

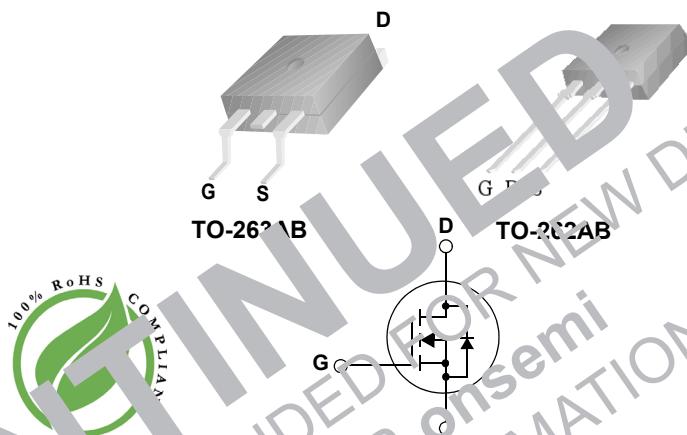
ON Semiconductor®

FQB27N25TM-F085/FQI27N25TU-F085

N-Channel MOSFET

250 V, 25.5 A, 131 mΩ

Features


- Typ $R_{DS(on)} = 108\text{m}\Omega$ at $V_{GS} = 10\text{V}$, $I_D = 25.5\text{A}$
- Typ $Q_{g(\text{tot})} = 45\text{nC}$ at $V_{GS} = 10\text{V}$, $I_D = 27\text{A}$
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12V Systems

MOSFET Maximum Ratings (Note 1) $T_J = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	250	V
V_{GS}	Gate to Source Voltage	± 30	V
I_D	Drain Current, Continuous ($V_{GS} = 10\text{V}$) (Note 1)	25.5	A
	Peak Drain Current	$T_J = 25^\circ\text{C}$	
E_{AS}	Single Pulse Avalanche Energy	(Note 2)	mJ
P_D	Power Dissipation	417	W
	Limited above 25°C	3.3	$\text{W}/^\circ\text{C}$
T_J, T_S	Operating and Storage Temperature	-55 to + 150	$^\circ\text{C}$
θ_{JC}	Thermal Resistance, Junction to Case	0.3	$^\circ\text{C}/\text{W}$
θ_{JA}	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	$^\circ\text{C}/\text{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FQB27N25TM	FQB27N25TM-F085	TO-263AB	330mm	24mm	800 units
FQI27N25TU	FQI27N25TU-F085	TO-262AB	Tube	N/A	50 units

Notes:

- 1: Current is limited by bondwire configuration.
- 2: Starting $T_J = 25^\circ\text{C}$, $L = 4.67\text{mH}$, $A_S = 20.4\text{A}$, $V_{DD} = 100\text{V}$ during inductor charging and $V_{DD} = 0\text{V}$ during time in avalanche.
- 3: θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. θ_{JC} is guaranteed by design while θ_{JA} is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Electrical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
--------	-----------	-----------------	------	------	------	-------

Off Characteristics

B_{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250\mu\text{A}, V_{GS} = 0\text{V}$	250	-	-	V
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = 250\text{V}, T_J = 25^\circ\text{C}$	-	-	1	μA
		$V_{GS} = 0\text{V}, T_J = 150^\circ\text{C}$ (Note 4)	-	-	250	uA
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 30\text{V}$	-	-	± 100	nA

On Characteristics

$V_{GS(\text{th})}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu\text{A}$	3.0	4.1	-	V
$R_{DS(\text{on})}$	Drain to Source On Resistance	$I_D = 25.5\text{A}, T_J = 25^\circ\text{C}$	-	10	13	$\text{m}\Omega$
		$V_{GS} = 10\text{V}, T_J = 150^\circ\text{C}$ (Note 4)	-	265	310	$\text{m}\Omega$

Dynamic Characteristics

C_{iss}	Input Capacitance	$V_{DS} = 25\text{V}, V_{GS} = 0\text{V}, f = 1\text{MHz}$	1800	-	-	pF
C_{oss}	Output Capacitance		350	-	-	pF
C_{rss}	Reverse Transfer Capacitance		-	45	-	pF
R_g	Gate Resistance		-	0.82	-	Ω
$Q_{g(\text{ToT})}$	Total Gate Charge at 10V	$V_{GS} = 0\text{V}$ to 10V, $V_{DD} = 125\text{V}$	-	45	49	nC
$Q_{g(\text{th})}$	Threshold Gate Charge	$V_{GS} = -0.2\text{V}$, $I_D = 27\text{A}$	-	3.3	4	nC
Q_{gs}	Gate to Source Gate Charge		-	12	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	23	-	nC

Switching Characteristics

t_{on}	Turn-On Time	$V_{DD} = 125\text{V}, I_D = 27\text{A}, V_{GS} = 10\text{V}, R_{GEN} = 25\Omega$	-	-	196	ns
$t_{d(on)}$	Turn-On Delay		-	36	-	ns
t_r	Rise Time		-	122	-	ns
$t_{d(off)}$	Turn-Off Delay		-	81	-	ns
t_f	Fall Time		-	60	-	ns
t_{off}	Turn-Off Time		-	-	164	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$I_{SD} = 25.5\text{A}, V_{GS} = 0\text{V}$	-	-	1.5	V
		$I_{SD} = 12.75\text{A}, V_{GS} = 0\text{V}$	-	-	1.25	V
t_r	Reverse-Recovery Time	$I_F = 27\text{A}, dI_{SD}/dt = 100\text{A}/\mu\text{s}, V_{DD} = 200\text{V}$	-	205	238	ns
			-	1.8	2.3	nC
Q_{rr}	Reverse-Recovery Charge		-	-	-	

Notes:

4: The maximum value is specified by design at $T_J = 150^\circ\text{C}$. Product is not tested to this condition in production.

Typical Characteristics

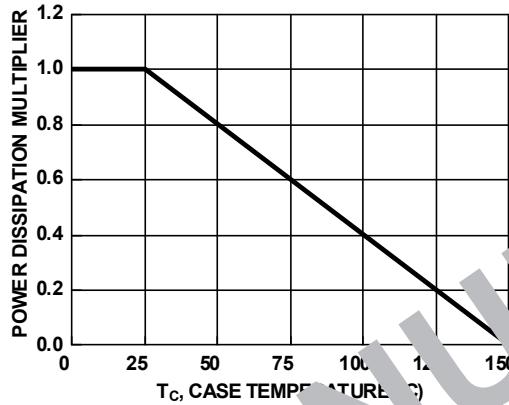


Figure 1. Normalized Power Dissipation vs. Case Temperature

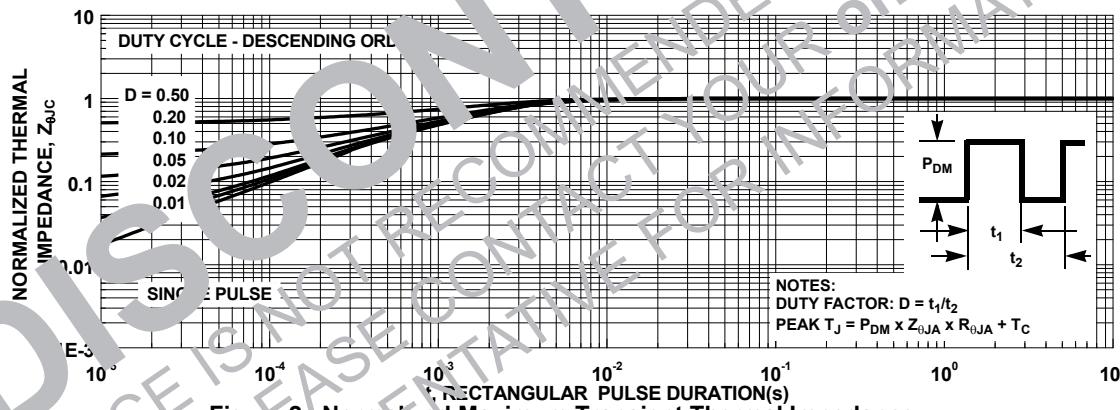


Figure 2. Normalized Maximum Transient Thermal Impedance

Typical Characteristics

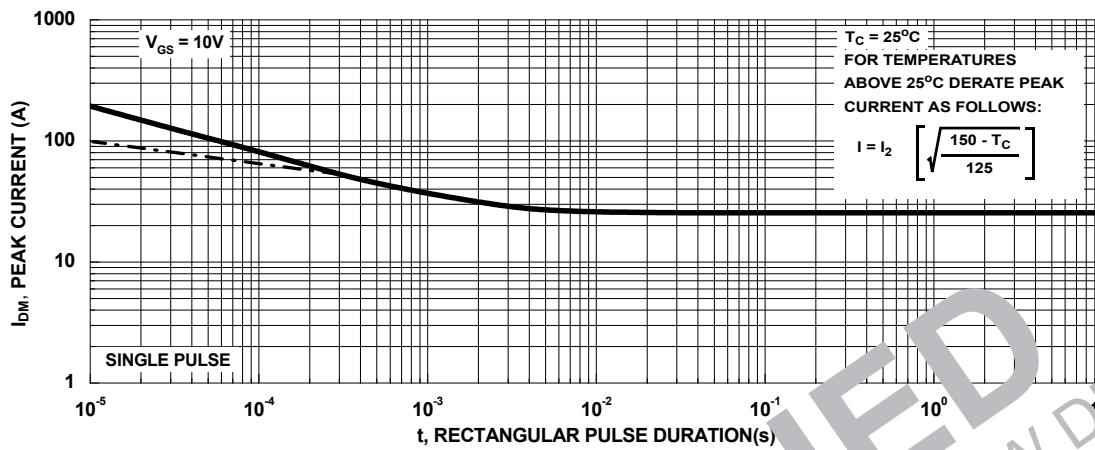


Figure 3. Peak Current Capability

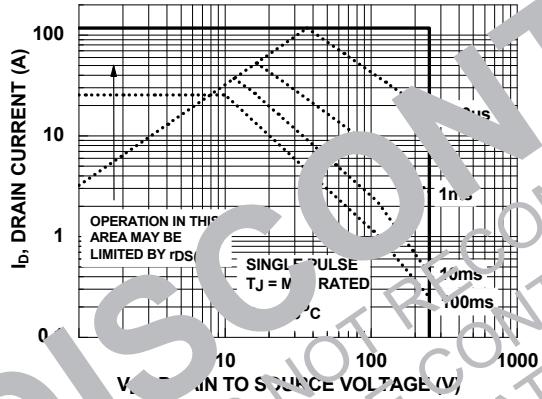
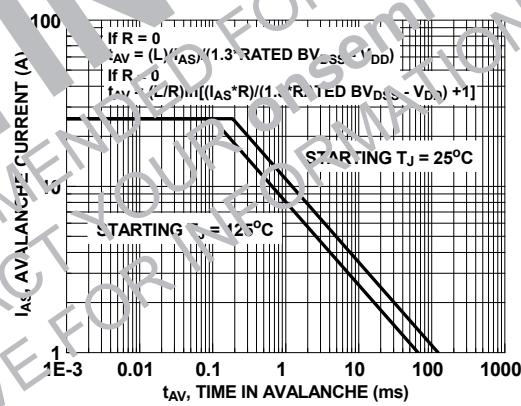



Figure 4. Forward Bias Safe Operating Area

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

Figure 5. Unclamped Inductive Switching Capability

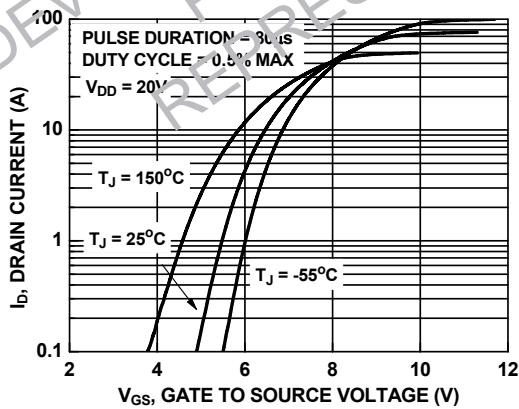


Figure 6. Transfer Characteristics

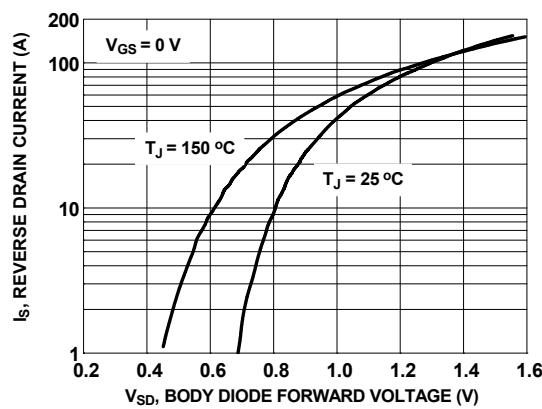


Figure 7. Forward Diode Characteristics

Typical Characteristics

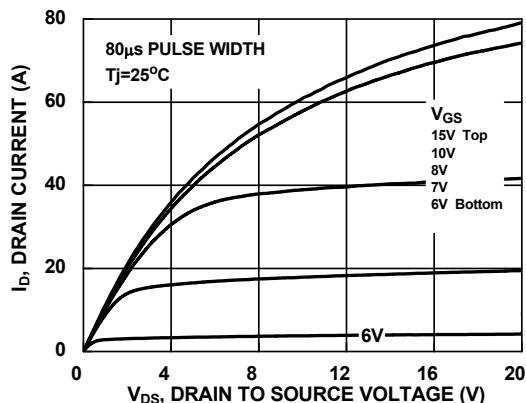


Figure 8. Saturation Characteristics

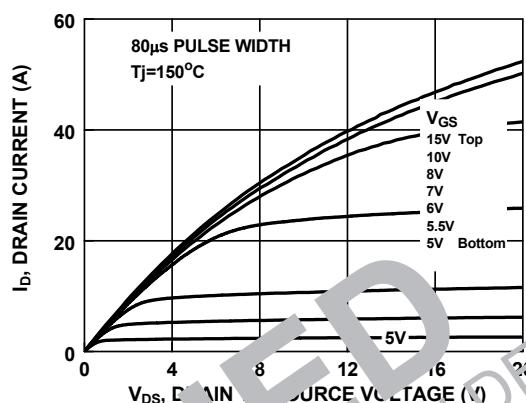


Figure 9. Saturation Characteristics

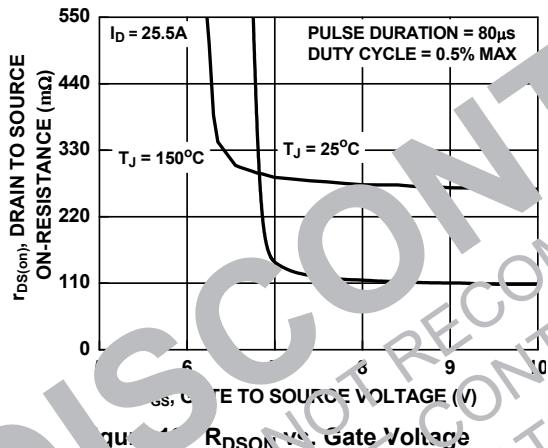
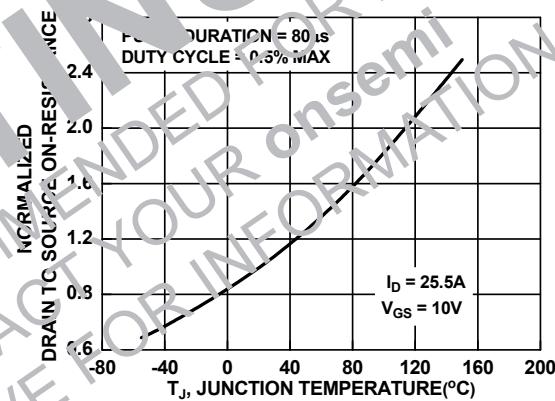
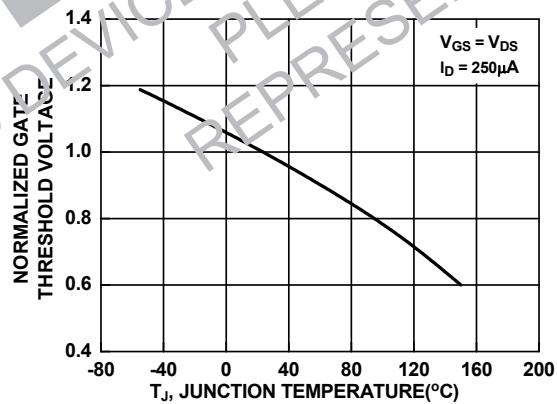



Figure 10. $R_{DS(on)}$ vs. Gate VoltageFigure 11. Normalized $R_{DS(on)}$ vs. Junction Temperature

Figure 12. Normalized Gate Threshold Voltage vs. Temperature

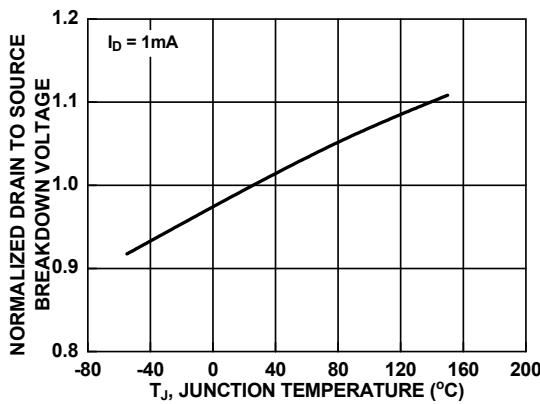


Figure 13. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Typical Characteristics

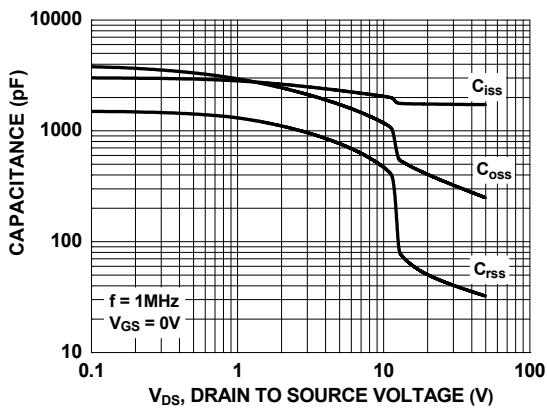


Figure 14. Capacitance vs. Drain to Source Voltage

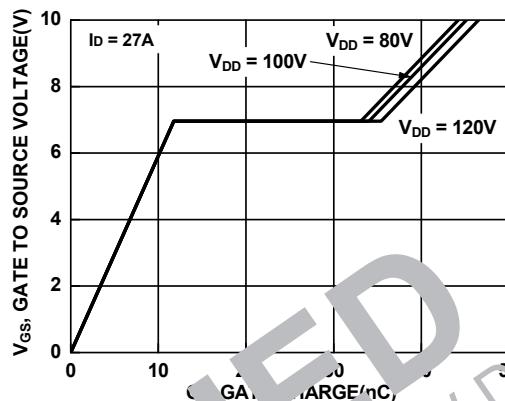


Figure 15. Gate Charge vs. Gate to Source Voltage

DISCONTINUED
THIS DEVICE IS NOT RECOMMENDED FOR NEW DESIGN
PLEASE CONTACT YOUR onsemi
REPRESENTATIVE FOR INFORMATION

DISCONTINUED
THIS DEVICE IS NOT RECOMMENDED FOR NEW DESIGN
PLEASE CONTACT YOUR onsemi
REPRESENTATIVE FOR INFORMATION

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative