

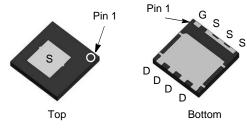
MOSFET - N-Channel, POWERTRENCH®, DUAL COOL® 88

150 V, 99 A, 6.5 mΩ

FDMT800150DC

	_		
General	Desci	ription	

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process. Advancements in both silicon and DUAL COOL package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

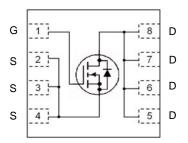

Features

- Max $r_{DS(on)} = 6.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 15 \text{ A}$
- Max $r_{DS(on)} = 8.4 \text{ m}\Omega$ at $V_{GS} = 8 \text{ V}$, $I_D = 13 \text{ A}$
- Advanced Package and Silicon Combination for Low r_{DS(on)} and High Efficiency
- Next Generation Enhanced Body Diode Technology, Engineered for Soft Recovery
- Low Profile 8 x 8 mm MLP Package
- MSL1 Robust Package Design
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications

- OringFET / Load Switching
- Synchronous Rectification
- DC–DC Conversion

V _{DS}	r _{DS(on)} MAX	I _D MAX
150 V	6.5 mΩ @ 10 V	99 A
	8.4 mΩ @ 6 V	


PQFN8 8X8, 2P (Dual Cool 88) CASE 483AQ

MARKING DIAGRAM

5G = Device Code A = Assembly Plant Code YW = Date Code Z = Traceability Code

ELECTRICAL CONNECTION

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Symbol	Parameter				Rating	Unit
V _{DS}	Drain to Source	Voltage			150	V
V_{GS}	Gate to Source \	/oltage			±20	V
I _D	Drain Current	Continuous	T _C = 25°C	(Note 5)	99	А
		Continuous	T _C = 100°C	(Note 5)	62	
		Continuous	T _A = 25°C	(Note 1a)	15	
		- Pulsed		(Note 4)	561	
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	1093	mJ
P_{D}	Power Dissipation T _C = 25°C			156	W	
	Power Dissipation	n	T _A = 25°C	(Note 1a)	3.2	
T _J , T _{STG}	Operating and St	torage Junction Temper	ature Range		-55 to +150	°C

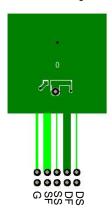
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	1.6	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	0.8	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	15	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	21	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	9	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150	_	-	V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	110	-	mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V	-	-	1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	ı	_	100	nA	
ON CHAR	ACTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	3.0	4.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-12	-	mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 15 A	-	5.4	6.5	mΩ	
		V _{GS} = 6 V, I _D = 13 A	-	6.6	8.4		
		V _{GS} = 10 V, I _D = 15 A, T _J = 125°C	-	11	13		
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 15 A	1	48	-	S	
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	5860	8205	pF	
C _{oss}	Output Capacitance		-	520	730	pF	
C _{rss}	Reverse Transfer Capacitance		-	17	30	pF	
R _g	Gate Resistance		0.1	1.4	3.5	Ω	
SWITCHIN	IG CHARACTERISTICS						
td _(on)	Turn-On Delay Time	V _{DD} = 75 V, I _D = 15 A,	-	31	50	ns	
t _r	Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	-	16	29	ns	
t _{d(off)}	Turn-Off Delay Time		-	41	66	ns	
t _f	Fall Time		-	9.3	19	ns	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 75 \text{ V}, I_D = 15 \text{ A}$	-	77	108	nC	
		$V_{GS} = 0 \text{ V to } 6 \text{ V}, V_{DD} = 75 \text{ V}, I_D = 15 \text{ A}$	_	49	69		
Q _{gs}	Gate to Source Charge	V _{DD} = 75 V, I _D = 15 A	-	25	-	nC	
Q_{gd}	Gate to Drain "Miller" Charge	<u> </u>	ı	14	_	nC	
DRAIN-SC	DURCE DIODE CHARACTERISTICS						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.9 \text{ A}$ (Note 2)	-	0.7	1.1	V	
		V _{GS} = 0 V, I _S = 15 A (Note 2)	-	0.8	1.2		
t _{rr}	Reverse Recovery Time	I _F = 15 A, di/dt = 100 A/μs	-	103	165	ns	
Q _{rr}	Reverse Recovery Charge]	_	233	373	nC	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	1.6	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	0.8	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	14	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	16	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	60	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	15	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	21	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	9	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	11	

NOTES:

 R_{0,JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0CA} is determined by the user's board design.

a) 38°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) 200FPM Airflow, No Heat Sink, 1 in² pad of 2 oz copper
- h) 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) 200FPM Airflow, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) 200FPM Airflow, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) 200FPM Airflow, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- I) 200FPM Airflow, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 1093 mJ is based on starting $T_J = 25$ °C; N-ch: L = 3 mH, $I_{AS} = 27$ A, $V_{DD} = 150$ V, $V_{GS} = 10$ V. 100% test at L = 0.1 mH, $I_{AS} = 86$ A.
- 4. Pulsed Id please refer to Figure 11 SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

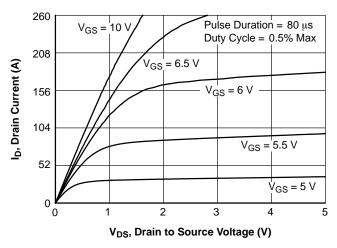


Figure 1. On-Region Characteristics

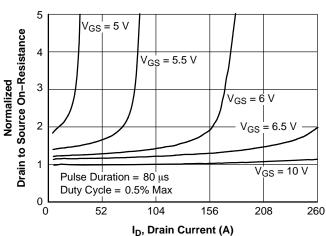


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

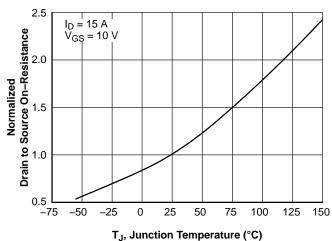


Figure 3. Normalized On–Resistance vs. Junction Temperature

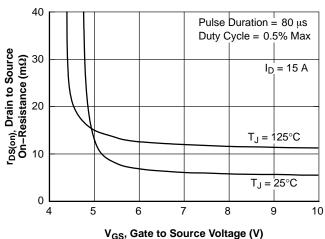


Figure 4. On-Resistance vs. Gate to Source Voltage

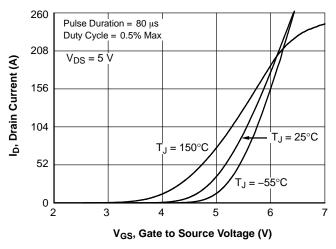


Figure 5. Transfer Characteristics

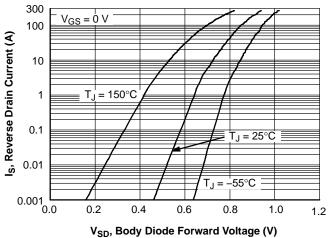


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

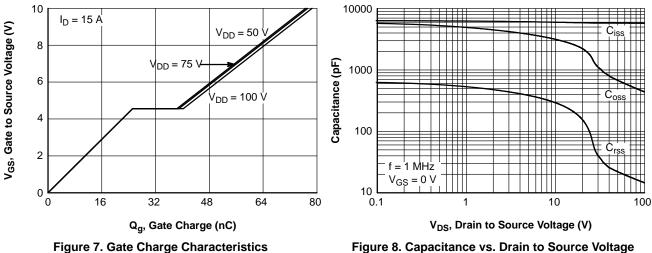


Figure 7. Gate Charge Characteristics

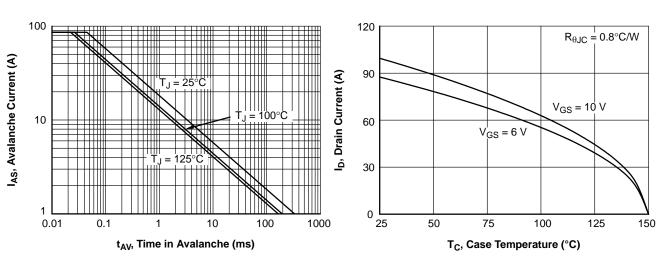


Figure 9. Unclamped Inductive Switching Capability

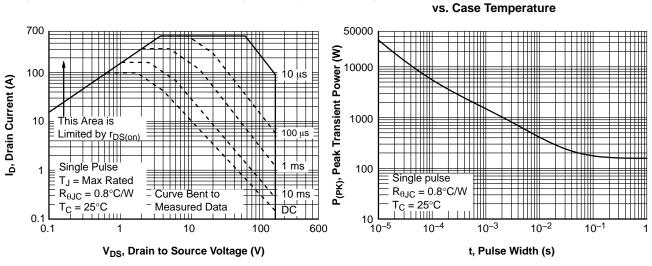


Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

Figure 10. Maximum Continuous Drain Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

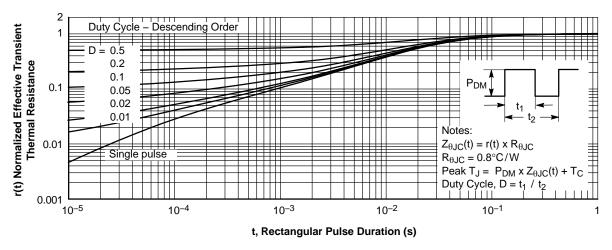
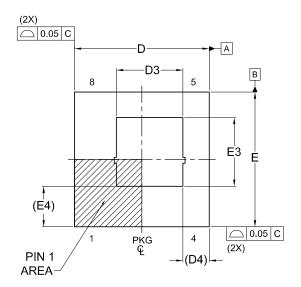


Figure 13. Junction-to-Case Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping [†]
5G	FDMT800150DC	PQFN8 8X8, 2P, DUAL COOL 88		13.3 mm	3000 / Tape & Reel

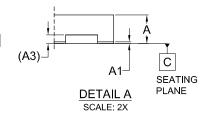
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH and DUAL COOL are registered trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



PQFN8 8X8, 2P CASE 483AQ ISSUE B

DATE 24 OCT 2022



TOP VIEW

SEE DETAIL A

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRW/D.

FRONT VIEW 0.10M C A B e1 05(M) C е b (8X) (8X) -(L1) PIN #1 IDENT NOTES: e2 E5 E2 e3 (4X) E6 (z)(4X)D2 **BOTTOM VIEW**

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.

- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

DIM	MILLIMETERS			
Diw	MIN.	NOM.	MAX.	
Α	0.75	0.85	0.95	
A1	0.00	-	0.05	
A3	().25 REF		
b	0.90	1.00	1.10	
D	7.90	8.00	8.10	
D2	6.80	6.90	7.00	
D3	3.68	3.86	4.03	
D4		1.56 REF	:	
Е	7.90	8.00	8.10	
E2	5.13	5.23	5.33	
E3	3.99	4.09	4.19	
E4		2.41 REF	=	
E5	(0.35 REF	=	
E6	(0.60 REF	-	
е	2	2.00 BSC	;	
e1	(6.00 BSC	;	
e2	1.20 BSC			
e3	2.78 BSC			
k	1.48 1.58 1.68		1.68	
L	0.50	0.60	0.70	
L1	0.20 REF			
Z	0.50 REF			

DOCUMENT NUMBER:	98AON13665G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PQFN8 8X8, 2P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales