Ultra Low VF 1 Amp Schottky Barrier Rectifiers

UPS5817(e3), UPS5819(e3)

Product Overview

The Microchip UPS5817–UPS5819e3 in Powermite 1 package, high efficiency rectifiers offer optimized forward voltage characteristics with reverse blocking capabilities of 20 and 40 volts. They are ideal for surface mount applications that operate at high frequencies. They offer high current/power capabilities previously only found in much larger packages.

In addition to its size advantages, Powermite 1 package features include a full metallic bottom that eliminates possibility of solder flux entrapment during assembly and a unique locking tab acts as an efficient heat path from die to mounting plane for external heat sinking with very low thermal resistance junction to case (bottom). Its innovative design makes this device ideal for use with automatic insertion equipment. RoHS compliant versions are available.

Features

- Low thermal resistance DO-216AA package for higher current operation
- Ultra low forward voltage drop
- · Efficient heat path with Integral locking bottom metal tab
- · High current capability with low forward voltage
- Guard-ring die construction for transient protection
- · Full metallic bottom eliminates flux entrapment
- · Compatible with automatic insertion equipment
- Low profile-maximum height of 1.14 mm
- · Supplied in 8 mm tape and reel
- RoHS compliant versions available

Applications/Benefits

- Silicon Schottky (hot carrier) rectifier for minimal t_{rr} and minimal reverse recovery voltage
- Elimination of reverse-recovery oscillations to reduce need for EMI filtering
- For use in high-frequency switching power supplies, inverters, free-wheeling diode applications, charge pump circuits, and polarity protection applications
- Low forward power loss and high efficiency
- Reduces reverse recovery loss with low I_{RM}
- Robust package configuration for pick-and-place handling
- · Full-metallic bottom eliminates flux entrapment
- Ideal as an OR'ing diode
- Small foot print (See Pad Layout details)

Figure 1. Powermite 1 (DO-216AA) Package

Table of Contents

Pro	duct Overviewduct	. 1
1.	Maximum Ratings	3
	1.1. Mechanical Packaging	. 3
2.	Part Nomenclature	4
	2.1. Electrical Characteristics	. 4
3.	Graphs	. 5
1	Package Dimensions	6
4.		
	4.1. Pad Layout	. 6
	4.2. Schematic	6
5.	Revision History	. 7
Mic	rochip Information	c
IVIIC	rocriip information	. с
	Trademarks	. 8
	Trademarks Legal Notice	8
	Microchip Devices Code Protection Feature	

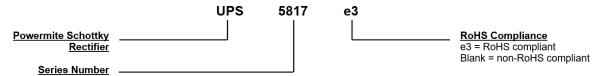
1. Maximum Ratings

Table 1-1. Maximum Ratings at 25 °C Unless Otherwise Specified

Parameters/Test Conditions	Symbol	V	Value	
		UPS5817	UPS5819	
Peak Repetitive Reverse Voltage	V_{RRM}	20	40	V
Working Peak Reverse Voltage	V_{RWM}			
DC Blocking Voltage	V_R			
RMS Reverse Voltage	V _{R(RMS)}	14	28	V
Junction and Storage Temperature	T_J and T_{STG}	-55 to +150		°C
Thermal Resistance Junction-to-Case	$R_{\Theta JC}$	15		°C/W
Thermal Resistance Junction-to-Ambient ¹	$R_{\Theta JA}$	240	240	
Average Rectified Output Current at T_C = 135 °C	I _O	1.0		Α
Repetitive Peak Forward Current	I _{FRM}	2.0		Α
Surge Peak Forward Current	I _{FSM}	50		Α
Voltage Rate of Change at Rated V_R and T_J = 25 °C	dV/dt	10,000		V/µs
Solder Temperature at 10 seconds	T _{SP}	260		°C

Note:

1. Mounted on FR-4 PC board using 1 oz copper with recommended minimum foot print


1.1. Mechanical Packaging

- Case: Molded epoxy package meets UL94V-0
- Terminals: Copper with annealed matte-tin plating for RoHS compliance. Solderable per MIL-STD-750 method 2026.
 (Consult factory for tin-lead plating)
- Marking: Date code, body marked with "S17" or "S19"
- Polarity: Cathode designated by Tab 1 (bottom)
- Tape and Reel Option: Packaging per EIA-481-B with 8 mm tape. Consult factory for quantities.
- Weight: Approximately 0.016 grams
- See Package Dimensions

2. Part Nomenclature

Figure 2-1. Part Nomenclature

2.1. Electrical Characteristics

Table 2-1. Ratings

Rating (Conditions)	Symbol	Va	alue	Unit
		UPS5817	UPS5819	
Maximum Instantaneous Forward Voltage 2 (I _F = 1.0A, T _J = +25 °C)	V _F	0.45	0.55	Volts
Maximum Instantaneous Reverse Current 2 (at V _{RWM} , T _J = +25 °C)	I _{RM}	1.0	1.0	mA
Typical Junction Capacitance ($V_R = 5V, f = 1 \text{ MHz}$)	CJ	105	60	pF

Note:

1: Measured with a test pulse of 380 μs to minimize self-heating effect

Table 2-2. Electrical Characteristics

Part Number	Device Marking ¹	Working Peak Reverse Voltage	Max Reverse Current ²	RMS Reverse Voltage	Max Forward Voltage ² V _F	Typical Capacitance at V _R = 5V at f = 1 MHz
		V _{RWM}	I _R at V _{RWM}	V _{R(RMS)}	at I _F = 1A	C _T
		V	mA	V	v	pF
UPS5817	S17	20	1	14	0.45	105
UPS5819	S19	40	1	28	0.55	60

Notes:

- 1. Include in marking for e3 parts (e.g. UPS120e3 and S20•)
- 2. Short duration test pulse used to minimize self-heating effect

3. Graphs

Figure 3-1. Thermal Impedance Junction to Case

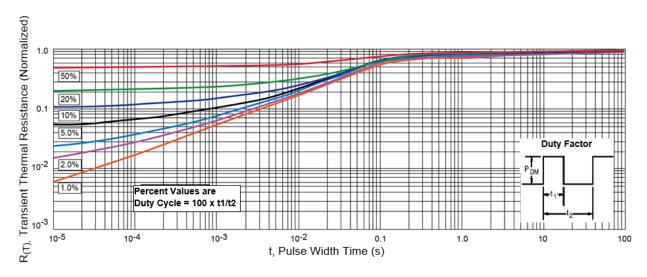
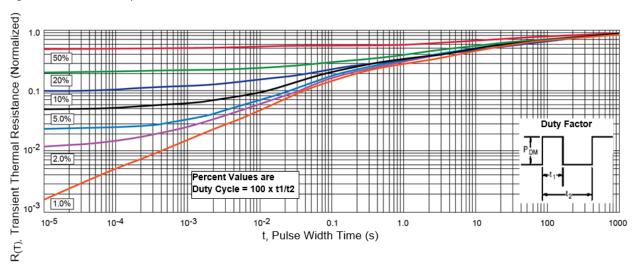
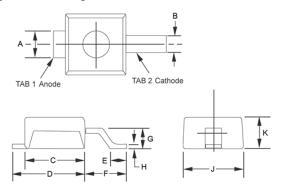
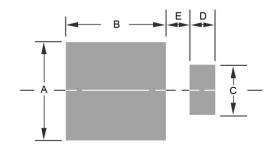




Figure 3-2. Thermal Impedance Junction to Ambient

4. Package Dimensions


Figure 4-1. Package Dimensions

Ltr	Dimensions				
	Inch		Millin	neters	
	Min.	Max.	Min.	Max.	
Α	0.029	0.039	0.73	0.99	
В	0.016	0.026	0.40	0.66	
C	0.070	0.080	1.77	2.03	
D	0.087	0.097	2.21	2.46	
E	0.020	0.030	0.50	0.76	
F	0.051	0.061	1.29	1.54	
G	0.021	0.031	0.53	0.78	
Н	0.004	0.008	0.10	0.20	
J	0.070	0.080	1.77	2.03	
K	0.035	0.045	0.89	1.14	

4.1. Pad Layout

Figure 4-2. Pad Layout

Ltr	Dimensions		
	Inch	Millimeters	
A	0.100	2.54	
В	0.105	2.67	
С	0.050	1.27	
D	0.030	0.76	
E	0.025	0.64	

4.2. Schematic

Figure 4-3. Schematic

5. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

	Revision	Date	Description		
A 04/2025 Document was converted to Microchip template and assigned literature numbe DS00005925.			Document was converted to Microchip template and assigned literature numbe DS00005925.		
Rev B 12/2024 Microsemi document was created and assigned literature number RF01129.		Microsemi document was created and assigned literature number RF01129.			

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-information/microchip-trademarks.

ISBN:

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip products are strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

