

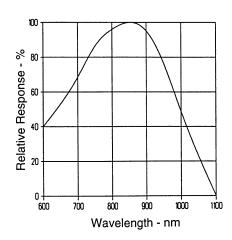
NPN Silicon Phototransistors Types OP600A, OP600B, OP600C

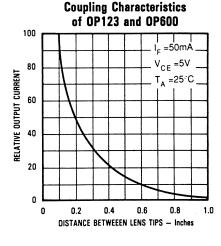
Features

- · Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- · Ideal for direct mounting in PC boards
- Mechanically and spectrally matched to the OP123 and OP223 series devices
- TX/TXV processing available (see Hi-Rel section)

Description

The OP600 series device consists of an NPN silicon phototransistor mounted in a hermetically sealed "Pill" type package. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters.


Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)


Collector-Emitter Voltage
Emitter-Collector Voltage 5.0 V
Storage Temperature Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Continuous Collector Current 50 mA
Notes:

- (1) Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices to PC boards.
- (2) No clean or low solids, RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 0.5mW/° C above 25° C.
- (4) Junction temperature maintained at 25° C.
- (5) Light source is a GaAlAs LED, peak Wavelength = 890 nm, providing an irradiance of 2.5 mW/cm². The source irradiance is not necessarily uniform over the entire lens area of the unit under test.

Typical Performance Curves

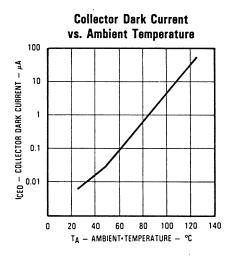
Typical Spectral Response

Optek Technology, Inc.

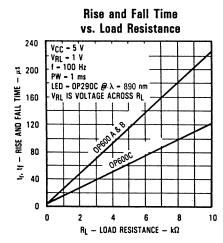
1215 W. Crosby Road

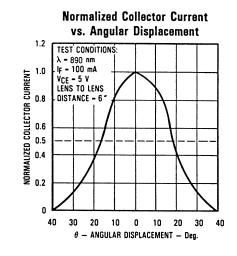
Carrollton, Texas 75006

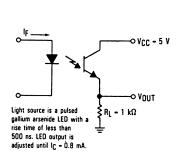
(972) 323-2200


Fax (972) 323-2396

Types OP600A, OP600B, OP600C


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)} ⁽⁴⁾	On-State Collector Current	OP600C OP600B OP600A	0.30 0.60 1.20		1.8	mA mA mA	$V_{CE} = 5 \text{ V, } E_e = 2.5 \text{ mW/cm}^{2(5)}$
ICEO	Collector Dark Current					nA	V _{CE} = 10 V, E _e = 0
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage		25			V	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			٧	I _E = 100 μA
VCE(SAT) ⁽⁴⁾	Collector-Emitter Saturation Voltage				0.40	٧	$I_C = 0.15 \text{ mA}, E_e = 2.5 \text{ mW/cm}^{2(5)}$
, ,	Rise Time Fall Time			15 15		μs μs	V_{CC} = 5 V, I_C = 0.80 mA, R_L = 1 k Ω , See Test Circuit


Typical Performance Curves

Switching Time

Test Circuit