1.1  | V                |
| Hall sensor input sensitivity      | V <sub>H</sub>      | Zero peak value (including offset and hysteresis) |         | 10   | 20   | mV               |
| PWM-IN input current               | I <sub>PIN</sub>    | PWM-IN=0V                                         |         |      | -10  | $\mu\text{A}$    |
| RD/FG output pin low-level voltage | V <sub>RD/FGL</sub> | IRD/FG = 5mA                                      |         | 0.2  | 0.3  | V                |
| RD/FG output pin leakage current   | I <sub>RD/FGL</sub> | VRD/FG = 7V                                       |         |      | 30   | $\mu\text{A}$    |
| Heat protection circuit            | THD                 | (*2) Design target                                |         |      | 180  | $^\circ\text{C}$ |

(\*2) The standard is a design target value and measurement with the single piece has not been made.

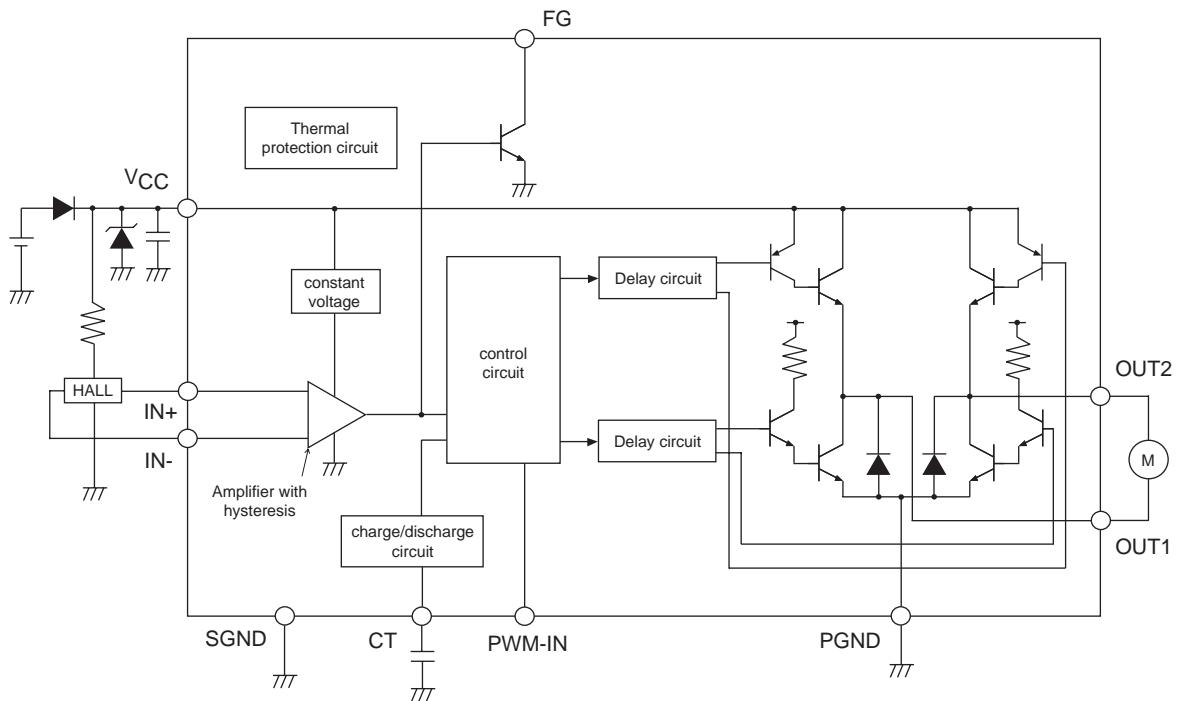

**Package Dimensions**

unit : mm (typ)

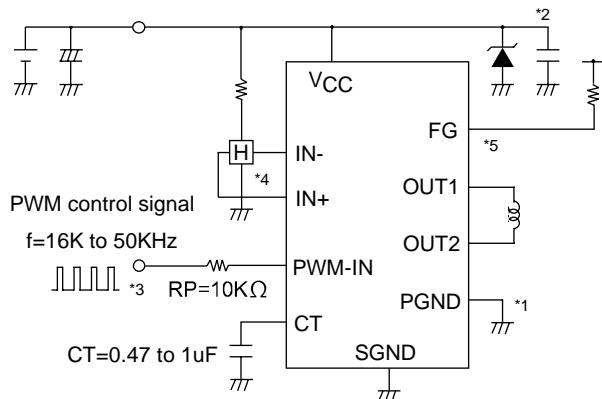
3420

**Truth Table**

| PWM-IN | IN-  | IN+  | CT   | OUT1 | OUT2 | FG  | Mode                           |
|--------|------|------|------|------|------|-----|--------------------------------|
| High   | High | Low  | Low  | High | Low  | Low | During rotation – drive        |
|        | Low  | High |      | Low  | High | Off |                                |
| Low    | High | Low  |      | Off  | Low  | Low | During rotation – regeneration |
|        | Low  | High |      | Low  | Off  | Off |                                |
| -      | High | Low  | High | High | Off  | Low | Lock protection                |
| -      | Low  | High |      | Off  | High | Off |                                |


**Pin Assignment**

VCC: Common power supply for motor and control systems


PGND: Motor system GND

SGND: Control system GND

## Block Diagram



## Application Circuit Example



## \*1. Power supply and ground lines

P-GND is connected to the motor power supply system and S-GND is connected to the control circuit power supply system. These two systems should be formed from separate lines and the control system external components should be connected to S-GND.

## \*2. Regeneration power supply stabilization capacitor

The capacitor CM provides power supply stabilization for both PWM drive and kickback absorption. A capacitor with a value of over 1 to  $10\mu\text{F}$  is used for CM. Insert the zener diode for kickback protection between VCC and GND. Since this IC adopts a technique in which switching is performed by the high side transistor and regeneration is handled by the low side transistor, the pattern connecting CM to VM and P-GND must be as wide and as short as possible.

## \*3. PWM-IN pin

This is for speed control with the external PWM signal. With driving at the input of "H" and regeneration (Slow-Decay) at the input of "L", high efficiency rotation control can be made. RP=10kΩ is the current limiting resistor for protection. Though the input signal frequency range is 0 to 50 kHz, 16 k to 50 kHz is recommended. Rotation can be stopped by inputting "L".

## \*4. Hall sensor input

Lines that are as short as possible must be used to prevent noise from entering the system. The Hall sensor input circuit consists of a comparator with hysteresis (20mV). We recommend that the Hall sensor input level be at least three times this hysteresis, i.e. at least 60mVp-p.

## \*5. FG output

This is an open collector output, and a rotation count detection function can be implemented using this FG output, which corresponds to the phase switching. This pin must be left open if unused.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.