

1000V, 42A, 0.20Ω Max, t_{rr} ≤400ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

APT41F100J
Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
l _a	Continuous Drain Current @ T _C = 25°C	42	
'D	Continuous Drain Current @ T _C = 100°C	27	Α
I _{DM}	Pulsed Drain Current ^①	260	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	4075	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	33	Α

Thermal and Mechanical Characteristics

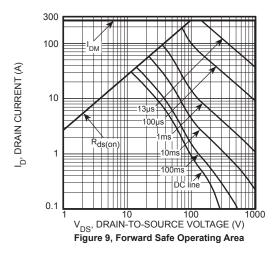
Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			960	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.13	0.13 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Tamping land Manusking Courses		·	10	in·lbf	
	Terminals and Mounting Screws.			1.1	N·m	

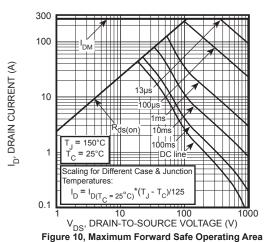
<u> </u>						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	1000			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 25	50µA	1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 33A		0.18	0.20	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	\/ -\/ - Fm \	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 5mA$	`	-10		mV/°C
I _{DSS}	Zoro Cata Valtaga Drain Current	$V_{DS} = 1000V$ $T_{J} = 25^{\circ}C$			250	μA
	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_J = 125^\circ$,C		1000] μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

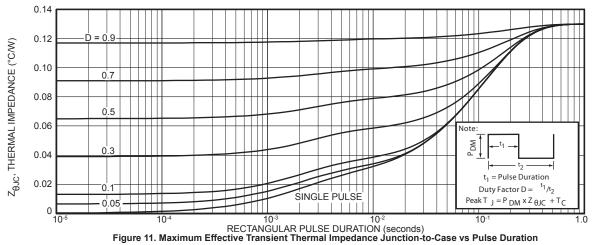
APT41F100J

Dynamic Characteristics T_J = 25°C unless otherwise specified

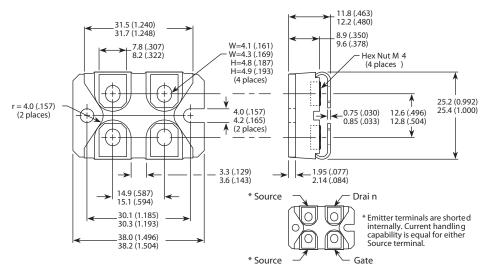
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 33A$		75		S
C _{iss}	Input Capacitance	V 0V V 05V		18500		
C_{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		245		
C _{oss}	Output Capacitance	1 111112		1555		
$C^{o(cr)} \oplus$	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 667V		635		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 667V		325		
Q_g	Total Gate Charge)/ 01×40)/ 1 00A		570		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 33A,$		100		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 500V		270		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		55		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 33A		55		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		235		115
t _f	Current Fall Time			55		1


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	s Mir	т Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the	OD D		42	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	SUPPLY S		260	
V _{SD}	Diode Forward Voltage	$I_{SD} = 33A, T_{J} = 25^{\circ}C, V_{GS}$	S = 0V		1.2	V
t _{rr}	Reverse Recovery Time Reverse Recovery Charge	T _J = 2	25°C		400	no
`rr		$T_J = 1$	125°C		800	ns
Q _{rr}		$I_{SD} = 33A^{3}$ $T_{J} = 2$	25°C	3.3		
arr.		$V_{DD} = 100V$ $T_{J} = 1$	125°C	8.0		μC
1	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 2$	25°C	17.2		_
'rrm		T _J = 125°C		24.6		- A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 33A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$, $T_{J} = 125^{\circ}C$			25	V/ns


- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25^{\circ}\text{C}$, L = 7.48mH, $R_G = 25\Omega$, $I_{AS} = 33A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.

- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)