ST power transistor solutions for vehicle electrification

Power electronics subsystem overview

HEV/EV and ecosystem overview

Key power technology	Focus applications	
IGBT	Traction, OBC, DC-DC, PTC heater and air-con	
SIC MOSFET	Traction, OBC, and DC-DC converter	
HV Si MOSFET	OBC, DC-DC converter, and exploring traction inverter	
Power GaN	OBC and DC-DC converter	
PM and IPM	Traction, OBC, DC-DC converter and air-con	

PM = power module, IPM = intelligent power module

Main power electronics subsystems

Key points

Increase traction inverter efficiency

Minimize conduction and switching losses

Speed-up system charging time

High voltage power technologies

Operating frequency

Technology	Features	Typical automotive applications
Si HV MOSFET	Medium-high power, high voltage, high frequency	DCDC converter, motor control, on-board charger
IGBT	Very high power, high voltage, medium frequency	Traction inverter, heating, climate compressor, on-board charger
SIC MOSFET	Very high power, high voltage, frequency, and temperature	Traction inverter, High power DC/DC, on-board charger, Aux. DCDC
GaN transistor	Very high frequency	LiDAR, 48V/12V DCDC, on-board charger

ST power transistor manufacturing operations

(TPAK)

ST silicon carbide history

25 years of SiC History in STMicroelectronics Catania

Over 70 patents

Silicon carbide was discovered by Edward G. Acheson in 1891 He named it Carborundum

1891

1907: Phenomenon of electroluminescence was discovered using silicon carbide

1907

1958: 1st silicon carbide conference held in Boston, USA.

1958

1966: First MOS transistor (H.R. Phillip, E.A. Taft)

1966

MOSFET size comparison

ST SiC MOSFET figures of merit

Steady improvement over generations

- Lower Ron x area → lower Ron in package (or same Ron in smaller package), higher current capability, and lower conduction losses
- Lower Ron x Qg → lower switching losses, higher frequency (smaller board)

STPOWER SiC MOSFET & Diode Technologies

Market leadership in automotive with best-in-class SiC technology

- Broad range of SiC solutions: Discrete, bare dice, module
- Proven very high reliability
- Vertical integration through Norstel AB acquisition
- Continued capacity expansion to support market demand
- Investing in advanced package technologies

Key advantages in automotive

Traction inverter & On-board charger

Charging Station

Car Weight Reduction

Longer Range: >600 km with SiC

Less charging time (from 16 to 7 min)

SiC charging station handles **2x** energy (Fast charger: 350 kW with SiC)

STPOWER SiC MOSFET & diodes in production

The best high voltage high frequency switch for high power density applications

ST SiC MOSFET evolution: steady improvement in Ron and switching frequency for a broad range of automotive and industrial application increasing power density at fast pace

Power module solutions for automotive

SLLIMM Intelligent Power module

ACEPACK Power module

Silicon MOSFET & IGBT, silicon carbide MOSFET

SMIT

5 kW

10 kW 30 kW

HVAC–on-board charger–DC-DC converter

OBC

Key benefits of ACEPACK 1 & 2

Industrial drives, motor control, UPS, and automotive EV ecosystems

ACEPACK 1 & 2

33.8 x 48 mm

48 x 56.7 mm

- Press fit and solder pin options, configuration flexibility
- Up to 1200V breakdown voltage
- Integrated screw clamps
- All power switches in a module including NTC
- Several current ratings available
- Several configurations (CIB, six-pack, ...) available
- Low stray inductance
- High reliability and robustness, miniaturized power side board occupation
- Compact design and cost-effective system approach
- Very high power density

ACEPACK Drive

Direct liquid cooled high performance power module For (H)EV, truck, and bus traction inverters

Press fit connections for high reliable and long lasting connection

Si & SiC-MOS based, 750V & 1200V

Pin-fin for direct cooling

Dedicated NTC for each single substrate

Unequaled R_{DS(on)}

ACEPACK DRIVE

Internal layout optimized for minimized stray inductance

High reliability and robustness

Different bus bar available to fit welding or screwing connection methods

AMB substrates for better thermal management

Extremely high-power density

ACEPACK DRIVE for 400V battery

IGBT&Diode based

ADP660S75EM(*)

ADP820S75EM(*)

POWER

ADP61075W3

ADP46075W3

ACEPACK DRIVE for 800V battery

SiC MOSFET Gen2 based:

For first customers electrical evaluation only

ADP300120W2-L

Power

ADP280120W3

ADP360120W3

ADP360120W3

SiC MOSFET Gen3 based:

Tailored for high-power traction inverters

STEVAL-APD001K1 eval board for SiC-based devices

STEVAL-APD001K1 is fully compatible with ACEPACK DRIVE power press fit pins and requires a dedicated pressing tool to mount it.

ACEPACK DMT-32 power module for electric vehicles

ST power packaging technologies

Investing in advanced package technologies

Lead-less packages

Pervasion of lead-less packages enablers for miniaturization

Leaded packages

Standard packages benefitting from economy of scale

Top side cooling SMD package

SMD packages that allow direct connection to heatsink

Multisintering package

Highly reliable, high power density, sintering on heatsink

Modular package

Multipurpose configurations, high power, top side cooling

Bare die

For high-temperature or customer in-house assembly

PowerFLAT

ΓO-LL

_ 2SPA

SOT223-2L

DPA

TO247-

H2PAK

0

HU3PAK

k ST

STPAK

SMITPAK

DMT-32

2

ACEPACK 2

Tested cut/uncut wafer

Tested dice in T&R

