N-Channel Power MOSFET 400 V, 5.5 Ω

Features

- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	NDD	NDT	Unit	
Drain-to-Source Voltage	V_{DSS}	40	400		
Gate-to-Source Voltage	V_{GS}	±2	20	V	
Continuous Drain Current $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$ (Note 1)	Ι _D	1.7	1.7 0.4		
Continuous Drain Current R _{θJC} Steady State, T _C = 100°C (Note 1)	Ι _D	1.1 0.25		Α	
Power Dissipation – $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$	P _D	39	2.0	W	
Pulsed Drain Current	I _{DM}	6.9	1.6	Α	
Continuous Source Current (Body Diode)	IS	1.7 0.4		Α	
Single Pulse Drain-to-Source Avalanche Energy, I _D = 1 A	EAS	120		mJ	
Maximum Temperature for Soldering Leads	TL	260		°C	
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to	+150	°C	

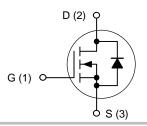
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Limited by maximum junction temperature
- 2. $I_S = 1.7 \text{ Å}, \text{ di/dt} \le 100 \text{ A/}\mu\text{s}, V_{DD} \le \text{BV}_{DSS}, T_J = +150 ^{\circ}\text{C}$

THERMAL RESISTANCE

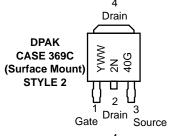
Parameter	Symbol	Value	Unit	
Junction-to-Case (Drain)	NDD02N40	$R_{\theta JC}$	3.2	°C/W
Junction-to-Ambient Steady St NDD0 NDD02l NDT0 NDT0	$R_{ heta JA}$	39 96 62 151	°C/W	

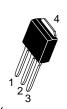
- 3. Insertion mounted
- Surface mounted on FR4 board using 1" sq. pad size
- (Cu area = 1.127" sq. [2 oz] including traces)
 5. Surface–mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]).



ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX
400 V	5.5 Ω @ 10 V


N-Channel MOSFET

MARKING DIAGRAMS

IPAK CASE 369D (Straight Lead) STYLE 2

= Year = Work Week = Device Code

2 Gate Drain Source = Pb-Free Package

Drain

4

AYW

2N40=

2

Drain

SOT-223 **CASE 318E** STYLE 3

= Assembly Location = Year

W = Work Week 2N40 = Specific Device Code

Gate Drain Source = Pb-Free Package (*Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ r}$	mA	400			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°0 I _D = 1 mA	Reference to 25°C, I _D = 1 mA		460		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 400 V, V _{GS} = 0 V	T _J = 25°C			1	μΑ
			T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±10	μА
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$		8.0	1.6	2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25°C, I _D :	= 50 μΑ		4.6		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.2$	22 A		4.5	5.5	Ω
Forward Transconductance	9FS	$V_{DS} = 15 \text{ V}, I_D = 0.2$	22 A		1.1		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 7)	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			121		pF
Output Capacitance (Note 7)	C _{oss}				16		
Reverse Transfer Capacitance (Note 7)	C _{rss}	VDS - 23 V, VGS - 0 V, I		3			
Total Gate Charge (Note 7)	Q_{g}				5.5		nC
Gate-to-Source Charge (Note 7)	Q_{gs}				0.8		
Gate-to-Drain ("Miller") Charge (Note 7)	Q_{gd}	$V_{DS} = 200 \text{ V}, I_D = 1.7 \text{ A}, V_D$	' _{GS} = 10 V		1.0		
Plateau Voltage	V_{GP}				3.1		V
Gate Resistance	R_{g}				8.7		Ω
RESISTIVE SWITCHING CHARACTER	ISTICS (Note 8))					
Turn-on Delay Time	t _{d(on)}				5		ns
Rise Time	t _r	$V_{DD} = 200 \text{ V}, I_D = 1$.7 A,		7		
Turn-off Delay Time	t _{d(off)}	$V_{DD} = 200 \text{ V}, I_D = 1$ $V_{GS} = 10 \text{ V}, R_G = 0$	Ω		14		
Fall Time	t _f				4		
SOURCE-DRAIN DIODE CHARACTER	RISTICS		-				-
Diode Forward Voltage	V_{SD}	1 474 1/ 01/	$T_J = 25^{\circ}C$		0.9	1.6	V
		$I_S = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 100^{\circ}\text{C}$			0.8		
Reverse Recovery Time	t _{rr}				146		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}, I_{S}$	s = 1.7 A,		37		1
Discharge Time	t _b	$d_i/d_t = 100 \text{ A/}\mu\text{s}$	´		109		1
Reverse Recovery Charge	Q _{rr}	ļ			260		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 6. Pulse Width \leq 380 μ s, Duty Cycle \leq 2%. 7. Guaranteed by design.
- 8. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]
NDD02N40-1G	IPAK 75 (Pb–Free, Halogen Free)	
NDD02N40T4G	DPAK (Pb–Free, Halogen Free)	2500 / Tape & Reel
NDT02N40T1G	SOT–223 (Pb–Free, Halogen Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

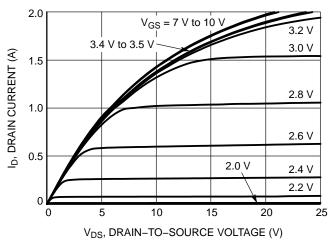


Figure 1. On-Region Characteristics

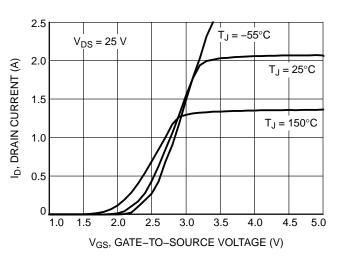


Figure 2. Transfer Characteristics

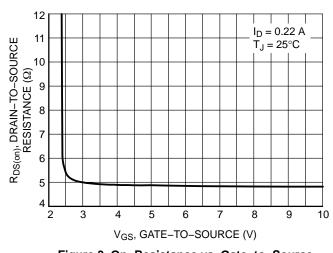


Figure 3. On–Resistance vs. Gate–to–Source Voltage

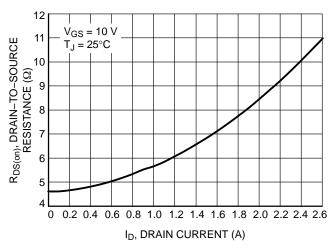


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

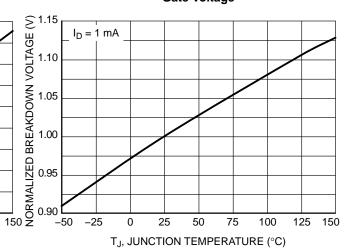


Figure 6. Normalized BVDSS with Temperature

TYPICAL CHARACTERISTICS

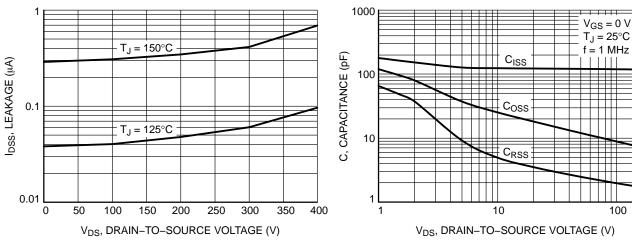


Figure 7. Drain-to-Source Leakage Current vs. Voltage

Figure 8. Capacitance Variation

100

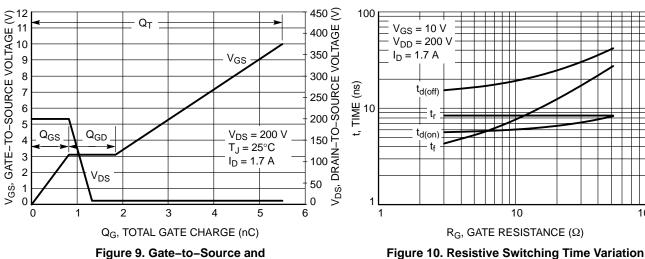
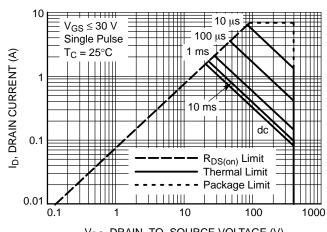



Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

vs. Gate Resistance

IS, SOURCE CURRENT (A) 10 $T_J = 150^{\circ}C$ = 25°C $T_J = 125^{\circ}C$ 0.1 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 11. Diode Forward Voltage vs. Current

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 12. Maximum Rated Forward Biased

Safe Operating Area for NDD02N40

100

TYPICAL CHARACTERISTICS

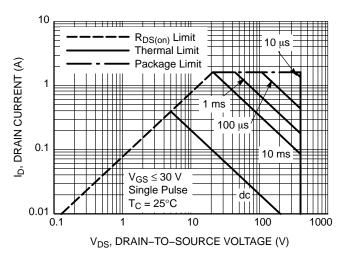


Figure 13. Maximum Rated Forward Biased Safe Operating Area for NDT02N40

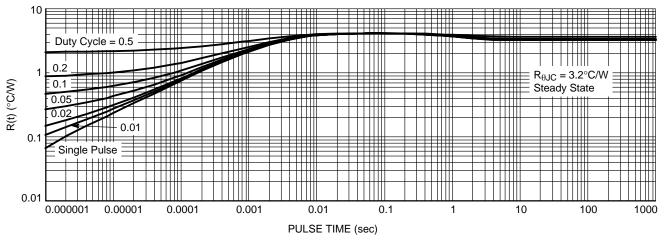
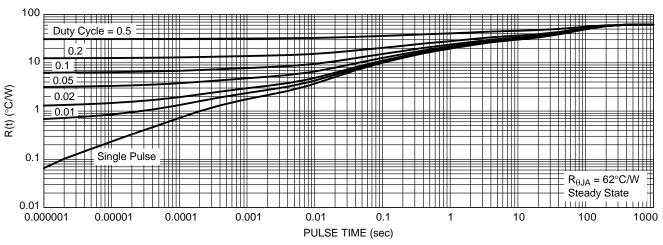
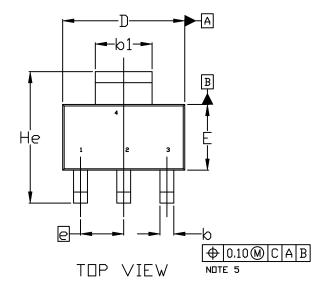
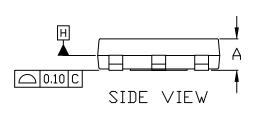
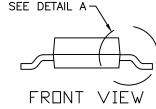


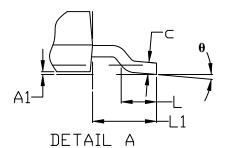
Figure 14. Thermal Impedance (Junction-to-Case) for NDD02N40



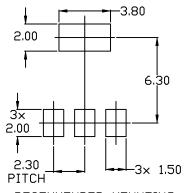

Figure 15. Thermal Impedance (Junction-to-Ambient) for NDT02N40






SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



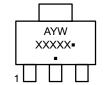
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	1.50	1.63	1.75			
A1	0.02	0.06	0.10			
Ø	0.60	0.75	0.89			
b1	2.90	3.06	3.20			
U	0.24	0.29	0.35			
D	6.30	6.50	6.70			
E	3.30	3.50	3.70			
е		2,30 BSC	,			
L	0.20					
L1	1.50	1.75	2.00			
He	6.70	7.00	7.30			
θ	0*		10°			

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

= Assembly Location Α

= Year

W = Work Week XXXXX = Specific Device Code

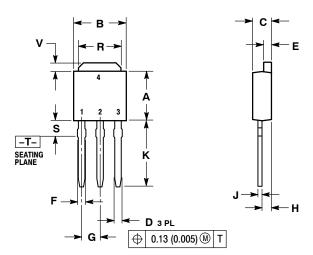
= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



DPAK INSERTION MOUNT

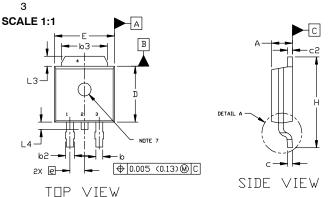
CASE 369 ISSUE O

DATE 02 JAN 2000

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.235	0.250	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.033	0.040	0.84	1.01	
F	0.037	0.047	0.94	1.19	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.175	0.215	4.45	5.46	
S	0.050	0.090	1.27	2.28	
٧	0.030	0.050	0.77	1.27	

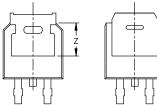
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

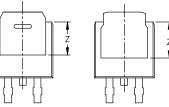

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GAUGE) CASE 369C **ISSUE G**

DATE 31 MAY 2023

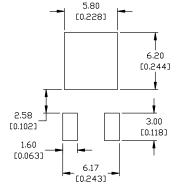


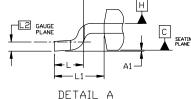

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

- OPTIONAL MOLD FEATURE.

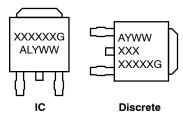
DIM	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b 3	0.180	0.215	4.57	5.46
Ū	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Η	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040	-	1.01
Z	0.155		3.93	





BOTTOM VIEW

BOTTOM VIEW


ALTERNATE CONSTRUCTIONS

ROTATED 90° CW

GENERIC MARKING DIAGRAM*

= Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb-Free Package

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

RECOMMENDED MOUNTING FOOTPRINT*

	2. DRAIN 3. SOURCE	1. ANODE PIN 1 2. CATHODE 2 3. ANODE 3	. CATHODE PIN 1. G 2. ANODE 2. A 3. GATE 3. C	
--	-----------------------	--	---	--

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE

PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. N/C 2. CATHODE 3. ANODE 4. COLLECTOR 4. CATHODE 4. ANODE 4. CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

S

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

