MOSFET – Power, Single, N-Channel, DPAK 40 V, 101 A

Features

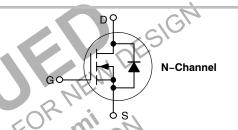
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- MSL 1/260°C
- 100% Avalanche Tested
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

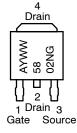
- CPU Power Delivery
- DC-DC Converters
- Motor Driver

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	40	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current ($R_{\theta JC}$) (Note 1)		$T_{C} = 25^{\circ}C$ $T_{C} = 85^{\circ}C$		101 78	А
Power Dissipation ($R_{\theta JC}$) (Note 1)	Steady	T _C = 25°C	SPD	93.75	W
Continuous Drain Cur-	State	T _A = 25°C	CID	16.4	Α
rent (R _{θJA}) (Note 1)	7,	T _A = 85°C		12.7	
Power Dissipation $(R_{\theta JA})$ (Note 1)		T _A = 25°C	P _D	2.5	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	300	Α
Current Limited by Pack	age	T _A = 25°C	I _{DmaxPkg}	45	Α
Operating Junction and	mperature	T _J , T _{stg}	-55 to 175	°C	
Source Current (Body Di	iode)		I _S	50	Α
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-S ergy (V_{DD} = 32 V, V_{GS} = L = 0.3 mH, $I_{L(pk)}$ = 40 A	E _{AS}	240	mJ		
Lead Temperature for So (1/8" from case for 10 s)	oldering Pu	irposes	T_L	260	ç


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)}	I _D
40 V	4.4 mΩ @ 10 V	101 A
	7.8 m Ω @ 5.0 V	50 A

MARKING DIAGRAMS & PIN ASSIGNMENT

A = Assembly Location*

Y = Year
WW = Work Week
5802N = Device Code
G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.6	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	60	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	105	

^{1.} Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	Test Cond	lition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D$	= 10 μΑ	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	$T_{J} = 25^{\circ}C$ $T_{J} = 150^{\circ}C$			1.0 50	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)	•				NO		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μA	1.5		3.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			ORM	-7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$		cel	3.6	4.4	mΩ
		V _{GS} = 5.0 V, 1	_D = 50 A	7/10	6.5	7.8	
Forward Transconductance	gFS	V _{DS} = 15 V, I	o = 15 A	SIA	16.8		S
CHARGES AND CAPACITANCES		MAIN	10,16	0,			
Input Capacitance	C _{iss}	·CO// C/	0/1/4		5300		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, } f = V_{DS} = 1$	1.0 MHz, 2 V		850		
Reverse Transfer Capacitance	C _{rss}				550		
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} =$	1.0 MHz,		5025		pF
Output Capacitance	Coss	$V_{DS} = 2$	o v		580		
Reverse Transfer Capacitance	C _{rss}	, la			400		
Total Gate Charge	$Q_{G(TOT)}$				75	100	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _E	_{OS} = 15 V,		6.0		
Gate-to-Source Charge	Q_{GS}	I _D = 50	Α		18		
Gate-to-Drain Charge	Q_{GD}				15		
SWITCHING CHARACTERISTICS (Note	e 4)						
Turn-On Delay Time	t _{d(on)}				14		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{I}$	_{OS} = 20 V,		52		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, V_{I}$ $I_{D} = 50 \text{ A}, R_{G}$	= 2.0 Ω		39		
Fall Time	t _f				8.5		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Surface-mounted on FR4 board using the minimum recommended pad size.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Cond	lition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.9	1.2	V
		V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.8	1.0	
Reverse Recovery Time	t _{RR}				25		ns
Charge Time	ta	V_{GS} = 0 V, dls/dt = 100 A/ μ s, I_S = 50 A			15		
Discharge Time	tb				10		
Reverse Recovery Charge	Q _{RR}				15		nC

CONNENDED FOR WEW DESIGN

OR COMMENDED FOR INFORMATION

OR CONTACTOR INFORMATION

THIS DEVICE PLEASE INTATIVE FOR INFORMATION

REPRESENTATIVE FOR INFORMATION

REPRESENTATIVE FOR INFORMATION

REPRESENTATIVE FOR INFORMATION

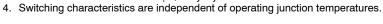
THIS DEVICE PLEASE SENTATIVE FOR INFORMATION

OR COMMENDED FOR INFORMATION

THIS DEVICE PLEASE SENTATIVE FOR INFORMATION

THIS DEVICE PLEASE SENTATIVE FOR INFORMATION

THIS DEVICE PLEASE SENTATIVE FOR INFORMATION


OR COMMENDED FOR INFORMATION

THIS DEVICE PLEASE SENTATIVE FOR INFORMATION

OR COMMENDED FOR INFORMATION

THIS DEVICE PLEASE SENTATIVE FO Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

TYPICAL PERFORMANCE CHARACTERISTICS

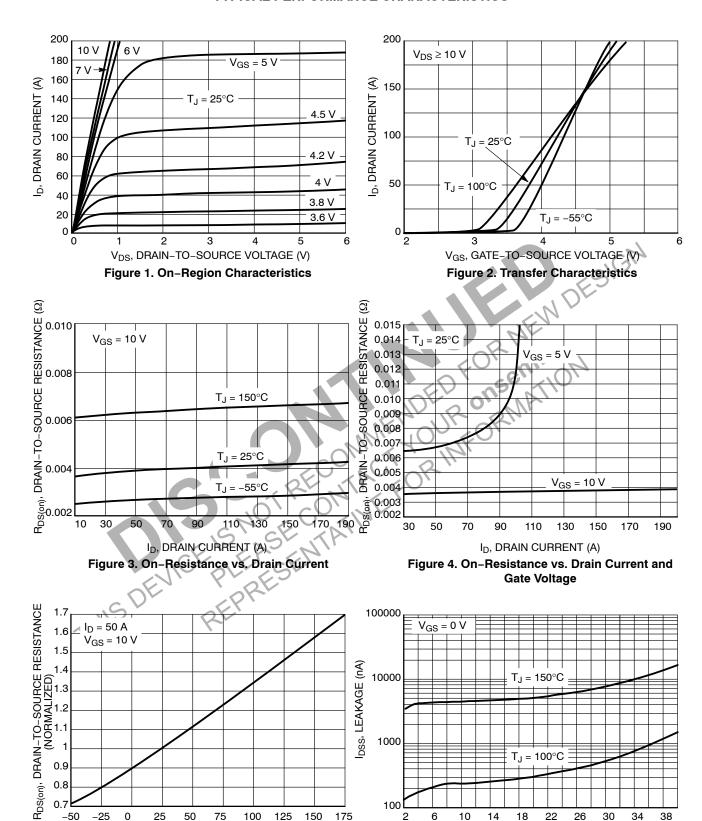


Figure 5. On-Resistance Variation with **Temperature**

TJ, JUNCTION TEMPERATURE (°C)

75

100

125

150

50

25

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 6. Drain-to-Source Leakage Current vs. Voltage

22

18

100

-50

-25

TYPICAL PERFORMANCE CHARACTERISTICS

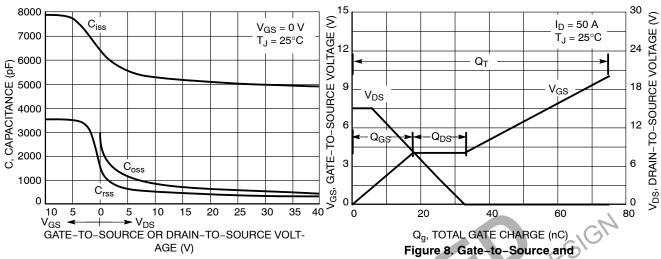


Figure 7. Capacitance Variation

Drain-to-Source Voltage vs. Total Charge

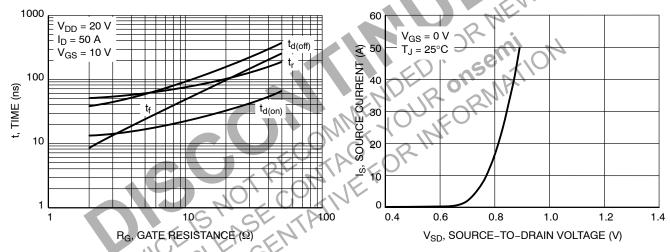


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

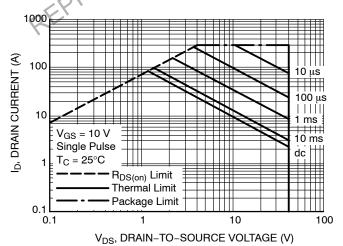


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS

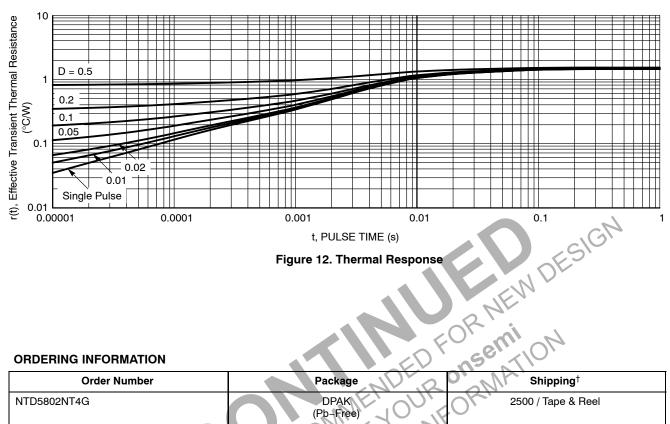
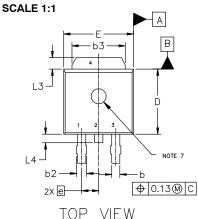


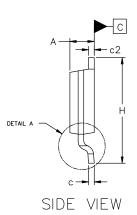
Figure 12. Thermal Response

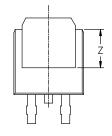
ORDERING INFORMATION

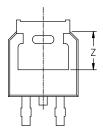
Order Number	Package	Shipping [†]
NTD5802NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD5802NT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

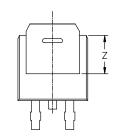
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

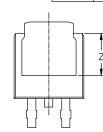

Specifications Brochure, BRD8011/D.
*NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP THIS DEVICE PLEASENTA Capable.

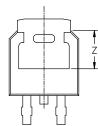


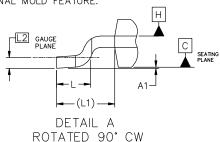

DPAK3 6.10x6.54x2.28, 2.29P CASE 369C **ISSUE J**


DATE 12 AUG 2025






MILLIMETERS						
DIM	MIN	MAX				
А	2.18	2.28	2.38			
A1	0.00		0.13			
b	0.63	0.76	0.89			
b2	0.72	0.93	1.14			
b3	4.57	5.02	5.46			
С	0.46	0.54	0.61			
c2	0.46	0.54	0.61			
D	5.97	6.10	6.22			
Е	6.35	6.54	6.73			
е		2.29 BSC				
Н	9.40	9.91	10.41			
L	1.40	1.59	1.78			
L1	2.90 REF					
L2	0.51 BSC					
L3	0.89		1.27			
L4			1.01			
Z	3.93					


BOTTOM VIEW

ALTERNATE CONSTRUCTIONS

NOTES:

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 2018.

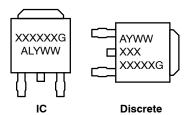
- CONTROLLING DIMENSION: MILLIMETERS.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3, AND Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR
 BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. OPTIONAL MOLD FEATURE.

-5.80

RECOMMENDED MOUNTING FOOTPRINT*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK3 6.10x6.54x2.28, 2.2	9P	PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK3 6.10x6.54x2.28, 2.29P

CASE 369C ISSUE J

DATE 12 AUG 2025

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE		PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
COLLE	ECTOR	2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
EMITT	ER	SOURCE	ANODE	3. GATE	CATHODE
COLLE	ECTOR	DRAIN	4. CATHODE	4. ANODE	4. ANODE
STYLE 6:	STYLE 7:	: STYL	E 8: STYI	LE 9:	STYLE 10:

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK3 6.10x6.54x2.28, 2.2	DPAK3 6.10x6.54x2.28, 2.29P			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales