

MxL86111

Ethernet PHY

Single Port Gigabit Ethernet PHY

MxL86111C MxL86111I

Data Sheet

Revision 1.1, 2023-04-27 Reference ID 620846

Legal Notice

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this document. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

EXCEPT AS OTHERWISE PROVIDED EXPRESSLY IN WRITING BY MAXLINEAR, AND TO THE MAXIMUM EXTENT PERMITTED BY LAW: (A) THE MAXLINEAR PRODUCTS ARE PROVIDED ON AN "AS IS" BASIS WITHOUT REPRESENTATIONS OR WARRANTIES OF ANY KIND, INCLUDING WITHOUT LIMITATION ANY IMPLIED OR STATUTORY WARRANTIES AND ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; AND (B) MAXLINEAR DOES NOT GUARANTEE THAT THE PRODUCTS WILL BE FREE OF ERRORS OR DEFECTS. MAXLINEAR PRODUCTS SHOULD NOT BE USED IN ANY EMERGENCY, SECURITY, MILITARY, LIFE-SAVING, OR OTHER CRITICAL USE CASE WHERE A FAILURE OR MALFUNCTION COULD CAUSE PERSONAL INJURY OR DEATH, OR DAMAGE TO OR LOSS OF PROPERTY. USERS ASSUME ALL RISK FOR USING THE MAXLINEAR PRODUCTS IN SUCH USE CASE. CUSTOMERS AND USERS ARE SOLELY RESPONSIBLE FOR USING THEIR OWN SKILL AND JUDGMENT TO DETERMINE WHETHER MAXLINEAR PRODUCTS ARE SUITABLE FOR THE INTENDED USE CASE.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, any other MaxLinear trademarks (including but not limited to MxL, Full-Spectrum Capture, FSC, AirPHY, Puma, AnyWAN, VectorBoost, MXL WARE, and Panther), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

All third-party products, company names and logos are trademarks[™] or registered® trademarks and remain the property of their respective holders/owners. Use of such marks does not imply any affiliation with, sponsorship or endorsement by the owners/holders of such trademarks. All references by MaxLinear to third party trademarks are intended to constitute nominative fair use under applicable trademark laws.

The URLs provided are for informational purposes only; they do not constitute an endorsement or an approval by MaxLinear of any of the products or services of the corporation or organization or individual. MaxLinear bears no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to questions regarding its content.

2

© 2023 MaxLinear, Inc. All rights reserved.

MaxLinear, Inc. 5966 La Place Court, Suite 100 Carlsbad, CA 92008 Tel.: +1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

Revision History

Current: Previous:				
Page	Major changes since previous revision			
All	Added a Third-Party Trademark Declarations section.			
12	Chapter 1, Product Overview: Updated chapter.			
16	Chapter 2, External Signals: Updated chapter.			
27	Chapter 3, Functional Description: Updated chapter.			
37	Chapter 4, MDIO and MMD Register Interface Description: Updated chapter.			
41	Chapter 5.1, Standard Management Registers: Improved register bit descriptions.			
63	Chapter 5.2, PHY-specific Management Registers: Improved register bit descriptions.			
106	Chapter 7.1, Common Extended Register: Improved register bit descriptions.			
137	Chapter 7.2, UTP Extended Register: Improved register bit descriptions.			
160	Chapter 7.3, SDS Extended Register: Improved register bit descriptions.			
181	Chapter 8, Electrical Characteristics: Updated chapter.			
194	Chapter 9, Package Outline: Updated chapter.			
199	Standards References: Updated chapter.			
200	Terminology: Updated chapter.			

Third-Party Trademark and Registered Trademark Declarations

Cisco®	Cisco is a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. A list of other Cisco marks is available at https://www.cisco.com/c/en/us/about/legal/trademarks.html.
Hewlett Packard [®]	Hewlett Packard, HP, and the HP logo are registered trademarks of HP Inc.
IEEE®	"IEEE", the IEEE logo, and other IEEE logos and titles are registered trademarks or service marks of The Institute of Electrical and Electronics Engineers, Incorporated.

All other trademarks or registered trademarks are the property of their respective holders/owners.

Table of Contents

	Table of Contents	5
	List of Figures	. 9
	List of Tables	10
	Preface	11
1	Product Overview	12
1.1	Features	13
1.2	Block Diagram	14
1.3	Target Applications	15
2	External Signals	16
2.1	Overview	16
2.2	External Signal Description	17
2.2.1	Pin Diagram	17
2.2.2	Abbreviations	18
2.2.3	Input/Output Signals	19
2.2.3.1	Ethernet Media Interface	19
2.2.3.2	RGMII	19
2.2.3.3	LED Interface	21
2.2.3.4	SGMII Interfaces	22
2.2.3.5	Management Interfaces	23
2.2.3.6	Miscellaneous Signals	24
2.2.3.7	Power Supply	25
2.2.3.7.1	Power Supply Using Integrated DC/DC SVR Converter	26
3	Functional Description	27
3 3.1	•	
-	Functional Description Chip Modes of Operation Copper Flow	27
3.1	Chip Modes of Operation	27 27
3.1 3.1.1	Chip Modes of Operation Copper Flow Fiber Flow	27 27 27
3.1 3.1.1 3.1.2	Chip Modes of Operation Copper Flow	27 27 27 27
3.1 3.1.1 3.1.2 3.1.3	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow	27 27 27 27 27 27
3.1 3.1.1 3.1.2 3.1.3 3.1.4	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow	27 27 27 27 27 27 27
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow	27 27 27 27 27 27 28
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface	27 27 27 27 27 27 28 28
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG)	27 27 27 27 27 27 28 28 28 28
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction	27 27 27 27 27 27 28 28 28 28 29
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction	27 27 27 27 27 27 28 28 28 28 29 29
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops	27 27 27 27 27 27 28 28 28 28 29 29 29
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback	27 27 27 27 27 28 28 28 28 29 29 29 29 30
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback	27 27 27 27 27 28 28 28 29 29 29 29 30 30
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE)	27 27 27 27 27 28 28 28 29 29 29 29 30 30 30
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.1 3.5.2 3.5.3 3.6 3.7	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE)	27 27 27 27 27 28 28 28 29 29 29 30 30 30 30
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.7 3.8	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE) Wake-On-LAN (WoL)	27 27 27 27 27 28 28 28 29 29 29 29 30 30 30 30 31 31
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.7 3.8 3.9	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE) Wake-On-LAN (WoL) Link Down Power Saving (Sleep Mode)	27 27 27 27 28 28 29 29 29 29 30 30 30 30 31 31 31
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.7 3.8 3.9 3.10	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE) Wake-On-LAN (WoL) Link Down Power Saving (Sleep Mode) Interrupt	27 27 27 27 28 28 29 29 29 30 30 30 31 31 31 32
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.7 3.8 3.9 3.10 3.11	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE) Wake-On-LAN (WoL) Link Down Power Saving (Sleep Mode) Interrupt Reset	27 27 27 27 28 28 29 29 20 30 30 30 31 31 31 32 32
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Chip Modes of Operation Copper Flow Fiber Flow Media Converter Flow Dual-Media Flow Bridge Flow Management Interface Auto-Negotiation (ANEG) Polarity Detection and Auto Correction Loopback Mode Near-End Test Loops External Loopback Far-End PHY Loopback Energy Efficient Ethernet (EEE) Synchronous Ethernet (SyncE) Wake-On-LAN (WoL) Link Down Power Saving (Sleep Mode) Interrupt Reset PHY Address	27 27 27 27 28 28 29 29 29 20 30 30 30 31 31 32 32 33

3.16 3.17	Power Supply Rails	
4 4.1	MDIO and MMD Register Interface Description	
4.2	Register Naming and Numbering	
4.2.1	Register Numbering	
4.2.2 4.2.3	Register Naming	
4.2.5	MMD Devices Present in MxL86111	
4.4	Responsibilities of the STA	
4.5	MDIO Access Protocols to Read / Write Registers	
5	MDIO Registers Detailed Description	40
5.1	Standard Management Registers	
5.1.1	Standard Management Registers	
5.2	PHY-specific Management Registers	
5.2.1	PHY Specific Function Control Register (Register 16)	
5.2.2	PHY Specific Status Register (Register 17)	
5.2.3	Interrupt Mask Register (Register 18)	
5.2.4	Interrupt Status Register (Register 19)	
5.2.5 5.2.6	Speed Auto Downgrade Control Register (Register 20)	
5.2.7	Extended Register's Address Offset Register (Register 30) Extended Register's Data Register (Register 31)	
5.3	SDS Standard Management Registers	
5.3.1	STD Control (Register 0)	
5.3.2	Status Register (Register 1)	
5.3.3	SDS Identifier 1 (Register 2)	
5.3.4	SDS Identifier 2 (Register 3)	
5.3.5	Auto-Negotiation Advertisement (Register 4)	
5.3.6	Auto-Negotiation Link Partner Ability (Register 5)	
5.3.7	Auto-Negotiation Expansion (Register 6)	
5.3.8	Auto-Negotiation Next Page (Register 7)	87
5.3.9	Auto-Negotiation Link Partner Received Next Page (Register 8)	88
5.3.10	Extended Status Register (Register 15)	89
5.4	SDS Specific Management Registers	90
5.4.1	SDS Specific Status Register (Register 17)	
5.4.2	100Base-FX Configuration Register (Register 20)	
5.4.3	SDS Receive Error Counter Register (Register 21)	
5.4.4	SDS Link Fail Counter Register (Register 22)	
5.4.5	Extended Register Address Offset Register (Register 30)	
5.4.6	Extended Register Address Data (Register 31)	
6	MMD Registers Detailed Description	
6.1	Standard PCS Registers for MMD=0003 _H	
6.1.1	Standard PCS Registers for MMD=0003 _H	
6.2	Standard Auto-Negotiation Registers for MMD=0007 _H	
6.2.1	Standard Auto-Negotiation Registers for MMD=0007 _H	103
7	Extended Register Detailed Description 1	
7.1	Common Extended Register 1	
7.1.1	SerDes/PHY Control Access Register (Register A000 _H) 1	
7.1.2	Chip Configuration Register (Register A001 _H)	
7.1.3	RGMII Configuration Register 1 (Register A002 _H)	110

7 4 4		
7.1.4	RGMII Configuration Register 1 (Register A003 _H)	
7.1.5	RGMII Configuration Register 2 (Register A004 _H)	
7.1.6	RGMII in-band Status and MDIO Configuration Register (Register A005 _H)	
7.1.7	Miscellaneous Control Register (Register A006 _H)	
7.1.8	Wake on LAN Address Byte 5 and 4 (Register A007 _H)	
7.1.9	Wake on LAN Address Byte 3 and 2 (Register A008 _H)	
7.1.10	Wake on LAN Address Byte 1 and 0 (Register A009 _H)	
7.1.11	Wake on LAN Control Register (Register A00A _H)	
7.1.12	LED General Configuration Register (Register A00B _H)	
7.1.13	LED0 Configuration Register (Register A00C _H)	
7.1.14	LED1 Configuration Register (Register A00D _H)	
7.1.15	LED2 Configuration Register (Register A00E _H)	
7.1.16	LED Blinking Configuration Register (Register A00F _H)	
7.1.17	Pin Driving Strength Configuration Register (Register A010 _H)	
7.1.18	SyncE Configuration Register (Register A012 _H)	
7.2	UTP Extended Register	
7.2.1	10 M Base-Te Debug Mode Register (Register 000A _H)	
7.2.2	Sleep Mode Control Register (Register 0027 _H)	
7.2.3	Packet Rx Valid High Register (Register 00A3 _H)	
7.2.4	Packet Rx Valid Low Register (Register 00A4 _H)	
7.2.5	Packet Rx Oversize High Register (Register 00A5 _H)	
7.2.6	Packet Rx Oversize Low Register (Register 00A6 _H)	
7.2.7	Packet Rx Undersize High Register (Register 00A7 _H)	
7.2.8	Packet Rx Undersize Low Register (Register 00A8 _H)	
7.2.9	Packet Rx CRC Register (Register 00A9 _H)	
7.2.10	Packet Rx CRC Oversize Register (Register 00AA _H)	
7.2.11	Packet Rx Fragment Register (Register 00AB _H)	
7.2.12	Packet Rx No SFD Register (Register 00AC _H)	
7.2.13	Packet Tx High Register (Register 00AD _H)	
7.2.14	Packet Tx Low Register (Register 00AE _H)	
7.2.15	Packet Tx Oversize High Register (Register 00AF _H)	
7.2.16	Packet Tx Oversize Low Register (Register 00B0 _H)	
7.2.17	Packet Tx Undersize High Register (Register 00B1 _H)	
7.2.18	Packet Tx Undersize Low Register (Register 00B2 _H)	
7.2.19	Packet Tx CRC Register (Register 00B3 _H)	
7.2.20	Packet Tx CRC Oversize Register (Register 00B4 _H)	157
7.2.21	Packet Tx Fragment Register (Register 00B5 _H)	158
7.2.22	Packet Tx No SFD Register (Register 00B6 _H)	159
7.3	SDS Extended Register	
7.3.1	SerDes Rx Packet High Register (Register 01A3 _H)	
7.3.2	SerDes Rx Packet Low Register (Register 01A4 _H)	
7.3.3	SerDes Rx Packet Oversize High Register (Register 01A5 _H)	
7.3.4	SerDes Rx Packet Oversize Low Register (Register 01A6 _H)	164
7.3.5	SerDes Rx Packet Undersize High Register (Register 01A7 _H)	165
7.3.6	SerDes Rx Packet Undersize Lower (Register 01A8 _H)	
7.3.7	SerDes Rx Packet CRC Register (Register 01A9 _H)	167
7.3.8	SerDes Rx Packet CRC Oversize Register (Register 01AA _H)	
7.3.9	SerDes Rx Packet Fragment Register (Register 01AB _H)	
7.3.10	SerDes Rx Packet No SFD Register (Register 01AC _H)	
7.3.11	SerDes Tx Packet High Register (Register 01AD _H)	
7.3.12	SerDes Tx Packet Low Register (Register 01AE _H)	172

7.3.13 7.3.14 7.3.15 7.3.16 7.3.17 7.3.18 7.3.19 7.3.20	SerDes Tx Packet Oversize High Register (Register $01AF_H$)SerDes Tx Packet Oversize Low Register (Register $01B0_H$)SerDes Tx Packet Undersize High Register (Register $01B1_H$)SerDes Tx Packet Undersize Low Register (Register $01B2_H$)SerDes Tx Packet CRC Register (Register $01B3_H$)SerDes Tx Packet CRC Oversize Register (Register $01B4_H$)SerDes Tx Packet Fragment Register (Register $01B5_H$)SerDes Tx Packet No SFD Register (Register $01B6_H$)	174 175 176 177 178 179
8 8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.5.1 8.3.5.2 8.3.6 8.3.6.1 8.3.6.2 8.3.7 8.3.8	Electrical Characteristics Absolute Maximum Ratings Operating Range AC Characteristics Power Up and Power Down Sequence Power Supply Rail Requirements Device Power Consumption MDIO Interface RGMII Interface Transmit Timing Characteristics Receive Timing Characteristics SGMII Interface Transmit Timing Characteristics Receive Timing Characteristics Crystal Specification External Clock Requirements	181 182 183 183 183 183 184 185 187 187 187 187 188 190 190 191 192
9 9.1 9.2	Package Outline Thermal Resistance Chip Identification and Ordering Information	196
	Standards References	199
	Terminology	200

List of Figures

List of Figures

Figure 1	MxL86111 Block Diagram.	14
Figure 2	MxL86111 External Signal Overview	16
Figure 3	Pin Diagram for MxL86111	17
Figure 4	External Circuitry Using the Integrated DC/DC Converter	26
Figure 5	Near-End Loopback	29
Figure 6	External Loopback	29
Figure 7	Far-End PHY Loopback	30
Figure 8	EEE Low Power Idle Sequence	30
Figure 9	Block Diagram of WoL Application	31
Figure 10	Reset Timing Diagram	32
Figure 11	Connection Diagram of RGMII	33
Figure 12	LED Circuit Design	34
Figure 13	Power Up and Power Down Sequence	183
Figure 14	Timing Diagram for the MDIO Interface	185
Figure 15	RGMII Transmit Timing Diagram	187
Figure 16	RGMII Receive Timing Diagram	
Figure 17	SGMII Transmit Timing Diagram	190
Figure 18	SGMII Receive Timing Diagram	191
Figure 19	PG-QFN-48 Mechanical Drawing	195
Figure 20	Chip Marking.	197

List of Tables

List of Tables

Table 1	Abbreviations for Pin Type	. 18
Table 2	Abbreviations for Buffer Type	. 18
Table 3	Ethernet Media Interface Signals	. 19
Table 4	RGMII Interface Signals	. 19
Table 5	LED Interface Signals	. 21
Table 6	SMGII Interface Signals	
Table 7	Management Interface Signals	. 23
Table 8	Miscellaneous Signals	. 24
Table 9	Power Supply Pins	. 25
Table 10	Device Ground	. 26
Table 11	External Component Values for DC/DC Converter	. 26
Table 12	Reset Timing Characteristics	. 32
Table 13	Pin Names Used for Pin Strapping	. 35
Table 14	Pin Strapping Configuration Description.	. 35
Table 15	MMD Devices Present in MxL86111	. 39
Table 16	MDIO Register Access Type	. 40
Table 17	Registers Overview - Standard Management.	. 41
Table 18	Registers Overview - PHY-specific Management Registers.	. 63
Table 19	Registers Overview - SDS Standard Management Registers	. 74
Table 20	Registers Overview - SDS Specific Management Registers	. 90
Table 21	MMD Register Access Type	. 98
Table 22	Registers Overview - Standard PCS Registers	. 99
Table 23	Registers Overview - Standard Auto-Negotiation Registers	102
Table 24	Extended Register Access Type.	105
Table 25	Registers Overview - Common Extended Register	106
Table 26	Registers Overview - UTP Extended Register	137
Table 27	Registers Overview - SDS Extended Register	160
Table 28	Absolute Maximum Ratings	181
Table 29	Supply Voltage and Temperature	182
Table 30	Sequence Timing Parameters	183
Table 31	Device in UTP_TO_RGMII Mode Power Consumption	184
Table 32	Device in FIBER_TO_RGMII Mode Power Consumption.	184
Table 33	Device in SGMII_TO_RGMII Mode Power Consumption	184
Table 34	Device in UTP_TO_SGMII Mode Power Consumption	184
Table 35	Device in UTP_TO_FIBER Mode Power Consumption	185
Table 36	Maximum Device Power Consumption.	185
Table 37	Timing Characteristics of the MDIO Interface	185
Table 38	RGMII Transmit Timing Characteristics	187
Table 39	RGMII Receive Timing Characteristics	188
Table 40	SGMII Transmit Timing Characteristics	190
Table 41	SGMII Receive Timing Characteristics	191
Table 42	Specification of the Crystal	192
Table 43	Specification of the External Clock	193
Table 44	PG-QFN-48 Mechanical Dimensions	194
Table 45	Thermal Resistance	196
Table 46	Chip Marking Pattern	197
Table 47	Chip Ordering Information	197
Table 48	Chip Specific Information	198

Preface

Preface

This Data Sheet describes the features and system architecture of the single port Gigabit Ethernet PHYs MxL86111C and MxL86111I.

Note: The device address map is considered as a flat address map implementation. There is no mailbox functionality behind the MDIO interface.

This document uses this synonym to simplify matters:

MxL86111

Synonym used for the Single Port Gigabit Ethernet PHY MxL86111

Organization of this Document

- Chapter 1, Product Overview
 This chapter provides an overview.
- Chapter 2, External Signals
 This chapter provides the external signals.
- Chapter 3, Functional Description
 This chapter provides the function description.
- Chapter 4, MDIO and MMD Register Interface Description This chapter describes the MDIO and MMD register format.
- Chapter 5, MDIO Registers Detailed Description This chapter details the MDIO registers.
- Chapter 6, MMD Registers Detailed Description This chapter details the MDD registers.
- Chapter 7, Extended Register Detailed Description This chapter details the extended register.
- Chapter 8, Electrical Characteristics This chapter provides the electrical specifications.
- Chapter 9, Package Outline This chapter provides information about the package.
- Standards References
- Terminology
- Attention: MaxLinear only guarantees the behavior of the device based on documented registers. The device does not offer any protection against access to other non-documented addresses over the MDIO interface.

1 **Product Overview**

The MxL86111 is a low power Ethernet PHY transceiver integrated circuit following the IEEE 802.3 [1] standard. It offers a cost-optimized solution that is well-suited for routers, switches, and home gateways. It performs data transmission on an Ethernet twisted pair copper cable of category CAT5e or higher. The MxL86111 supports 1000, 100, and 10 Mbit/s data rates.

On the Ethernet twisted pair interface, the MxL86111 is compliant with the 1000BASE-T (IEEE802.3 Clause 40), 100BASE-TX (IEEE 802.3 Clause 25), and 10BASE-Te (IEEE 802.3 Clause 14) standards defined by the IEEE 802.3 see [1] for more information. This interface supports the Energy-Efficient Ethernet (EEE) feature in accordance with IEEE802.3 [1] to reduce idle mode power consumption. Power saving at the system level is also possible with the Wake-on-LAN feature. A low-EMI line driver with integrated termination facilitates PCB design.

MxL86111 also includes an SGMII interface, which allows connections to another chip implementing a MAC layer. The MxL86111 supports IEEE 802.3 Clause 36 [1], IEEE 802.3 Clause 27 [1], and Cisco SGMII [2]. This interface operates at 1000, 100, and 10 Mbit/s data rates. The MxL86111 includes an integrated serializer/deserializer (SerDes) that can be used to operate a fiber link in conjunction with a 100BASE-X or 1000BASE-X fiber module. This capability enables media-converter data flow applications such as media converters and dual-media flows with media auto-detection, as well as simple MII-to-fiber modes.

The MxL86111 supports a standard MDIO management interface as defined in IEEE 802.3 Clause 22 and Clause 45 [1]. The MDIO serial interface operates with a clock running up to 12.5 MHz. This allows a management entity (the external chip implementing the MAC) to access standard MDIO / MMD registers to control the MxL86111 behavior, or to read the link status. In addition, vendor specific register banks allow MxL86111-specific configuration of LED, SGMII,and Wake-on-LAN features. The MDIO and MMD registers are documented in **Chapter 5** and **Chapter 6**, respectively. The MxL86111 is also configurable via pin strapping.

The MxL86111 can drive up to three LEDs. Each LED is independently programmable to indicate the link speed, and traffic activity. Several indication schemes are selectable.

A DC/DC converter is integrated within the MxL86111. A single external power supply of 3.3 V is sufficient to power the chip, with the internal DC/DC converter generating 1.1 V to supply the low voltage domains. External supply of both 3.3 V and 1.1 V is also an option.

The MxL86111 is available in a Quad Flat Non-leaded package (PG-QFN-40). It therefore provides an ideal solution for footprint-sensitive applications such as SFP copper modules or Ethernet Controllers. Furthermore, the MxL86111 design supports a reduced external bill of materials, for example through the integration of termination resistors at both the MDI and MII. The GPC pin can optionally be used to provide a 25 MHz reference clock, allowing for multiple PHY devices to be cascaded while using only one crystal.

The MxL86111 uses a single row QFN48 package which is 7 x 7 mm in size.

The MxL86111 has a built-in switching regulator for 1.1 V core power.

The MxL86111 has a built-in LDO providing 2.5/1.8 V power for the RGMII I/O interface.

1.1 Features

This section provides an overview of the features supported by the MxL86111.

Communication Interfaces

- The multiple speed, single-port Ethernet PHY interface to the twisted pair cable supports:
 - Ethernet modes and standards: 1000BASE-T (IEEE 802.3), 100BASE-TX (IEEE 802.3) and 10BASE-Te (IEEE 802.3)
 - Ethernet twisted pair copper cable of category CAT5e or higher
 - Low EMI voltage mode line driver with integrated termination resistors
 - Transformerless Ethernet for backplane applications
 - Auto-Negotiation (ANEG) with extended next page support
 - Auto-MDIX and polarity correction
 - Auto-Downspeed (ADS)
 - Energy-Efficient Ethernet (EEE) and power down mode
 - Wake-on-LAN (WoL)
 - 10k byte jumbo frame support.
- RGMII Interface
- The SerDes interface supports:
 - 1000BASE-X IEEE 802.3 Clause 36 and 37 [1]
 - Cisco Serial-GMII Specification [2] operating at 1.25 Gbaud/s
 - Clock and Data Recovery (CDR)
 - 100 BASE-FX
- The management interface supports the communication between the Station Management Entity (STA) and the MxL86111 using:
 - An MDIO slave interface that provides access to the standard registers in the MMD as described in IEEE 802.3 Clause 22 and Clause 45 [1] and listed in Chapter 5 and Chapter 6
 - An MDIO interface clock of up to 12.5 MHz
 - Three MDIO message frame types as described in IEEE 802.3: Clause 22, Clause 22 Extended, and Clause 45 [1]

LED Interface, which supports:

- Up to three LEDs
- Single color LEDs
- Connection of LED to ground or 3.3 V
- Several LED indication schemes (link/activity, link speed)
- Configuration of LED indication via Extended Registers

Supports one interrupt output to external controller.

Clocking and Timing Features

• 25 MHz crystal operation

Power Supply

- Single 3.3 V power supply, when using the integrated switching regulator to DC/DC converter to generate the 1.1 V power supply rail
- If the internal integrated DC/DC converter is not used, an additional 1.1 V supply must be provided externally
- Built-in LDO for RGMII IO power 2.5/1.8 V

1.2 Block Diagram

Figure 1 shows the block diagram of the MxL86111. The main interfaces are:

- · Data interface to a MAC processor, using RGMII
- · Slave control interface driven by a MAC processor, using MDIO slave
- Interrupt signal MDINT allowing the MxL86111 to notify the MAC processor about a change of status
- LED control
- Twisted Pair Interface (TPI)

Figure 1 MxL86111 Block Diagram

1.3 Target Applications

- Gateways
- Routers
- Wi-Fi access points
- Set-top-boxes
- IP-phones
- Digital TVs
- Ethernet switches
- NAS
- DVD Players
- Game consoles
- Printers
- Office machines
- Industrial PCs
- IoT devices
- PoE applications

2 External Signals

This chapter describes the signal mapping to the package.

2.1 Overview

Figure 2 provides an overview of the external interfaces of the MxL86111.

Figure 2 MxL86111 External Signal Overview

Downloaded from Arrow.com.

16

2.2 External Signal Description

This section provides the pin diagram, abbreviations for pin types and buffer types, as well as tables describing the input and output signals.

2.2.1 Pin Diagram

Figure 3 shows the pin layout for the MxL86111 package.

Figure 3 Pin Diagram for MxL86111

2.2.2 Abbreviations

Abbreviations that are used in the signal tables are summarized in Table 1 and Table 2.

٦	Table 1	Abbreviations for Pin Type	

Abbreviations	breviations Description			
I	Input only, digital levels			
0	Output only, digital levels			
I/O	Bidirectional input/output signal, digital levels			
AI	Input only, analog levels			
AO	Output only, analog levels			
AI/O	Bidirectional, analog levels			
PWR	Power			
GND Ground				

Table 2 Abbreviations for Buffer Type

Abbreviations	Description
A	Analog characteristics, see the AC/DC specification for more detail
GND	Ground
OD	Open Drain
PU	Internal pull-up resistor
PD	Internal pull-down resistor

2.2.3 Input/Output Signals

A detailed description of all the pins is given in **Table 3** to **Table 9**.

In **Table 5** to **Table 9**, the signal names highlighted in bold are the same as the pin name. The primary function is listed first and then alternate functions.

2.2.3.1 Ethernet Media Interface

Table 3 describes the Ethernet Media Interface's TPI pins which uses pins 2-11.

	Nama	D:	Duffer	Function
Pin No.	Name	Pin Type	Buffer Type	Function
-				
Ethernet	Port Ethernet	viedia interfac	e	
2	TPIAP	AI/AO	А	Twisted Pair Transmit/Receive Positive/Negative
3	TPIAN	AI/AO	А	
5	TPIBP	AI/AO	А	
6	TPIBN	AI/AO	А	
7	TPICP	AI/AO	А	
8	TPICN	AI/AO	А	
10	TPIDP	AI/AO	А	
11	TPIDN	AI/AO	А	
Ethernet	Port Ethernet	Media Interfac	9	
48	RCAL	AO	А	Calibration of GPHY Ethernet Port
				Connect a high precision resistor of 2.49 k Ω ±1% to GND

Table 3 Ethernet Media Interface Signals

2.2.3.2 RGMII

Table 4 describes the RGMII interface-related pins which uses pins 16-21 and 23-28.

Table 4RGMII Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function					
RGMII Interface Signals									
16	TXD3	I	PD	RGMII: Transmit Data Bit 3 This pin carries bit 3 of the TXD[3:0] RGMII transmit data vector. It is synchronous with TXC.					
17	TXD2	I	PD	RGMII: Transmit Data Bit 2 This pin carries bit 2 of the TXD[3:0] RGMII transmit data vector. It is synchronous with TXC.					
18	TXD1	I	PD	RGMII: Transmit Data Bit 1 This pin carries bit 1 of the TXD[3:0] RGMII transmit data vector. It is synchronous with TXC.					
19	TXD0	I	PD	RGMII: Transmit Data Bit 0 This pin carries bit 0 of the TXD[3:0] RGMII transmit data vector. It is synchronous with TXC.					

Pin No.	Name	Pin	Buffer	Function			
		Туре	Туре				
20	TX_CTL	1	PD	RGMII: Transmit Control This pin is the transmit control signal for the TXD[3:0] RGMI transmit data vector. It is synchronous with TXC.			
21	TX_CLK	I	PD	RGMII: Transmit Clock The TXC signal is a continuous clock signal and provides the timing reference for the transfer of TX_EN_CTL and TXD[3:0]. The nominal frequency of this clock is 125 MHz for 1000 Mbit/s, 25 MHz for 100 Mbit/s, and 2.5 MHz for 10 Mbit/s. Depending on the speed selection, this clock is assumed to be properly adjusted by the MAC. The frequency deviation is assumed to be smaller than +/- 50 ppm.			
23	RXD3 /CFG_MODE2	I/O	PD	RGMII: Receive Data Bit 3 This pin carries bit 3 of the RXD[3:0] RGMII receive data vector. It is synchronous with RXC. CFG_MODE2: This pin reads in pin-strapping information during reset.			
24	RXD2 /CFG_MODE1	I/O	PD	RGMII: Receive Data Bit 2 This pin carries bit 2 of the RXD[3:0] RGMII receive data vector. It is synchronous with RXC. CFG_MODE1: This pin reads in pin-strapping information during reset.			
25	RXD1 /CFG_MODE0	I/O	PD	RGMII: Receive Data Bit 1 This pin carries bit 1 of the RXD[3:0] RGMII receive data vector. It is synchronous with RXC. CFG_MODE0: This pin reads in pin-strapping information during reset.			
26	RXD0 /RXDLY	I/O	PD	RGMII: Receive Data Bit 0 This pin carries bit 0 of the RXD[3:0] RGMII receive data vector. It is synchronous with RXC. RXDLY: This pin reads in pin-strapping information during reset.			
27	RX_CTL /PHYAD2	I/O	PD	RGMII: Receive Control This is the receive control signal driven by the PHY, and which is synchronous with RXC. The signal encodes the RX_DV and RX_ER signals of the GMII. PHYAD2: This pin reads in pin-strapping information during reset.			
28 RX_CLK /PHYAD1 I/O PD		PD	RGMII: Receive Clock The RXC signal is a continuous clock signal and provides the timing reference for the transfer of RX_EN_CTL and RXD[3:0]. The nominal frequency of this clock is 125 MHz for 1000 Mbit/s, 25 MHz for 100 Mbit/s and 2.5 MHz for 10 Mbit/s. The frequency deviation is smaller than +/-50 ppm. PHYAD1: This pin reads in pin-strapping information during reset.				

Table 4 RGMII Interface Signals (cont'd)

2.2.3.3 LED Interface

Table 5 describes the LED interface-related pins which allow external LEDs to be connected to the MxL86111C/MxL86111I to indicate the status of the Ethernet PHY interfaces. The LED interface uses pins 35-27.

Table 5	LED Interface	LED Interface Signals							
Pin No.	Name	Pin Type	Buffer Type	Function					
LED Sig	nals								
35	GPHY_LED0 /PHYAD0	I/O	PU	GPHY LED0 The LED control output drives single color LEDs. PHYAD0: This pin reads in pin-strapping information during reset.					
36	GPHY_LED1 /CFG_LDO0	I/O	PU	GPHY LED1 The LED control output drives single color LEDs. CFG_LDO0: This pin reads in pin-strapping information during reset.					
37	GPHY_LED2 /CFG_LDO1	I/O	PD	GPHY LED2 The LED control output drives single color LEDs. CFG_LDO1: This pin reads in pin-strapping information during reset.					

2.2.3.4 SGMII Interfaces

Table 6 describes the pins belonging to the SGMII interface.

Table 6 SMGII Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
38	RX0_P	AI	А	Differential SGMII Data Input Pair
39	RX0_M	AI	A	These are the negative and positive signals of the differential input pair of the SGMII SerDes interface. These pins must be AC coupled.
40	TX0_P	AO	А	Differential SGMII Data Output Pair
41	тхо_м	AO	A	These are the negative and positive signals of the differential output pair of the SGMII SerDes interface.

2.2.3.5 Management Interfaces

Table 7 describes the MIDO slave interface pins which uses pins 14, 15, and 34.

lable /	Management Interface Signals							
Pin No.	Name Pin Buffer Type Type			Function				
MDIO SIa	ave Interface		·					
14	MDC	1	PD	MDIO Slave Clock The external controller host, also called STA by the IEEE, acts as clock master and provides the serial clock of up to 12.5 MHz on this input.				
15	MDIO	I/O	PU	MDIO Slave Data Input/Output The external controller host uses this signal to address internal registers and to transfer data to and from the internal registers.				
34	MDINT	0	OD	MDIO Interrupt The MDINT signal is used to send an interrupt to an external MAC SoC acting as station manager (STA).				

Table 7 Management Interface Signals

Miscellaneous Signals 2.2.3.6

Table 8 lists miscellaneous signals required by the device.

Pin No.	Name	Pin Type	Buffer Type	Function
Reset an	d Clocking			
45	XTAL2	AO	A	Crystal: Oscillator Output A crystal must be connected between XTAL1 and XTAL2. Additional load capacitances must also tie both pins to GND.
	CLK	-		Clock: Clock Input The clock must have a frequency accuracy of ±50 ppm. When connecting an external 25 MHz oscillator or clock from another device to XTAL2 pin, XTAL1 must be tied to GND.
46	XTAL1	AI	A	Crystal: Oscillator Input A crystal must be connected between XTAL1 and XTAL2. Additional load capacitances must also tie both pins to GND.
44	GPC	0		 General Purpose Clock 1. This is the reference clock generated from the internal PLL. This pin should be kept floating if the clock is not used by the MAC. 2. UTP recovery receive clock for Sync Ethernet. 3. Fiber interface recovery receive clock for Sync Ethernet. 4. 25 MHz reference clock.
13	HRSTN	I	PU	Hardware Reset Asynchronous active low device reset.
33	NC	I/O	PD	Reserved Pin for Internal Use Floating or pull down the pin.
42, 43	NC			Reserved Pins Floating or connect the pin to ground.

2.2.3.7 Power Supply

This section specifies the power supply pins. The device is supplied by to supply rails, V_{HIGH} (3.3 V) and V_{LOW} (1.1 V). The V_{LOW} domain can either be supplied externally, or self-generated by the internal DC/DC Selecting Voltage Regulator (SVR) converter, which converts the VDD3V3 supply into DCDC_REGO output. In the external supply configuration, the DCDC_REGO output pins are not connected (NC). In the internal DC/DC SVR converter configuration, the DCDC_REGO output pins are connected back to the V_{LOW} supply inputs.

Pin No.	Name	Pin Type	Buffer Type	Function
Power S	upply Pins	4		
1, 12	VDDA3V3	PWR		High Voltage Domain Supply V_{HIGH} These are the input power pins for the analog front end in the high voltage domain. They must be supplied with a nominal voltage of V_{DDA3V3} = 3.3 V.
4, 9, 47	VDDA1V1	PWR		Low Voltage Domain Supply V _{LOW} These are the input power supply pins for the low voltage domain. These pins must be supplied with a nominal voltage of 1.1 V. When the internal DC/DC SVR converter is used, they must be connected to the output of the converter DCDC_REGO.
29	VDDP	PWR		Configurable MDIO Pin Voltage Domain Supply The voltage domains for the digital RGMII I/O and MDC/MDIO are controlled by CFG_LDO[1:0]. See Section 3.17 for the settings. No matter whether the I/O pin power is external or internal, a bulk capacitor and a decoupling capacitor must be connected to this pin.
22	VDD	PWR		Core Voltage Domain Supply V _{LOW} This is the group of supply pins for the core digital voltage domain. This pin must be supplied with a nominal voltage of V_{DD} = 1.1 V. When the internal DC/DC SVR converter is used, these pins must be connected to the output of the converter DCDC_REGO.
30	VDD3V3	PWR		Power Supply V_{HIGH} This pin must be supplied with a nominal voltage of V_{DD3V3} = 3.3 V.
31	VDDR	PWR		DC/DC Power Supply This pin must be supplied with a nominal voltage of V_{DDR} = 3.3 V.
32	DCDC_REGO	PWR		Internal DC/DC SVR Converter Output The connection circuitry for the internal DCDC SVR V_{LOW} supply option and the external V_{LOW} supply option are described in Figure 4.

Table 9Power Supply Pins

Table 10	Device Grou	Device Ground						
Din No	Namo	Din	Buffor	Function				

FIII NO.	Name	Туре	Туре	Function
EPAD ¹⁾	VSS	GND		General device ground

 The EPAD is the exposed pin on the bottom of the package. This pin must be properly connected to the ground plane of the PCB.

2.2.3.7.1 Power Supply Using Integrated DC/DC SVR Converter

The MxL86111 can be powered using a single 3.3 V supply when the integrated DC/DC converter is used. As long as the applied nominal voltage remains within the operating range specified in **Chapter 8.2**, the device operates automatically and without the need for additional settings to be applied. Only minor external circuitry is required to enable this feature. **Figure 4** shows an example schematic. The electrical characteristics of the power supply are defined in **Chapter 8.2**.

The required values for the external components are listed in Table 11.

Figure 4	External Circuitry Using the Integrated DC/DC Converter
----------	---

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
DC/DC Buck Inductance	L _{DCDC}	_	2.2	_	μH	DCR _{max} = 0.07 ohm
DC/DC Smoothing Capacitance	C _{DCDC}	_	4.7	_	μF	-
		_	0.1	_	μF	-
DC/DC Input Capacitance	CIN	_	4.7	_	μF	-
		_	2 x 0.1	_	μF	-

3 Functional Description

This chapter describes the functions available to the MxL86111.

3.1 Chip Modes of Operation

MxL86111 supports various modes of operation types, such as RGMII/SGMII to Copper, RGMII to Fiber, or RGMII to dual media. These can be combined with two MDI modes of operation, namely those based on copper or fiber (1000BASE-X/100BASE-FX). This section outlines the supported combinations of these interfaces.

3.1.1 Copper Flow

In copper flow mode, the MxL86111 operates as a standard multi-speed twisted-pair copper PHY, according to the standards defining the 10BASE-Te, 100BASE-TX, and 1000BASE-T modes of operation on the MDI. For example, RGMII interface to MDI or SGMII to MDI. See **Table 14** for more information.

3.1.2 Fiber Flow

In fiber flow mode, the MxL86111 operates as a standard fiber PHY, according to the standards defined in 1000BASE-X and similar modes of operation on the MDI. Fiber interfaces are supported by means of the integrated SerDes operating at 1.25 Gbaud. Note that the SerDes pins are shared with the SGMII interface pins. SGMII interface type cannot be used in fiber mode. Only RGMII is supported.

3.1.3 Media Converter Flow

In media converter data-flow mode, the MxL86111 acts as an interface between a fiber-based MDI and a copperbased MDI. In this configuration, the device does not require a MAC connection. It can operate fully unmanaged, meaning that no management entity needs to be connected to the MDIO interface. In Copper to Fiber auto mode, the media-converter flow supports the 1000 Mbit/s and 100 Mbit/s data rate base on the signal received and type of fiber module. The flow of data converts between 1000BASE-X and 1000BASE-T or 100BASE-FX and 100BASE-TX. The MxL86111 uses ANEG to resolve the proper conversion configuration. The copper MDI is forced into the correct speed mode by restricting the ANEG feature to using only 1000BASE-T or 100BASE-TX in full-duplex and half-duplex mode. In Copper to Fiber force mode, the media-converter flow only supports the 1000 Mbit/s data rate converting flow of data between 1000BASE-X and 1000BASE-T.

3.1.4 Dual-Media Flow

In dual-media data-flow mode, the MxL86111 interfaces a copper MDI together with a second MDI that can be either copper-based or fiber-based. Only one of the two MDIs can be active. In the dual-media configuration, the MxL86111 interfaces with both a copper MDI and a fiber MDI. Of these two options, only one can be active at any one time. The copper medium is accessed over the TPI. The fiber medium is accessed via SerDes in 1000BASE-X/100BASE-FX mode, which can be connected to an FO module. Selection of the MDI is automatic. If both medias are connected, COM_EXT_MISC_CFG.FHPC can be used for priority selection. In the latter case, the MxL86111 permanently scans for activity on both MDIs. The next auto-selection only happens after a link-down event. Note that the same MII type restrictions apply as in the fiber-only flow, and therefore only RGMII is supported.

3.1.5 Bridge Flow

In bridge mode, the MxL86111 operates as a bridge between RGMII and SGMII. It can support RGMII in MAC mode conversion to SGMII in PHY mode or SGMII in MAC mode conversion to RGMII in PHY mode.

3.2 Management Interface

The status and control registers of the device are accessible through the MDIO and MDC serial interface. The functional and electrical properties of this management interface comply with IEEE 802.3, Section 22 and support MDC clock rates up to 12.5 MHz.

3.3 Auto-Negotiation (ANEG)

The MxL86111 negotiates its operation mode using the ANEG mechanism according to IEEE 802.3 Clause 28 over the copper media. ANEG supports choosing the mode of operation automatically by comparing its own abilities and received abilities from link partner. The advertised abilities include:

- Speed: 10/100/1000Mbps
- Duplex mode: full-duplex and/or half-duplex

ANEG is initialized when these scenarios occur:

- Power-up/Hardware/Software reset
- ANEG restart
- Transition from power down to normal operation of the port
- Link down

ANEG is enabled for MxL86111 by default, and can be disabled by software control.

3.4 Polarity Detection and Auto Correction

The MxL86111 can detect and correct two types of cable errors.

- Swapped pairs within the UTP cable:
 - Pair 0 and 1, and/or pair 2 and 3.
- Swapped wires within a pair.

3.5 Loopback Mode

The MxL86111 supports several test loops to support system integration.

3.5.1 Near-End Test Loops

Digital loopback provides the ability to loop transmitted data back to the receiver using digital circuitry in the MxL86111.

The near-end test loops are used to verify system integration of an MxL86111 device. They allow for closed loopback of data and signals at different Open Systems Interconnection (OSI) reference layers. Section 3.5.2 and Section 3.5.3 describe these loopback functions in descending order of OSI abstraction layer. Digital loopback is set via STD_CTRL.LB = 1_B . See Section 5.1.1.

Figure 5 Near-End Loopback

3.5.2 External Loopback

The MxL86111 supports an external loopback with help of a physical connection at the RJ45 connector as shown in **Figure 6**. This allows a complete $Tx \rightarrow Rx$ cable loopback.

Figure 6 External Loopback

Note: External loopback is set via UTP_EXT_10BT_DBG.ELB. See Section 7.2.

3.5.3 Far-End PHY Loopback

The Far-End loopback mode connects the MDI Rx path to the MDI Tx path close to RGMII interface as shown in **Figure 7**. With this function the Far-End PHY can detect the proper connectivity.

Figure 7 Far-End PHY Loopback

Note: Remote PHY loopback is set via COM_EXT_MISC_CFG.RLBP. See Section 7.2.

3.6 Energy Efficient Ethernet (EEE)

The IEEE 802.3 standard [1] describes the EEE operation that is supported by the MxL86111. EEE is supported in the various speeds of 100BASE-TX and 1000BASE-T. The general idea of EEE is to save power during periods of low link utilization. Instead of sending active idle data, the transmitters are switched off for a short period of time. This is called the quiet period in the standard. The link is kept active by means of a frequent refresh cycle initiated by the PHY itself while in the low power state. This sequence is repeated until a wake request is generated by one of the link partner MACs.

Figure 8 EEE Low Power Idle Sequence

3.7 Synchronous Ethernet (SyncE)

The MxL86111 provides Synchronous Ethernet (SyncE) support when the device is operating in 1000BASE-T and 100BASE-TX on the transmission media. The GPC pin can be assigned to output the recovered clock.

The MxL86111 allows a SyncE interface to support transportation of a source-referable clock from a clock master to clock clients. This is supported in 1000BASE-T and 100BASE-T mode on the TPI.

- In 1000BASE-T, the GPC outputs the recovered clock from PHY<->PHY.
- In slave mode, the GPC outputs the recovered clock from MDI.
- In master mode, the GPC outputs the clock from local free running PLL.

When the GPC pin is assigned to output the recovered clock from the PHY and the PHY is configured for 1000BASE-T mode, the function of the GPC varies depending upon the current PHY mode.

- When the PHY is in slave mode, the GPC outputs the recovered clock from the MDI.
- When the device is in master mode, the GPC outputs the clock based on the local free run PLL.

3.8 Wake-On-LAN (WoL)

The MxL86111 supports WoL. The MxL86111 generates an interrupt to an external controller when it detects special WoL Ethernet packets. This allows the controller to enter into sleep mode when there is no Ethernet traffic to process, and be woken up when traffic starts. WoL packets are detected at all link speeds. Figure 9 shows this scenario. The specific frame contains a specific data sequence located anywhere inside the packet. The 48-bit address is set using the COM_EXT_MAC_ADDR_CFG1, COM_EXT_MAC_ADDR_CFG2, and COM_EXT_MAC_ADDR_CFG3 registers. See Section 7.1.

Figure 9 Block Diagram of WoL Application

The most commonly used WoL packet is called a magic packet. A magic packet contains the MAC address of the device to be woken up.

3.9 Link Down Power Saving (Sleep Mode)

The MxL86111 supports link down power saving, also called sleep mode. The MxL86111 enters sleep mode after around 40 seconds if no signals are received over the Ethernet cable.

In sleep mode, the MxL86111 disables almost all circuits, nevertheless access by MDC/MDIO interface remains available.

Once signals are detected on an Ethernet cable, the MxL86111 exits sleep mode automatically.

3.10 Interrupt

The MxL86111 provides an active low interrupt output signal (MDINT) based on change of the PHY status. Every interrupt condition is mapped to the read-only general interrupt status register by the read-only general interrupt status register. See **Section 5.2** for more information.

The interrupts can be individually enabled or disabled by setting or clearing bits in the interrupt enable register **Section 5.2**. See PHY_IMASK **Section 5.2.3**.

The MDINT signal is used to send an interrupt to an external MAC SoC acting as station manager (STA). The STA can program its sensitivity to specific events using the PHY_IMASK register. The MDINT event is then raised when the event occurs. The STA can read which type of event occurred in the PHY_ISTAT register. Upon reading of PHY_ISTAT by the STA, the MDINT is deasserted by the MxL86111.

Note: The interrupt of the MxL86111 is a level-triggered mechanism.

3.11 Reset

The MxL86111 has a hardware reset (HRSTN) pin. The HRSTN signal must be active for at least 10 ms after power-up. After the HRTSN is released, the MxL86111 latches the input values on the strapping pins to configure the device settings. This is useful for configuring the device in applications where MDIO access is unavailable. After a hardware reset, there is a 100 ms MDIO access delay to complete MxL86111 internal initialization.

Figure 10 Reset Timing Diagram

Table 12	Reset Timing Characteristics
----------	-------------------------------------

Symbol	Description	Min.	Тур.	Max.	Units
T _{reset_1}	The amount of time to allow all power rails to stabilize before releasing HRSTN to high.	10	-	-	ms
T _{reset_2}	The minimum amount of time for a reset signal to be recognized.	10	-	-	ms

3.12 PHY Address

The MxL86111 offers the ability to configure the PHY address from the pins PHYAD0/PHYAD1/PHYAD2. In addition, MxL86111 supports broadcast address 0 on the MDIO bus. This feature enables PHY to always respond to MDIO access. It is controlled via the COM_EXT_RGMII_MDIO_CFG register. See **Section 7.1** for more information.

The MxL86111 supports the option to configure a dedicated broadcast PHY address.

3.13 RGMII Interface

The RGMII interface implements a MAC interface which is usable for all supported speeds (10/100/1000 Mbit/s).

The transfer of data between the MAC and PHY devices is handled via a clock signal, a control signal, and a four bit data vector in both the transmit and receive directions. The clock signal is always driven by the signal source, which is the MAC in the transmit direction and PHY in the receive direction. The control and data signals change with both the rising and falling edges of the driving clock.

The nominal driving clock frequency at 1000 Mbit/s data speeds is 125 MHz. Lower speeds of 100 Mbit/s and 10 Mbit/s use a clock frequency of 25 MHz and 2.5 MHz respectively. At these lower speeds, the higher half of the data octet is empty and the signals on TXD[3:0] and RXD[3:0] are duplicated.

Figure 11 Connection Diagram of RGMII

3.14 LED Interface

The LED interface is controllable by two methods: by the PHY or manually controlled. The LED interface provides up to three LEDs to provide visual indication of the link speed, duplex, and link status. The LEDs are programmable by the MDIO interface via direct register access. **Figure 1** shows the LED circuit design.

Figure 12 LED Circuit Design

3.15 MDINT Pin Usage

The MDINT pin is used to notify the network processor, or SoC, of both interrupt and WoL events. For general use, indication of a WoL event is also integrated into one of the interrupt events which is triggered when any specified WoL event occurs.

3.16 Power Supply Rails

The MxL86111 requires only one external supply rail of 3.3 V. The device has an integrated SVR which generates the 1.1 V rail, as well as an LDO to adapt to different RGMII levels (either 2.5 / 1.8 V).

The RGMII I/O voltage level is set via external strapping.

When the integrated SVR is not used, the MxL86111 can be powered by a 3.3 V and 1.1 V dual power supply. See Section 8.2 for more information on the electrical characteristics of the power supply. In external supply mode, the DCDC_REGO output pins are left unconnected. The integrated SVR converter is switched off after power up in this case.

3.17 Configuration by Pin Strapping

The MxL86111 device can be configured by means of pin strapping several pins. The pin strapping configurations are captured during the chip power-on sequence, until the reset initialization is complete. The pin strap values can be set to logical high or low by connecting the corresponding pin via an external 1 k Ω resistor to either ground or the VDD domain supply for the pin strapping pins. For example, GPHY_LED0/1/2 connects to either ground or 3.3 V and RXD3/2/1/0/RX_CLK/RXCTL connects to either ground or the VDD domain.

The pin strap mapping is described in Table 13 and Table 14.

Pin Name	Pin Number	Configuration Item Description	
RXD3	23	CFG_MODE2	
RXD2	24	CFG_MODE1	
RXD1	25	CFG_MODE0	
RXD0	26	RXDLY	
RX_CTL	27	PS_PHY_MADDR(2)	
RX_CLK	28	PS_PHY_MADDR(1)	
GPHY_LED0	35	PS_PHY_MADDR(0)	
GPHY_LED1	36	CFG_LDO0	
GPHY_LED2	37	CFG_LDO1	

Table 13 Pin Names Used for Pin Strapping

Table 14	Pin Strapping Configuration Description
----------	---

Pin Strapping Signals	Description	
PS_PHY_MADDR(2:0)	MDIO PHY Address	
	A high level means a logical 1 and low level means a logical 0.	
RXDLY	RGMII Receiver Clock Timing Control	
	0 _B No additional delay on RX_CLK.	
	1 _B Enable 2 ns delay on RX_CLK when RX_CLK is 125 MHz or 8 ns delay	
	on RX_CLK when RX_CLK is 25 MHz/2.5 MHz.	

Pin Strapping Signals	Description		
CFG_LDO(1:0)	Configuration of Integrated LDO voltage		
	This is the voltage level configuration for supplying the RGMII/MDIO I/O pin.		
	00 _B Use an external power source on VDDP for the RGMII/MDIO I/O pin. LDO is disabled.		
	01 _B 2.5 V		
	1x _B 1.8 V		
CFG_MODE(2:0)	Chip Mode Configuration		
	000 _B Copper to RGMII		
	001 _B Fiber to RGMII		
	010 _B Copper/Fiber to RGMII (Dual media auto detection)		
	011 _B Copper to SGMII		
	100 _B SGMII (PHY mode) to RGMII (MAC mode)		
	101 _B SGMII (MAC mode) to RGMII (PHY mode)		
	110 _B Copper to Fiber (Media Conversion auto mode)		
	111 _B Copper to Fiber (Media Conversion force mode)		

Table 14 Pin Strapping Configuration Description

MDIO and MMD Register Interface Description

4 MDIO and MMD Register Interface Description

This chapter describes the MDIO and MMD registers, which are standardized by IEEE 802.3 [1], and available to support the MxL86111 feature set. After power-on, the MxL86111 resets the MDIO and MMD registers to default values that are sufficient to operate without specific programing.

All the register definitions, behaviors, and fields are strictly compliant with the IEEE 802.3 [1]. There are PHY specific registers which are not referenced in IEEE 802.3, which can be found in Section 5.2. These allow custom functions related to the MxL86111.

4.1 Definitions

These acronyms are used in the IEEE 802.3 standard and commonly used in the Ethernet technical domain:

- **STA**: Station Management. A host connected to the MDIO interface. STAs are generally Media Access Controllers (MACs). The STA drives the MDIO bus as a clock master and the MxL86111 is MDIO slave.
- Host: Used as a synonym of STA in this document.
- **PHY**: Physical Layer. In the MxL86111 this encompasses Analog Signal Processing, Digital Signal Processing, and Physical Coding Sublayer (PCS). The PHY contains several sub-layers that are individually manageable entities known as MDIO manageable devices (MMDs).
- MMD: MDIO Manageable Device. The list of MMDs available in the MxL86111 is in Section 4.3.
- **Device**: In the context of MDIO/MMD registers, a device is a register bank grouped by logical sub-layers of the PHY layer.
- **Clause**: Refers to a particular section of the IEEE 802.3 standard [1]. In particular Clause 22 describes MDIO device 0, and Clause 45 describes the other MMDs.
- MII: Media Independent Interface. This encompasses the MDIO as well as the (G)MII as described in Clause 22. STD registers in device 0 are also called MII registers.

MDIO and MMD Register Interface Description

4.2 Register Naming and Numbering

The register numbering convention in this document is similar to that of IEEE 802.3:

The numbering syntax uses 3 numbers "a.b.c" as specified in IEEE 802.3 paragraph 45.1, and the notation is generalized to Clause 22 registers in device 0 "STD". The alphanumeric syntax also uses the same structure and uses the names of the MMD devices, registers and register fields separated by underscore and dot as described below.

4.2.1 Register Numbering

The syntax is as follows, with a, b, c written as decimal numbers:

a.b.c = <DEVICE_NUMBER>.<REGISTER_NUMBER>.<FIELD_NUMBER>

When the last indicator (c) is omitted, the register numbering refers to the full register.

When a field is more than a single bit, the bit range is indicated using a semicolon (e.g. 1:3 is the field of bits 1 to 3). In an MDIO register, the least significant bit is bit 0 and most significant bit is bit 15. All MDIO registers are 16 bit wide.

4.2.2 Register Naming

The syntax is as follows, with AA, BB, CC written as alphanumeric strings:

AA_BB.CC = <DEVICE_NAME>_<REGISTER_NAME>.<FIELD_NAME>

When the last indicator (CC) is omitted, the register naming refers to the full register.

The fields named RES refer to reserved fields as per IEEE 802.3 documents.

4.2.3 Examples

STD_STAT.ANOK is the name of the field 0.1.5, which indicates auto-negotiation complete.

ANEG_CTRL.ANEG_RESTART is the name of the field 7.0.9, which allows the STA to restart the Ethernet ANEG procedure.

ANEG_PHYID1 is the complete 16-bit register number 7.2, for the PHY identifier 1 number.

MDIO and MMD Register Interface Description

4.3 MMD Devices Present in MxL86111

Table 15 lists the devices present in the MxL86111.

Table 15 MMD Devices Present in N	MxL86111
-----------------------------------	----------

MDIO / MMD Name	Device Number (decimal)	Description
PCS	3	Control and status registers related to PCS encoding/decoding device.
ANEG	7	Control and status registers related to auto-negotiation device.

4.4 Responsibilities of the STA

The MMD devices implement groups of standardized registers under the management of the STA. They are defined in IEEE 802.3.

As per IEEE 802.3 guidelines, it is the responsibility of the STA entity to ensure that mutually acceptable speeds are applied consistently across all the MMDs of the MxL86111.

4.5 MDIO Access Protocols to Read / Write Registers

All the MDIO/MMD registers can be accessed from an external chip connected to the MDIO bus on the MDIO and MDC pins. The MxL86111 supports several MDIO frame protocols:

- Clause 22: To access Device 0
- Clause 22 Extended: To access other devices (Dev 3: PCS, Dev 7: ANEG,) using the indirection scheme specified by IEEE 802.3.
- Clause 45: to access device as Table 15.

Both Clause 22 Extended and Clause 45 can be used to access MMD devices. However, the mechanism implemented in the MxL86111 provides faster speeds using Clause 45, so there are some differences in latencies in the MDIO reply:

- Protocol "Clause 22 Extended" involves the MxL86111 an indirection mechanism.
- Protocol "Clause 45" provides faster replies.

The Clause 22 registers can be accessed using the Clause 45 electrical interface and the Clause 22 management frame structure (IEEE 802.3 section 45.2).

MDIO Registers Detailed Description

5 MDIO Registers Detailed Description

Table 16 MDIO Register Access Type

Mode	Symbol
Status Register (Status, or Ability Register)	RO
Read-Write Register (e.g. MDIO Register)	RW
Read-Write, Self-Clearing Register. The bit is cleared after being read from the MDIO interface.	RWSC

Attention: Since the MxL86111 is a 1000 Mbit/s product, the maximum speed capability availabe in the registers is 1000 Mbit/s. Any speed higher than 1000 Mbit/s, such as 2.5 Gbit/s, 5 Gbit/s, or 10 Gbit/s, defaults to 1000 Mbit/s.

5.1 Standard Management Registers

This section describes the IEEE 802.3 standard management registers corresponding to Clause 22.

Register Short Name	Register Long Name	Reset Value
STD_CTRL	STD Control (Register 0)	1140 _H
STD_STAT	Status Register (Register 1)	7949 _H
STD_PHYID1	PHY Identifier 1 (Register 2)	C133 _H
STD_PHYID2	PHY Identifier 2 (Register 3)	5588 _H ¹⁾
STD_AN_ADV	Auto-Negotiation Advertisement (Register 4)	11E1 _H
STD_AN_LPA	Auto-Negotiation Link Partner Ability (Register 5)	0000 _H
STD_AN_EXP	Auto-Negotiation Expansion (Register 6)	0004 _H
STD_AN_NPTX	Auto-Negotiation Next Page Transmit Register (Register 7)	2001 _H
STD_AN_NPRX	Auto-Negotiation Link Partner Received Next Page Register (Register 8)	0000 _H
STD_GCTRL	Gigabit Control Register (Register 9)	0200 _H
STD_GSTAT	Gigabit Status Register (Register 10)	0000 _H
STD_MMDCTRL	MMD Access Control Register (Register 13)	0000 _H
STD_MMDDATA	MMD Access Data Register (Register 14)	0000 _H
STD_XSTAT	Extended Status Register (Register 15)	2000 _H

 Table 17
 Registers Overview - Standard Management

1) For the device specific reset value, see the Chip Ordering Information table in the Package Outline chapter.

5.1.1 Standard Management Registers

This chapter describes all registers of STD in detail.

STD Control (Register 0)

This register controls the main functions of the PHY. IEEE Standard Register=0

STD_CTRL

STD Control (Register 0)

Reset Value 1140_H

15	14	13	12	11	10	9	8	7	6	5					0
RST	LB	SSL	ANEN	PD	ISOL	ANRS	DPLX	COL	SSM	I	RES				I
rwsc	rw	rw	rw	rw	rw	rwsc	rw	rw	rw			r	0		

Field	Bits	Туре	Description
RST	15	RWSC	ResetResets the PHY to its default state. Active links are terminated. Note thatthis is a self-clearing bit which is set to zero by the hardware after resethas been done. 0_B NORMAL Normal operational mode 1_B RESET Resets the device
LB	14	RW	Loopback on GMIIThis mode enables looping back of MII data from the transmit to the receive direction. No data is transmitted to the Ethernet PHY.The device operates at the selected speed. The collision signal remains de-asserted unless otherwise forced by the collision test. 0_B NORMAL Normal operational mode 1_B ENABLE Closes the loopback from Tx to Rx at xMII
SSL	13	RW	Forced Speed Selection LSBThis bit only takes effect with the auto-negotiation process is disabled(STD_CTRL.ANEN bit is set to 0_B).This is the lower bit (LSB) of the forced speed selection.In conjunction with the higher bit (MSB), this encoding is valid:MSB LSB bit values: 00_B 10 Mbit/s 01_B 100 Mbit/s 10_B 1000 Mbit/s 11_B Reserved
ANEN	12	RW	Auto-Negotiation EnableAllows enabling and disabling of the auto-negotiation process capabilityof the PHY. If enabled, the force bits for duplex mode (STD_CTRL.DPLX)and the speed selection (STD_CTRL.SSM, STD_CTRL.SSL) becomeinactive. Otherwise, the force bits define the PHY operation. 0_B DISABLE Disable the auto-negotiation protocol 1_B ENABLE Enable the auto-negotiation protocol

Field	Bits	Туре	Description (cont'd)
PD	11	RW	Power DownForces the device into a power down state (SLEEP) in which power consumption is the minimum required to still maintain the MII management interface communication. When activating the power down functionality, the PHY terminates active data links. The MII interface is also stopped in power down mode. 0_B NORMAL Normal operational mode 1_B POWERDOWN Forces the device into power down mode
ISOL	10	RW	IsolateThe isolation mode isolates the PHY from the MAC. MAC interface inputsare ignored, whereas MAC interface outputs are set to tristate (high-impedance). 0_B NORMAL Normal operational mode 1_B ISOLATE Isolates the PHY from the MAC
ANRS	9	RWSC	Restart Auto-NegotiationRestarts the auto-negotiation process on the MDI. This bit does not takeany effect when auto-negotiation is disabled using (STD_CTRL.ANEN).Note that this bit is self-clearing after the auto-negotiation process isinitiated. 0_B NORMAL Stay in current mode 1_B RESTART Restart auto-negotiation
DPLX	8	RW	Forced Duplex ModeThis bit controls forced duplex mode. It forces the PHY into full or half- duplex mode for 10BASE-T and 100BASE-T modes. This field is ignored for higher speeds.Note(s):This bit only takes effect when the auto-negotiation process(STD_CTRL.ANEN) is set to 0_B .This bit does not take effect in loopback mode, when STD_CTRL.LB is set to 1_B .0HD Half-duplex 1_B FD Full-duplex
COL	7	RW	Collision TestAllows testing of the COL signal at the xMII interface. When the collisiontest is enabled, the state of the TX_EN signal is looped back to the COLsignal within a minimum latency. 0_B DISABLE Normal operational mode 1_B ENABLE Activates the collision test

Field	Bits	Туре	Description (cont'd)
SSM	6	RW	Forced Speed Selection MSB This bit only takes effect when the auto-negotiation process is disabled, that is, bit ANEN is set to zero. This is the most significant bit (MSB) of the forced speed selection.
			In conjunction with the lower bit, (LSB), the following encoding is valid: PHY mirrors 1.06, 1.0.13 and 0.0.6, 0.0.13 MSB LSB: 00_B 10 Mbit/s 01_B 100 Mbit/s 10_B 1000 Mbit/s 11_B Reserved
RES	5:0	RO	Reserved Write as zero, ignore on read.

Status Register (Register 1)

This register contains status and capability information about the device. All bits are read-only. A write access by the MAC does not have any effect.

IEEE Standard Register=1

STD_STAT Status Register (Register 1)

Reset Value 7949_H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CBT4	CBTX F	СВТХ Н	XBTF	хвтн	CBT2F	CBT2 H	EXT	RES	MFPS	ANOK	RF	ANAB	LS	JD	ХСАР
ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	rolh	ro	roll	rolh	ro

Field	Bits	Туре	Description
CBT4	15	RO	IEEE 100BASE-T4 Specifies the 100BASE-T4 ability. 0 _B DISABLED PHY does not support this mode 1 _B ENABLED PHY supports this mode
CBTXF	14	RO	IEEE 100BASE-TX Full-DuplexSpecifies the 100BASE-TX full-duplex ability.00DISABLED PHY does not support this mode10BENABLED PHY supports this mode
СВТХН	13	RO	IEEE 100BASE-TX Half-DuplexSpecifies the 100BASE-TX half-duplex ability.00DISABLED PHY does not support this mode1ENABLED PHY supports this mode
XBTF	12	RO	IEEE 10BASE-T Full-DuplexSpecifies the 10BASE-T full-duplex ability.00DISABLED PHY does not support this mode1ENABLED PHY supports this mode
ХВТН	11	RO	IEEE 10BASE-T Half-DuplexSpecifies the 10BASE-T half-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBT2F	10	RO	IEEE 100BASE-T2 Full-DuplexSpecifies the 100BASE-T2 full-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBT2H	9	RO	IEEE 100BASE-T2 Half-DuplexSpecifies the 100BASE-T2 half-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode

Data Sheet

Field	Bits	Туре	Description (cont'd)
EXT	8	RO	Extended StatusThe extended status registers are used to specify 1000 Mbit/s speedcapabilities in the STD_XSTAT register.00BDISABLED No extended status information available in register 1511BENABLED Extended status information available in register 15
RES	7	RO	Reserved Ignore when read.
MFPS	6	RO	Management Preamble SuppressionSpecifies the MF preamble suppression ability.00BDISABLED PHY requires management frames with preamble11BENABLED PHY accepts management frames without preamble
ANOK	5	RO	Auto-Negotiation CompletedIndicates whether the auto-negotiation process is completed or in progress. 0_B RUNNING Auto-Negotiation process is in progress 1_B COMPLETED Auto-Negotiation process is completed
RF	4	ROLH	Remote FaultIndicates the detection of a remote fault event. 0_B INACTIVE No remote fault condition detected 1_B ACTIVE Remote fault condition detected
ANAB	3	RO	Auto-Negotiation AbilitySpecifies the auto-negotiation ability. 0_B DISABLED PHY is not able to perform auto-negotiation 1_B ENABLED PHY is able to perform auto-negotiation
LS	2	ROLL	 Link Status Indicates the link status of the PHY to the link partner. 0_B INACTIVE The link is down. No communication with link partner possible. 1_B ACTIVE The link is up. Data communication with link partner is possible.
JD	1	ROLH	Jabber DetectIndicates that a jabber event has been detected. 0_B NONE No jabber condition detected 1_B DETECTED Jabber condition detected
XCAP	0	RO	Extended CapabilityIndicates the availability and support of extended capability registers. 0_B DISABLED Only base registers are supported 1_B ENABLED Extended capability registers are supported

PHY Identifier 1 (Register 2)

This code specifies the Organizationally Unique Identifier (OUI), the vendor's model number, and the model's revision number.

IEEE Standard Register=2

STD_PHYID1 PHY Identifier 1 (Register 2)

Reset Value C133_H

15															0
	I	T	I	1	I	T	0	UI			I	T	I	I	
	i	1	1	1	1	1	1	1	1	1	i	1	1	1	L
							r	0							

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18

PHY Identifier 2 (Register 3)

IEEE Standard Register=3

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several products.
LDRN	3:0	RO	Device Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

1) For the device specific reset value, refer to Product Naming table in the **Package Outline** chapter.

Auto-Negotiation Advertisement (Register 4)

This register contains the advertised abilities of the PHY during auto-negotiation. IEEE Standard Register=4

STD_AN_ADV

Reset Value

Auto-Negotiation Advertisement (Register 4)

11Е1_н

15	14	13	12	11					5	4			0
NP	RES	RF	XNP		1	1	TAF	1			SF	1	
rw	ro	rw	rw	1	1	1	rw	1			 rw	1	

Field	Bits	Туре	Description
NP	15	RW	Next Page Next page indication is encoded in bit NP regardless of the selector field value or link code word encoding. The PHY always advertises NP if a 1000BASE-T mode is advertised during auto-negotiation. 0 _B INACTIVE No next page(s) will follow 1 _B ACTIVE Additional next page(s) will follow
RES	14	RO	Reserved Write as zero, ignore on read.
RF	13	RW	Remote FaultThe remote fault bit allows indication of a fault to the link partner. 0_B NONE No remote fault is indicated 1_B FAULT A remote fault is indicated
XNP	12	RW	Extended Next PageIndicates that the PHY supports transmission of extended next pages (XNP) . 0_B UNABLE PHY is XNP unable 1_B ABLE PHY is XNP able
TAF	11:5	RW	Technology Ability FieldThe technology ability field is an 8-bit wide field containing informationindicating supported technologies. This field indicates PHY support for10BASE-T (half- and full-duplex), 100BASE-T (half- and full-duplex), andPAUSE (asymmetric and symmetric).40 _H PS_ASYM Advertise asymmetric pause20 _H PS_SYM Advertise symmetric pause10 _H DBT4 Advertise 100BASE-T408 _H DBT_FDX Advertise 100BASE-TX full-duplex04 _H DBT_HDX Advertise 100BASE-TA full-duplex04 _H DBT_HDX Advertise 100BASE-TX half-duplex04 _H XBT_HDX Advertise 100BASE-T full-duplex
SF	4:0	RW	Selector Field The selector field is a 5-bit wide field for encoding 32 possible messages. Combinations not specified are reserved for future use. Reserved combinations of the selector field are not to be transmitted. 00001 _B IEEE802DOT3

0000_H

Auto-Negotiation Link Partner Ability (Register 5)

IEEE Standard Register=5

When the auto-negotiation is complete, this register contains the advertised ability of the link partner. The bit definitions are a direct representation of the received link code word.

STD_AN_LPA

Auto-Negotiation L	ink Partner Ability	(Register 5)
--------------------	---------------------	--------------

15	14	13	12	11					5	4				0
NP	АСК	RF	XNP		1	I	TAF				1	SF	1	1
ro	ro	ro	rw				rw					ro		

Field	Bits	Туре	Description
NP	15	RO	Next PageNext page request indication from the link partner.00INACTIVE No next page(s) will follow1ACTIVE Additional next pages will follow
ACK	14	RO	Acknowledge Acknowledgment indication from the link partner's link code word. 0 _B INACTIVE The device did not successfully receive its link partner's link code word 1 _B ACTIVE The device has successfully received its link partner's link code word
RF	13	RO	Remote FaultRemote fault indication from the link partner. 0_B NONE Remote fault is not indicated by the link partner 1_B FAULT Remote fault is indicated by the link partner
XNP	12	RW	Extended Next PageIndicates that PHY supports transmission of extended next pages (XNP). 0_B UNABLE Link partner is XNP unable 1_B ABLE Link partner is XNP able
TAF	11:5	RW	Technology Ability Field40 _H PS_ASYM Advertise asymmetric pause20 _H PS_SYM Advertise symmetric pause10 _H DBT4 Advertise 100BASE-T408 _H DBT_FDX Advertise 100BASE-TX full-duplex04 _H DBT_HDX Advertise 100BASE-TX half-duplex02 _H XBT_FDX Advertise 10BASE-T full-duplex01 _H XBT_HDX Advertise 10BASE-T half-duplex
SF	4:0	RO	Selector Field 00001 _B IEEE802DOT3 Select the IEEE 802.3 technology

Auto-Negotiation Expansion (Register 6)

This is the auto-negotiation expansion register indicating the status of the link partner's auto-negotiation. This register is valid only after the auto-negotiation is completed.

IEEE Standard Register=6

STD_AN_EXP

Auto-Neg	– gotiatior	n Expai	nsion (Register 6)							0004 _F	ł	
15		1	1					5	4	3	2	1	0
I	I	I	I	RES	Ţ	ļ	I	Ţ	PDF	LPNP C	NPC	PR	LPAN C
. <u> </u>	<u> </u>	1	I	ro	I	I	1	<u> </u>	rolh	ro	ro	rolh	ro

Field	Bits	Туре	Description						
RES	15:5	RO	Reserved Write as zero, ignore on read.						
PDF	4	ROLH	Parallel Detection Fault 0 _B NONE A fault has not been detected via the parallel detection function 1 _B FAULT A fault has been detected via the parallel detection function						
LPNPC	3	RO	Link Partner Next Page Capable0BUNABLE Link partner is unable to exchange next pages1BCAPABLE Link partner is capable of exchanging next pages						
NPC	2	RO	Next Page Capable 0 _B UNABLE PHY is unable to exchange next pages 1 _B CAPABLE PHY is capable of exchanging next pages						
PR	1	ROLH	Page Received 0 _B NONE A new page has not been received 1 _B RECEIVED A new page has been received						
LPANC	0	RO	Link Partner Auto-Negotiation Capable0BUNABLE Link partner is unable to auto-negotiate1BCAPABLE Link partner is auto-negotiation capable						

51

2001_H

Auto-Negotiation Next Page Transmit Register (Register 7)

The auto-negotiation next page transmit register contains the next page link code word to be transmitted when next page ability is supported.

IEEE Standard Register=7

STD_AN_NPTX

Auto-Negotiation Next Page Transmit Register
(Register 7)

15	14	13	12	11	10								0
NP	RES	MP	ACK2	TOGG	1	Ι		T	MCF	I I	I	ļ	
rw	ro	rw	rw	ro		I	I	I	rw	<u> </u>		I	<u> </u>

Field	Bits	Туре	Description
NP	15	RW	Next Page 0 _B INACTIVE Last page 1 _B ACTIVE Additional next page(s) will follow
RES	14	RO	Reserved Write as zeros, ignore on read.
MP	13	RW	Message Page Indicates that the content of STD_AN_NPTX.MCF is either an unformatted page or a formatted message. 0 _B UNFOR Unformatted page 1 _B MESSG Message page
ACK2	12	RW	Acknowledge 2 0 _B INACTIVE Device cannot comply with message 1 _B ACTIVE Device will comply with message
TOGG	11	RO	ToggleThis bit always takes the opposite value of the STD_AN_NPTX.TOGG bitin the previously exchanged link code word. 0_B ZERO Previous value of the transmitted link code word was 1_B 1_B ONE Previous value of the transmitted link code word was 0_B

Field	Bits	Туре	Description (cont'd)
MCF	10:0	RW	Message or Unformatted Code Field
			When Message Page STD_AN_NPTX.MP bit is set to 1 _B (0.7.13), this
			field is the Message Code Field of a message page used in next page
			exchange. The message codes are described in IEEE802.3 Appendix
			28C.
			It is used to indicate the type of message in UCF1 and UCF2.
			00 _H Reserved
			01 _H Null message
			02 _H One Unformatted Page (UP) with TAF follows
			03 _H Two UPs with TAF follows
			04 _H Remote fault details message
			05 _H OUI message
			06 _H PHY ID message
			07 _H 100BASE-T2 message
			08 _H 1000BASE-T message
			09 _H MULTIGBASE-T message
			0A _H EEE technology capability follows in next UP
			0B _H OUI XNP

Auto-Negotiation Link Partner Received Next Page Register (Register 8)

The auto-negotiation link partner received next page register contains the next page link code word received from the link partner.

IEEE Standard Register=8

STD_AN_NPRX

Auto-Negotiation Link Partner Received Next Page Register (Register 8)

Reset Value 0000_H

	15	14	13	12	11	10										0
-	NP	АСК	MP	ACK2	TOGG			ļ	ļ		MCF			1	T	
-	ro	ro	ro	ro	ro		1			-	rw	-	I	I	1	I
	ro	ro	ro	ro	ro						IVV					

Field	Bits	Туре	Description
NP	15	RO	Next Page 0 _B INACTIVE No next pages to follow 1 _B ACTIVE Additional next page(s) will follow
ACK	14	RO	Acknowledge 0 _B INACTIVE The device did not successfully receive its link partner's link code word 1 _B ACTIVE The device has successfully received its link partner's link code word
MP	13	RO	Message PageIndicates that the content of STD_AN_NPTX.MCF is either an unformatted page or a formatted message. 0_B UNFOR Unformatted page 1_B MESSG Message page
ACK2	12	RO	Acknowledge 2 0 _B INACTIVE Device cannot comply with message 1 _B ACTIVE Device will comply with message
TOGG	11	RO	Toggle This bit always takes the opposite value of the TOGG bit in the previously exchanged link code word. 0 _B ZERO Previous value of the transmitted link code word was equal to ONE 1 _B ONE Previous value of the transmitted link code word was equal to ZERO

Field	Bits	Туре	Description (cont'd)
MCF	10:0	RW	Message or Unformatted Code Field
			This field is the Message Code Field of a message page used in next
			page exchange.
			The message codes are described in IEEE802.3 Appendix 28C.
			It is used to indicate the type of message in UCF1 and UCF2.
			00 _H Reserved
			01 _H Null message
			02 _H One Unformatted Page (UP) with TAF follows
			03 _H Two UPs with TAF follows
			04 _H Remote fault details message
			05 _H OUI message
			06 _H PHY ID message
			07 _H 100BASE-T2 message
			08 _H 1000BASE-T message
			09 _H MULTIGBASE-T message
			0A _H EEE technology capability follows in next UP
			0B _H OUI XNP

Gigabit Control Register (Register 9)

This is the control register used to configure the Gigabit Ethernet behavior of the PHY. IEEE Standard Register=9

STD_GCTRL

Gigabit Control Register (Register 9)

Reset Value 0200_H

15	13	12	11	10	9	8	7						0
T	M	MSEN	MS	MSPT	MBTF D	MBTH D	T		R	ES	1	1	
n	V	rw	rw	rw	rw	rw			r	0			

Field	Bits	Туре	Description
ТМ	15:13	RW	Transmitter Test ModeThis register field allows enabling of the standard transmitter test modes. 000_B NOP Normal operation 001_B WAV Test mode 1 transmit waveform test 010_B JITM Test mode 2 transmit jitter test in master mode 011_B JITS Test mode 3 transmit jitter test in slave mode 100_B DIST Test mode 4 transmitter distortion test
MSEN	12	RW	Master/Slave Manual Configuration Enable0BDISABLED Disable master/slave manual configuration value1BENABLED Enable master/slave manual configuration value
MS	11	RW	Master/Slave Config Value Allows forcing of master or slave mode manually when STD_GCTRL.MSEN is set to logical one. 0 _B SLAVE Configure PHY as slave during master/slave negotiation 1 _B MASTER Configure PHY as master during master/slave negotiation
MSPT	10	RW	Master/Slave Port TypeDefines whether the PHY advertises itself as a multi- or single-portdevice, which in turn impacts the master/slave resolution function. 0_B SPD Single-port device 1_B MPD Multi-port device
MBTFD	9	RW	1000BASE-T Full-Duplex Advertises the 1000BASE-T full-duplex capability; always forced to 1 _B in converter mode. 0 _B DISABLED Advertise PHY as not 1000BASE-T full-duplex capable 1 _B ENABLED Advertise PHY as 1000BASE-T full-duplex capable
MBTHD	8	RW	1000BASE-T Half-Duplex Always advertises the 1000BASE-T half-duplex capability as disabled; PHY does not support 1000BASE-T Half-Duplex capability 0 _B DISABLED Advertise PHY as not 1000BASE-T half-duplex capable 1 _B ENABLED Advertise PHY as 1000BASE-T half-duplex capable

Field	Bits	Туре	Description (cont'd)
RES	7:0	RO	Reserved
			Write as zero, ignore on read.

Gigabit Status Register (Register 10)

This is the status register used to reflect the Gigabit Ethernet status of the PHY. IEEE Standard Register=10

STD_GSTAT

Gigabit Status Register (Register 10)

Reset Value 0000_H

15	14	13	12	11	10	9	8	7						0
MSFA ULT	MSRE S	LRXS TAT	RRXS TAT	MBTF D	MBTH D	RI	ES		1	1	I	EC	1	1
rwsc	ro	ro	ro	ro	ro	r	0	1	<u> </u>	1	r	wsc	 1	L

Field	Bits	Туре	Description
MSFAULT	15	RWSC	Master/Slave Manual Configuration FaultThis bit is set if the number of attempts to set the master/slaveconfiguration reaches 7.It is cleared upon each read of the STD_GSTAT register.This bit self clears on auto-negotiation enable or auto-negotiationcomplete. 0_B OK Master/slave manual configuration resolved successfully 1_B NOK Master/slave manual configuration resolved with a fault
MSRES	14	RO	Master/Slave Configuration Resolution0BSLAVE Local PHY configuration resolved to slave1BMASTER Local PHY configuration resolved to master
LRXSTAT	13	RO	Local Receiver Status Indicates the status of the local receiver. 0 _B NOK Local receiver not OK 1 _B OK Local receiver OK
RRXSTAT	12	RO	Remote Receiver Status Indicates the status of the remote receiver. 0 _B NOK Remote receiver not OK 1 _B OK Remote receiver OK
MBTFD	11	RO	Link Partner Capable of Operating 1000BASE-T Full-Duplex0BDISABLED Link partner is not capable of operating 1000BASE-T full-duplex1BENABLED Link partner is capable of operating 1000BASE-T full- duplex
MBTHD	10	RO	Link Partner Capable of Operating 1000BASE-T Half-Duplex0BDISABLED Link partner is not capable of operating 1000BASE-T half-duplex1BENABLED Link partner is capable of operating 1000BASE-T half- duplex
RES	9:8	RO	Reserved Write as zero, ignore on read.

Field	Bits	Туре	Description (cont'd)
IEC	7:0	RWSC	Idle Error Count Indicates the idle error count. This field contains a cumulative count of the errors detected when the receiver is receiving idles.

MMD Access Control Register (Register 13)

The MMD access control register is used in conjunction with the MMDDATA register to access the MMD register space. This uses address directing as specified in IEEE802.3 Clause 22 Extended.

IEEE Standard Register=13

STD_MMDCT MMD Access		egister (Registe	er 13)						Reset Value 0000 _H	
15 14	13			8	7		5	4		0
ACTYPE		RES	Ĩ			RES			DEVAD	ļ
rw		ro	1			ro		<u> </u>	rw	I

Field	Bits	Туре	Description
ACTYPE	15:14	RW	Access Type FunctionIf the access of the MMDDATA register is an address access (ACTYPE = 00_B) then it is directed to the address register within the MMD associatedwith the value in the DEVAD field. Otherwise, both the DEVAD field andthe MMD's address register direct the register MMDDATA data accessesto the appropriate registers within that MMD. 00_B ADDRESS Accesses to register MMDDATA access the MMDindividual address register 01_B DATA Accesses to register MMDDATA access the register withinthe MMD selected 10_B DATA_PI Accesses to register MMDDATA access the registerwithin the MMD selected 11_B DATA_PIWR Accesses to register MMDDATA access the registerwithin the MMD selected
RES	13:8	RO	Reserved Write as zero, ignored on read.
RES	7:5	RO	Reserved Write as zero, ignored on read.
DEVAD	4:0	RW	Device Address The field directs any accesses of register MMDDATA to the appropriate MMD.

MMD Access Data Register (Register 14)

The MMD access data register is used in conjunction with the MMD access control (MMDCTRL) register to access the MMD register space.

IEEE Standard Register=14

STD_MMDDATA

MMD Access Data Register (Register 14)

Reset Value 0000_H

15															0
	1		I	1			1	1					1	I	
							ADDR	_DATA							
	1	1	1	1			1	I	1 1		1	1	1	1	L
	rw														

Field	Bits	Туре	Description
ADDR_DATA	15:0	RW	Address or Data Register
			This register accesses either a specific MMD address register or the data content of the MMD register to which this address register points. Which of the functions is currently valid is defined by the MMDCTRL register.

2000_H

Extended Status Register (Register 15)

Extended Status Register (Register 15)

This register contains extended status and capability information about the PHY. All bits are read-only. A write access does not have any effect.

IEEE Standard Register=15

STD_XSTAT

15	14	13	12	11		8	7							0
MBXF	мвхн	MBTF	мвтн		RES	İ		1	T	I	RES	I	Γ	
ro	ro	ro	ro		ro	I		1		11	ro	I	I	I

Field	Bits	Туре	Description
MBXF	15	RO	1000BASE-X Full-Duplex Capability Specifies whether the PHY is capable of operating 1000BASE-X full-duplex. 0 _B DISABLED PHY does not support this mode 1 _B ENABLED PHY supports this mode
MBXH	14	RO	1000BASE-X Half-Duplex Capability Specifies whether the PHY is capable of operating 1000BASE-X half-duplex. 0 _B DISABLED PHY does not support this mode 1 _B ENABLED PHY supports this mode
MBTF	13	RO	1000BASE-T Full-Duplex Capability Specifies whether the PHY is capable of operating 1000BASE-T full-duplex. 0 _B DISABLED PHY does not support this mode 1 _B ENABLED PHY supports this mode
MBTH	12	RO	1000BASE-T Half-Duplex CapabilityPHY does not support 1000BASE-T Half-Duplex capability.0DISABLED PHY does not support this mode1BENABLED PHY supports this mode
RES	11:8	RO	Reserved Ignore when read.
RES	7:0	RO	Reserved Ignore when read.

5.2 PHY-specific Management Registers

This section describes the PHY specific management registers.

Table 18 Registers Overview - PHY-specific Management Registers

Register Short Name	Register Long Name	Reset Value
PHY_CTL	PHY Specific Function Control Register (Register 16)	0062 _H
PHY_STAT	PHY Specific Status (Register 17)	0000 _H
PHY_IMASK	Interrupt Mask Register (Register 18)	0000 _H
PHY_ISTAT	Interrupt Status Register (Register 19)	0000 _H
PHY_ADS_CTL	Speed Auto Downgrade Control Register (Register 20)	0082c _H
PHY_EXT_ADR	Extended Register's Address Offset Register (Register 30)	0000 _H
PHY_EXT_DATA	Extended Register's Data Register (Register 31)	1C8D _H

5.2.1 PHY Specific Function Control Register (Register 16)

This section describes the PHY Specific Function Control Register in detail.

PHY Specific Function Control Register (Register 16)

The register controls PHY specific functions.

PHY_CTL PHY Specifi (Register 16	ic Function Contro	I Registe	r	Offset 0010 _H						Reset	Value 0062 _H
15				7	 6	5	4	3	2	1	0
I	RE	S	1 1	ļ	MD	IX	RES	CRS	SQE	POL	JAB
	rc)			 rv	V	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
RES	15:7	RO	Reserved
MDIX	6:5	RW	MDI CrossoverChanges made to these bits disrupt normal operation, thus a software reset is mandatory after the change. The configuration does not take effect until software reset. 00_B Manual MDI configuration 01_B Manual MDIX configuration 10_B Reserved 11_B Enable automatic crossover for all modes
RES	4	RW	Reserved
CRS	3	RW	Carrier Sense on Transmitting This bit is effective in 10BASE-Te half-duplex mode and 100BASE-TX mode: 0 _B Never assert Carrier Sense (CRS) on transmitting, only assert it on receiving 1 _B Assert CRS on transmitting or receiving
SQE	2	RW	Enable SQE TestingNote: The Signal Quality Errors (SQE) test is automatically disabled in full-duplex mode regardless the setting in this bit. 0_B SQE test disabled 1_B SQE test enabled
POL	1	RW	Enable Polarity ReversalIf polarity reversal is disabled, the polarity is forced to be normal in $10BASE-Te$. 0_B Polarity reversal disabled 1_B Polarity reversal enabled
JAB	0	RW	Disable JabberJabber takes effect only in 10BASE-Te half-duplex mode. 0_B Enable the jabber function 1_B Disable the jabber function

5.2.2 PHY Specific Status Register (Register 17)

This section describes the PHY Specific Status register in detail.

PHY Specific Status Register (Register 17)

The register reports PHY link, MDI crossover, polarity, ADS, and PAUSE status.

_	Z_STATY Specific Status Register (Register 1)51413121413121110SPEEDDPXPAGESDRLSRT					17)	Off 001	set 11 _H						Reset	Value 0000 _H
 15	14	13	12	11	10	9		7	6	5	4	3	2	1	0
SPI	EED	DPX	PAGE	SDR	LSRT		RES		MDIXS	ADS	RES	TPS	RPS	POLR T	JABR T
 r	0	ro	ro	ro	ro		ro		ro	ro	ro	ro	ro	ro	ro

Field	Bits	Туре	Description
SPEED	15:14	RO	$\begin{tabular}{ c c c c c c c } \hline Speed Mode \\ This register contains the speed mode status. These status bits are only valid when PHY_STAT.SDR is 1_B. PHY_STAT.SDR is set when autonegotiation is completed or auto-negotiation is disabled. 00_B 10 Mbit/s 01_B 100 Mbit/s 10_B 1000 Mbit/s 11_B Reserved \end{tabular}$
DPX	13	RO	DuplexThis register contains the duplex mode status. These status bits are only valid when PHY_STAT.SDR is 1_B . PHY_STAT.SDR is set when auto- negotiation is completed or auto-negotiation is disabled. 0_B Half-duplex 1_B Full-duplex
PAGE	12	RO	Page Received Real-Time 0 _B Page not received 1 _B Page received
SDR	11	RO	$\begin{array}{c c} \textbf{Speed and Duplex Resolved} \\ This field contains the status of whether the speed and duplex has been resolved. This bit is set when auto-negotiation is completed or disabled. When auto-negotiation is disabled (force-speed mode), this bit is set to 1_B. \\ 0_B & Not resolved \\ 1_B & Resolved \end{array}$
LSRT	10	RO	Link Status Real-Time 0 _B Link down 1 _B Link up
RES	9:7	RO	Reserved

Field	Bits	Туре	Description (cont'd)
MDIXS	6	RO	$\begin{array}{c c} \textbf{MDI Crossover Status} \\ This field contains the MDI Crossover status. This bit value depends upon the PHY_CTL.MDIX (bits [6:5]) configuration. \\ This status bit is only valid when the PHY_STAT.SPEED is 1_B. \\ 0_B & MDI \\ 1_B & MDIX \end{array}$
ADS	5	RO	Wirespeed Downgrade 0 _B No Downgrade 1 _B Downgrade
RES	4	RO	Reserved
TPS	3	RO	Transmit PauseThis field contains the MAC pause resolution status. This bit is for information purposes only.When in forced mode, this bit is set to 0_B . This status bit is only valid when the PHY_STAT.SPEED is 1_B . 0_B Transmit pause disabled 1_B 1_B Transmit pause enabled
RPS	2	RO	Receive PauseThis field contains the MAC pause resolution status. This bit is forinformation purposes only.When in forced mode, this bit is set to 0_B . This status bit is only valid whenthe PHY_STAT.SPEED is 1_B . 0_B Receive pause disabled 1_B Receive pause enabled
POLRT	1	RO	Polarity Real Time 0 _B Normal polarity 1 _B Reverted polarity
JABRT	0	RO	Jabber Real Time0 _B No jabber1 _B Jabber

5.2.3 Interrupt Mask Register (Register 18)

This section describes the Interrupt Mask Register in detail.

Interrupt Mask Register (Register 18)

This register defines the mask for the Interrupt Status Register, which contains the event source for INT_N sent from the PHY to an external device.

_	NE LSPC DXMC NPRX LFST LS			r 18)	Offset 0012 _H								Reset	Value 0000 _H	
15	14	13	12	11	10	9		7	6	5	4	3	2	1	0
ANE	LSPC	DXMC	NPRX	LFST	LSTC		RES		WOL	ADSC	RES	RES	RES	MDIPC	JAB
rw	rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
ANE	15	RW	Auto-Negotiation Error INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
LSPC	14	RW	Speed Changed INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
DXMC	13	RW	Duplex Changed INT Mask0BInterrupt disable1BInterrupt enable
NPRX	12	RW	Page Received INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
LFST	11	RW	Link Failed INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
LSTC	10	RW	Link Succeed INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
RES	9:7	RW	Reserved Not used.
WOL	6	RW	WOL INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
ADSC	5	RW	Link Speed Auto-Downspeed Detect Mask 0 _B Interrupt disable 1 _B Interrupt enable
RES	4	RW	Reserved Not used.
RES	3	RW	Reserved

Field	Bits	Туре	Description (cont'd)
RES	2	RW	Reserved
MDIPC	1	RW	Polarity Changed INT Mask 0 _B Interrupt disable 1 _B Interrupt enable
JAB	0	RW	Jabber Occurred INT Mask 0 _B Interrupt disable 1 _B Interrupt enable

5.2.4 Interrupt Status Register (Register 19)

This section describes the Interrupt Status Register in detail.

Interrupt Status Register (Register 19)

This register defines the event source for the MDINT interrupt sent from the PHY to an external device. The register is a cleared on read by the STA.

PHY_ISTAT Interrupt Status Register (Register 19)								รet 13 _H						Reset	Value 0000 _H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ANE	LSPC	DXMC	NPRX	LFST	LSTC	RES	RES	RES	WOL	ADSC	RES	RES	RES	MDIPC	JAB
ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc	ro rc

Field	Bits	Туре	Description
ANE	15	RO RC	Auto-Negotiation Error INTThis field indicates errors occurring during ANEG. 0_B No auto-negotiation error takes place 1_B Auto-Negotiation error takes place
LSPC	14	RO RC	Speed Changed INT 0 _B Speed not changed 1 _B Speed changed
DXMC	13	RO RC	Duplex Changed INT 0 _B Duplex not changed 1 _B Duplex changed
NPRX	12	RO RC	Page Received INT 0 _B Page not received 1 _B Page received
LFST	11	RO RC	Link Failed INT 0 _B No link down takes place 1 _B PHY link down takes place
LSTC	10	RO RC	Link Succeed INT 0 _B No link up takes place 1 _B PHY link up takes place
RES	9	RO RC	Reserved
RES	8	RO RC	Reserved
RES	7	RO RC	Reserved
WOL	6	RO RC	WOL INT0BPHY did not receive WOL magic frame1BPHY received WOL magic frame.
ADSC	5	RO RC	Link Speed Auto-Downspeed Detect Interrupt Status 0 _B Speed did not downgrade 1 _B Speed downgraded
RES	4	RO RC	Reserved

Field	Bits	Туре	Description (cont'd)
RES	3	RO RC	Reserved
RES	2	RO RC	Reserved
MDIPC	1	RO RC	Polarity Changed INT0 _B PHY did not revert MDI polarity1 _B PHY revered MDI polarity
JAB	0	RO RC	Jabber Occurred INTRefer to STD_STAT.JD.0 _B 10BaseT Tx jabber did not occur1 _B 10BaseT Tx jabber occurred

5.2.5 Speed Auto Downgrade Control Register (Register 20)

This section describes the Speed Auto Downgrade Control Register in detail.

Speed Auto Downgrade Control Register (Register 20)

The register is used for speed downshift control.

PHY_ADS_CTL Speed Auto Downgrade Control Register (Register 20)					Offset 0014 _H							Reset Value 0082c _H		
15		12	11		8	7	6	5	4		2	1	0	
	RES			RES		RI	ES	EADS		ADSRT		BAT	RES	
	ro		II	ro	1	r	w	rw		rw		rw	ro	

Field	Bits	Туре	Description
RES	15:12	RO	Reserved
RES	11:8	RO	Reserved
RES	7:6	RW	Reserved
EADS	5	RW	Auto Down Speed EnableLink speed auto-downspeed is a functionality which allows an Ethernetlink to be established even in non-standard harsh cable environments.This field only takes effect after a software reset. 0_B 0_B Disabled 1_B Enabled
ADSRT	4:2	RW	Autoneg Retry Limit Pre-downgradeThis field sets the number of link-up attempts before performing an Automatic-Downspeed (ADS) of the link. For example, with a 000_B setting, the PHY makes two attempts to link-up before trying a lower speed. (N+2). 000_B ADS after 2 consecutive link-up failures. 001_B ADS after 3 consecutive link-up failures. 010_B ADS after 4 consecutive link-up failures. 011_B ADS after 5 consecutive link-up failures. 100_B ADS after 6 consecutive link-up failures. 101_B ADS after 7 consecutive link-up failures. 101_B ADS after 7 consecutive link-up failures. 111_B ADS after 8 consecutive link-up failures. 111_B ADS after 9 consecutive link-up failures.
BAT	1	RW	Bypass Autospeed TimerA link up that does not hold for 2.5 seconds is counted as a link fail, andthe Auto-Downspeed retry counter increases by 1. The field only takeseffect after a software reset. 0_B Do not bypass the timer 1_B Bypass the timer
RES	0	RO	Reserved

5.2.6 Extended Register's Address Offset Register (Register 30)

This section describes the Extended Register's Address Offset Register in detail.

Extended Register's Address Offset Register (Register 30)

The register is used in conjunction with the MDIO access to the extended register address field. This uses address directing as specified in the extended register chapter. See **Section 7.1** for more information.

PHY_EXT_ADR							Off	Offset							Reset Value		
Extended Register's Address Offset Register (Register 30)						00 1	IE _H							0000 _H			
15															0		
	1	1	1	1	1	1	EX	ТА	1	1	1	1	1				
	rw																

Field	Bits	Туре	Description
EXTA	15:0	RW	Extended Register Address Offset
			This is the address offset of the extended register that is read or written.

5.2.7 Extended Register's Data Register (Register 31)

This section describes the Extended Register's Data Register in detail.

Extended Register's Data Register (Register 31)

The register is used in conjunction with the MDIO access to the extended data field. The data format is defined as specified in the extended register chapter. This register holds the data to be written or read to the extended register (indicated in Section 5.2.6). See Section 7.1 for more information.

PHY_EXT_DATA Extended Register's Data Register (Register 31)						fset 1F _H							t Value 1C8D _H		
15															0
	1	1	1	1	1		EX	TD	1	l	1	1	1		ţ
	1	1		1	1	1 1	r	w	1	I			I]	1

Field	Bits	Туре	Description
EXTD	15:0	RW	Extended Register Data This field contains the data to be written to, or read from, the extended register indicated by Extended Register Address Offset 001E _H .

5.3 SDS Standard Management Registers

This section describes the SDS standard management registers.

Table 19 Registers Overview - SDS Standard Management Registers

Register Short Name	Register Long Name	Reset Value
SDS_CTRL	STD Control (Register 0)	1140 _H
SDS_STAT	Status Register (Register 1)	61С9 _н
STS_PHYID1	SDS Identifier 1 (Register 2)	С133 _н
SDS_PHYID2	SDS Identifier 2 (Register 3)	5588 _H
SDS_AN_ADV	Auto-Negotiation Advertisement (Register 4)	0020c _H
SDS_AN_LPA	Auto-Negotiation Link Partner Ability (Register 5)	0000 _H
SDS_AN_EXP	Auto-Negotiation Expansion (Register 6)	0000 _H
SDS_AN_NPTX	Auto-Negotiation Next Page (Register 7)	0000 _H
SDS_AN_NPRX	Auto-Negotiation Link Partner Received Next Page (Register 8)	0000 _H
SDS_XSTAT	Extended Status Register (Register 15)	8000 _H

5.3.1 STD Control (Register 0)

This chapter describes all registers of STS in detail.

STD Control (Register 0)

This register controls the main functions of the PHY.

SDS_C STD C		(Regis	ter 0)		Offset 0000 _H							Reset	Value 1140 _H		
15	14	13	12	11	10	9	8	7	6	5					0
RST	LB	SSL	ANEN	PD	ISOL	ANRS	DPLX	COL	SSM			RE	ES		
rwsc	rw	rw	rw	rw	rw	rwsc	rw	rw	rw			ro	0		

Field	Bits	Туре	Description
RST	15	RWSC	ResetResets the PHY to its default state. Active links are terminated. Note thatthis is a self-clearing bit which is set to zero by the hardware after resethas been done. 0_B NORMAL Normal operational mode 1_B RESET Resets the device
LB	14	RW	Loopback on GMIIThis mode enables looping back of MII data from the transmit to the receive direction. No data is transmitted to the Ethernet PHY.The device operates at the selected speed. The collision signal remains de-asserted unless otherwise forced by the collision test. 0_B NORMAL Normal operational mode 1_B ENABLE Closes the loopback from Tx to Rx at xMII
SSL	13	RW	Forced Speed Selection LSBThis bit only takes effect with the auto-negotiation process is disabled(STD_CTRL.ANEN bit is set to 0_B).This is the lower bit (LSB) of the forced speed selection.In conjunction with the higher bit (MSB), this encoding is valid:MSB LSB bit values: 00_B 10 Mbit/s 01_B 100 Mbit/s 10_B 1000 Mbit/s 11_B Reserved
ANEN	12	RW	Auto-Negotiation EnableAllows enabling and disabling of the auto-negotiation process capabilityof the PHY. If enabled, the force bits for duplex mode (CTRL.DPLX) andthe speed selection (CTRL.SSM, CTRL.SSL) become inactive.Otherwise, the force bits define the PHY operation. 0_B DISABLE Disable the auto-negotiation protocol 1_B ENABLE Enable the auto-negotiation protocol

Field	Bits	Туре	Description (cont'd)
PD	11	RW	Power DownForces the device into a power down state (SLEEP) in which power consumption is the minimum required to still maintain the MII management interface communication. When activating the power down functionality, the PHY terminates active data links. The MII interface is also stopped in power down mode. 0_B NORMAL Normal operational mode 1_B POWERDOWN Forces the device into power down mode
ISOL	10	RW	IsolateThe isolation mode isolates the PHY from the MAC. MAC interface inputs are ignored, whereas MAC interface outputs are set to tristate (high- impedance). 0_B NORMAL Normal operational mode 1_B ISOLATE Isolates the PHY from the MAC
ANRS	9	RWSC	Restart Auto-NegotiationRestarts the auto-negotiation process on the MDI. This bit does not takeany effect when auto-negotiation is disabled using (CTRL.ANEN). Notethat this bit is self-clearing after the auto-negotiation process is initiated. 0_B NORMAL Stay in current mode 1_B RESTART Restart auto-negotiation
DPLX	8	RW	Forced Duplex ModeThis bit controls forced duplex mode. It forces the PHY into full or half-duplex mode for 10BASE-T and 100BASE-T modes. This field is ignoredfor higher speeds.Note(s):This bit only takes effect when the auto-negotiation process (BitCTRL.ANEN) is set to 0_B .This bit does not take effect in loopback mode, when bitCTRL.LB is setto 1_B . 0_B HD Half-duplex 1_B FD Full-duplex
COL	7	RW	Collision TestAllows testing of the COL signal at the xMII interface. When the collisiontest is enabled, the state of the TX_EN signal is looped back to the COLsignal within a minimum latency. 0_B DISABLE Normal operational mode 1_B ENABLE Activates the collision test
SSM	6	RW	Forced Speed Selection MSBThis bit only takes effect when the auto-negotiation process is disabled,that is, bit ANEN is set to zero.This is the most significant bit (MSB) of the forced speed selection.In conjunction with the lower bit, (LSB), the following encoding is valid:PHY mirrors 1.06, 1.0.13 and 0.0.6, 0.0.13MSB LSB: 00_B 10 Mbit/s 01_B 100 Mbit/s 10_B 1000 Mbit/s 11_B Reserved

Field	Bits	Туре	Description (cont'd)
RES	5:0	RO	Reserved Write as zero, ignore on read.

5.3.2 Status Register (Register 1)

This section describes the Status Register in detail.

Status Register (Register 1)

This register contains status and capability information about the device. All bits are read-only. A write access by the MAC does not have any effect.

_	SDS_STAT Status Register (Register 1)						Offset 0001 _H						Reset V 61		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CBT4	CBTX F	СВТХ Н	XBTF	хвтн	CBT2F	CBT2 H	EXT	RES	MFPS	ANOK	RF	ANAB	LS	JD	ХСАР
ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	rolh	ro	roll	rolh	ro

Field	Bits	Туре	Description
CBT4	15	RO	IEEE 100BASE-T4Specifies the 100BASE-T4 ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBTXF	14	RO	IEEE 100BASE-TX Full-DuplexSpecifies the 100BASE-TX full-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBTXH	13	RO	IEEE 100BASE-TX Half-DuplexSpecifies the 100BASE-TX half-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
XBTF	12	RO	IEEE 10BASE-T Full-DuplexSpecifies the 10BASE-T full-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
XBTH	11	RO	IEEE 10BASE-T Half-DuplexSpecifies the 10BASE-T half-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBT2F	10	RO	IEEE 100BASE-T2 Full-DuplexSpecifies the 100BASE-T2 full-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
CBT2H	9	RO	IEEE 100BASE-T2 Half-DuplexSpecifies the 100BASE-T2 half-duplex ability.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode

78

Field	Bits	Туре	Description (cont'd)
EXT	8	RO	Extended StatusThe extended status registers are used to specify 1000 Mbit/s speedcapabilities in the register XSTAT.00BDISABLED No extended status information available in register 1511BENABLED Extended status information available in register 15
RES	7	RO	Reserved Ignore when read.
MFPS	6	RO	Management Preamble SuppressionSpecifies the MF preamble suppression ability.00BDISABLED PHY requires management frames with preamble11BENABLED PHY accepts management frames without preamble
ANOK	5	RO	Auto-Negotiation Completed Indicates whether the auto-negotiation process is completed or in progress. 0 _B RUNNING Auto-Negotiation process is in progress 1 _B COMPLETED Auto-Negotiation process is completed
RF	4	ROLH	Remote FaultIndicates the detection of a remote fault event. 0_B INACTIVE No remote fault condition detected 1_B ACTIVE Remote fault condition detected
ANAB	3	RO	Auto-Negotiation AbilitySpecifies the auto-negotiation ability. 0_B DISABLED PHY is not able to perform auto-negotiation 1_B ENABLED PHY is able to perform auto-negotiation
LS	2	ROLL	Link Status Indicates the link status of the PHY to the link partner. 0 _B INACTIVE The link is down. No communication with link partner possible. 1 _B ACTIVE The link is up. Data communication with link partner is possible.
JD	1	ROLH	Jabber DetectIndicates that a jabber event has been detected. 0_B NONE No jabber condition detected 1_B DETECTED Jabber condition detected
ХСАР	0	RO	Extended CapabilityIndicates the availability and support of extended capability registers. 0_B DISABLED Only base registers are supported 1_B ENABLED Extended capability registers are supported

5.3.3 SDS Identifier 1 (Register 2)

This section describes the SDS Identifier 1 registers in detail.

SDS Identifier 1 (Register 2)

This code specifies the Organizationally Unique Identifier (OUI), the vendor's model number, and the model's revision number.

	STS_PHYID1 SDS Identifier 1 (Register 2)					Offset 0002 _H								Reset	Value C133 _H
15															0
	Ι	Ι	1	I	1	I	O	JI	I			I	I	I	I
	I	I	I	1		1	rc)	I		I	<u> </u>	<u> </u>	I	<u> </u>

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18

5.3.4 SDS Identifier 2 (Register 3)

This section describes the SDS Identifier 1 registers in detail.

SDS Identifier 2 (Register 3)

This code specifies the Organizationally Unique Identifier (OUI), the vendor's model number, and the model's revision number.

SDS_PHY SDS Ident	ID2 ifier 2 (Registe	r 3)		Offset 0003 _H				Reset Value 5588 _H		
15		1	0 9			4	3	0		
I	OUI	1 1		1 1	LDN	Ι		LDRN		
I	ro	1 1			ro	1	1 1	ro		

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several products.
LDRN	3:0	RO	Device Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

1) For the device specific reset value, see the Chip Ordering Information table in the Package Outline chapter.

5.3.5 Auto-Negotiation Advertisement (Register 4)

This section describes the Auto-Negotiation Advertisement registers in detail.

Auto-Negotiation Advertisement (Register 4)

This register contains the advertised abilities of the PHY during auto-negotiation.

_	AN_AD ^v Negotia		dvertis	ement	(Regis	ter 4)	Off: 000						Reset	Value 0020 _H
15	14	13	12	11		9	8	7	6	5	4			0
NP	АСК	R	F		RES		ASPS	PS	HDX	FDX		RES	1	
rw	ro	r	0		ro		rw	rw	rw	rw		ro		L

Field	Bits	Туре	Description
NP	15	RW	Next Page This Next Page field indication is encoded in bit AN_ADV.NP regardless of the selector field value or link code word encoding. The PHY always advertises NP if a 1000BASE-T mode is advertised during autonegotiation. 0 _B INACTIVE No next page(s) will follow 1 _B ACTIVE Additional next page(s) will follow
ACK	14	RO	AcknowledgeThis Ack field is used by the Auto-Negotiation function to indicate that a device has successfully received its link partner's base or Next Page. The bit is always 0.The default is 0 _B .
RF	13:12	RO	Remote Fault Remote Fault provides a standard transport mechanism for the transmission of simple fault and error information. The value is always 0b00. The default is 0 _B .
RES	11:9	RO	Reserved
ASPS	8	RW	Asymmetric Pause This ASPS field indicates Asymmetric PAUSE configuration results in independent enabling of the PAUSE receive and PAUSE transmit. The default is 1_B .
PS	7	RW	Pause This PS field indicates that the device is capable of providing the symmetric PAUSE functions as defined. The default is 1 _B .
HDX	6	RW	Half-Duplex This HDX field is encoded in bit 5 of next page using in Auto-Negotiation. The default is 0 _B .

Field	Bits	Туре	Description (cont'd)
FDX	5	RW	Full-DuplexThis FDX field is encoded in bit 6 of next page using in Auto-Negotiation.The default is 1_B .
RES	4:0	RO	Reserved

5.3.6 Auto-Negotiation Link Partner Ability (Register 5)

This section describes the Auto-Negotiation Link Partner Ability registers in detail.

Auto-Negotiation Link Partner Ability (Register 5)

When the auto-negotiation is complete

_	AN_LPA Negotia ster 5)		nk Par	tner A	bility		Off: 000							Reset	Value 0000 _H
15	14	13	12	11		9	8	7	6	5	4				0
NP	АСК	R	F		RES		P	S	HDX	FDX			RES		
ro	ro	r	C	1	ro		rc	C	ro	ro		1 1	ro	1	1

Field	Bits	Туре	Description
NP	15	RO	Next PageThis Next Page field indcates the request from the link partner. 0_B INACTIVE No next page(s) will follow. 1_B ACTIVE Additional next pages will follow.
ACK	14	RO	 ACK This Acknowledgment field indicates the link partner's link code word. 0_B INACTIVE The device did not successfully receive its link partner's link code word. 1_B ACTIVE The device has successfully received its link partner's link code word.
RF	13:12	RO	Remote FaultThis field indicates a remote fault from the link partner. 00_B Link OK (Default) 01_B Offline 10_B Link Failure 11_B Auto-Negotiation Error
RES	11:9	RO	Reserved
PS	8:7	RO	Pause The PAUSE bit indicates that the device is capable of providing the symmetric PAUSE functions as defined. 00 _B No PAUSE 01 _B Asymmetric PAUSE toward link partner 10 _B Symmetric PAUSE 11 _B Both Symmetric PAUSE and Asymmetric PAUSE toward local device
HDX	6	RO	Half-DuplexThis field indicate half-duplex capability from the link partner.The default is 0_B .

Field	Bits	Туре	Description (cont'd)
FDX	5	RO	Full-DuplexThis field indicate full-duplex capability from the link partner.The default is 0_B .
RES	4:0	RO	Reserved

5.3.7 Auto-Negotiation Expansion (Register 6)

This section describes the Auto-Negotiation Expansion registers in detail.

Auto-Negotiation Expansion (Register 6)

This is the auto-negotiation expansion register indicating the status of the link partner's auto-negotiation. This register is valid only after the auto-negotiation is completed.

SDS_A Auto-N	_		xpansi	on (Re	gister (6)	ⁱ set 06 _н						Value 0000 _H
15	T	T		1				1		3	2	1	0
	ļ	1	1			RES					NPC	PR	RES
						ro					ro	rolh	ro

Field	Bits	Туре	Description
RES	15:3	RO	Reserved
NPC	2	RO	Local Next Page Able This bit is set to logic one to indicate that the local device supports the Next Page function. The default is 0_B .
PR	1	ROLH	Page ReceivedThis bit is set to logic one to indicate that a new page has been received.The default is 0_B .
RES	0	RO	Reserved

5.3.8 Auto-Negotiation Next Page (Register 7)

This section describes the Auto-Negotiation Next Page registers in detail.

Auto-Negotiation Next Page (Register 7)

The auto-negotiation next page transmit register contains the next page link code word to be transmitted when next page ability is supported.

_	SDS_AN_NPTX Auto-Negotiation Next Page (Register 7)				')	Offset 0007 _H							Reset	Value 0000 _H	
15															0
	ļ			ļ	ļ		N	IP	I			1		ļ	
	1	I	I	1	1	I	r	0	<u> </u>	[[1	I	I.	L

Field	Bits	Туре	Description
NP	15:0	RO	Next PageThis register contains the Next Page value to be transmitted. The value isalways 0.The default is $0_{\rm B}$.

5.3.9 Auto-Negotiation Link Partner Received Next Page (Register 8)

This section describes the Auto-Negotiation Link Partner Received Next Page registers in detail.

Auto-Negotiation Link Partner Received Next Page (Register 8)

The auto-negotiation link partner received next page register contains the next page link code word received from the link partner.

SDS_4	AN_NP	RX					Offset		Reset Value					
	Auto-Negotiation Link Partner Received Next Page (Register 8)						0008 _H							0000 _H
15														0
					I		LPNP	1			1			
	1	1			I		ro		1	1		1	1	<u> </u>

Field	Bits	Туре	Description
LPNP	15:0	RO	Link Partner Next Page
			This register contains the advertised ability of the link partner's Next
			Page. The value is always 0.
			The default is 0 _B .

5.3.10 Extended Status Register (Register 15)

This section describes the Extended Status Register in detail.

Extended Status Register (Register 15)

This register contains extended status and capability information about the PHY. All bits are read-only. A write access does not have any effect.

_	SDS_XSTAT Extended Status Register (Register 15)						fset 0F _H					Reset	Value 8000 _H
15	14	13	12	11		8	7						0
MBXF	МВХН	MBTF	мвтн		RES			I		RES	I		
ro	ro	ro	ro		ro		1			ro			

Field	Bits	Туре	Description
MBXF	15	RO	1000BASE-X Full-Duplex CapabilitySpecifies whether the PHY is capable of operating 1000BASE-X full- duplex.0DISABLED PHY does not support this mode1ENABLED PHY supports this mode
MBXH	14	RO	1000BASE-X Half-Duplex CapabilitySpecifies whether the PHY is capable of operating 1000BASE-X half- duplex. 0_B DISABLED PHY does not support this mode 1_B ENABLED PHY supports this mode
MBTF	13	RO	1000BASE-T Full-Duplex CapabilitySpecifies whether the PHY is capable of operating 1000BASE-T full- duplex. 0_B DISABLED PHY does not support this mode 1_B ENABLED PHY supports this mode
MBTH	12	RO	1000BASE-T Half-Duplex CapabilityPHY does not support 1000BASE-T Half-Duplex capability.0DISABLED PHY does not support this mode1BENABLED PHY supports this mode
RES	11:8	RO	Reserved Ignore when read.
RES	7:0	RO	Reserved Ignore when read.

5.4 SDS Specific Management Registers

This section describes the SDS specific management registers.

Table 20 Registers Overview - SDS Specific Management Registers

Register Short Name	Register Long Name	Reset Value
SDS_STAT	SDS Specific Status Register (Register 17)	2012 _H
SDS_100FX_CFG	100Base-FX Configuration Register (Register 20)	7200 _H
SDS_RX_ERRCNT	SDS Receive Error Counter Register (Register 21)	0000 _H
SDS_LNK_FAILCNT	SDS Link Fail Counter Register (Register 22)	0000 _H
SDS_EXT_ADR	Extended Register Address Offset Register (Register 30)	0100 _H
SDS_EXT_DATA	Extended Register Address Data (Register 31)	0000 _H

5.4.1 SDS Specific Status Register (Register 17)

This section describes the SDS Specific Status Register in detail.

SDS Specific Status Register (Register 17)

This section describes the SDS Specific Status register in detail.

SDS_STAT SDS Specific Status Register (Register 17)						Offset 0011 _H						Reset Value 2012 _H				
	15	14	13	12	11	10	9	8	7	6	5	4	3		1	0
_	SPE	ED	DPX	P	P S	LSRT	RLPI	DPXE	FCRX	FCTX	SC	FG		хт	T	STS
-	ro	0	ro	r	0	ro	ro	ro	ro	ro	r	0		ro		ro

Field	Bits	Туре	Description
SPEED	15:14	RO	Speed ModeThis field indicates the speed mode. This depend on the working mode configured in SDS_STAT.SCFG.In SGMII MAC mode the speed information is resolved from using Auto- Negotiation toward PHY side. If Auto-Negotiation is disabled, the speed information comes directly from the speed configuration in the SDS_CTRL register.In SGMII PHY mode the speed information is the same as the TPI link speed.In 1000BASE-X mode the value is always 10B. 00_B 10 Mbit/s 01_B 1000 Mbit/s 10_B 1000 Mbit/s 11_B Reserved
DPX	13	RO	Duplex ModeThis DDPX field indicates the duplex status of the SerDes interface. Thisstatus depends on the working mode configured in SDS_STAT.SCFG.In SGMII MAC mode the duplex information is resolved using Auto-Negotiation toward PHY side. If Auto-Negotiation is disabled, the speedinformation comes from the duplex configuration in the SDS_CTRLregister.In SGMII PHY mode the duplex information is the same as the TPI linkspeed.In 1000BASE-X mode the duplex information is the result from the1000BASE-X half/full priority resolution function. 0_B Half-duplex 1_B Full-duplex

Field	Bits	Туре	Description (cont'd)
PS	12:11	RO	Pause The PAUSE bit indicates that the SDS interface is capable of providing the symmetric PAUSE functions as defined. 00 _B No PAUSE 01 _B Asymmetric PAUSE toward link partner 10 _B Symmetric PAUSE 11 _B Both Symmetric PAUSE and Asymmetric PAUSE toward local device
LSRT	10	RO	Link Status Real TimeThis LSRT field shows the real time link status of the SerDes interface. 0_B SGMII Link down 1_B SGMII Link up
RLPI	9	RO	Rx LPI ActiveThis RPLI field shows the Rx LPI status. 0_B Rx LPI is deactivated 1_B Rx LPI is activated
DPXE	8	RO	Duplex ErrorThis DPXE field indicates the real time status of duplex error.The default is 0_B .
FCRX	7	RO	EN Flow Control Rx This FCRX field indicates the real time status of Rx flow control. The default is $0_{\rm B}$.
FCTX	6	RO	EN Flow Control Tx This FCRX field indicates the real time status of Tx flow control. The default is $0_{\rm B}$.
SCFG	5:4	RO	$\begin{array}{c c} \textbf{SER Mode Config} \\ This SCFG field indicates the SerDes interface working mode. \\ 00_B & SGMII MAC \\ 01_B & SGMII PHY \\ 10_B & 1000 BASEX \\ 11_B & Reserved \end{array}$
хт	3:1	RO	XMITThis XT field indicates the real time status of transmit statemachine. 001_B Xmit Idle 010_B Xmit Config 100_B Xmit Data
STS	0	RO	Sync StatusThis STS field indicates the PCS synchonization status. 0_B No Sync 1_B Sync

100Base-FX Configuration Register (Register 20) 5.4.2

This section describes the 100Base-FX Configuration Register in detail.

100Base-FX Configuration Register (Register 20)

This register controls link

SDS 100FX CFG

SDS_100FX_CFG 100Base-FX Configuration Register (Register 20)							iset 14 _H						Reset	Value 7200 _H	
15	14	13	12	11											0
FSL	DPXF X	PS	FX		1	1	1	1	RI	ËS	T	1	1		
rw	rw	r	o				1		r	0					

Field	Bits	Туре	Description
FSL	15	RW	Force SG Status This FSL field forces link up state for the 100BASE-FX mode. The default is $0_{\rm B}$.
DPXFX	14	RW	Duplex To MAC 100FXThis DPXFX field uses to configure the duplex mode of 100BASE-FX toMAC side.00BHalf-duplex1BFull-duplex
PSFX	13:12	RO	Pause To MAC 100FXThis PSFX field is used to configure the pause mode of 100BASE-FX toMAC side.The default is 11_B .
RES	11:0	RO	Reserved

5.4.3 SDS Receive Error Counter Register (Register 21)

This section describes the SDS Receive Error Counter Register in detail.

SDS_RX_ERRCNT

This register indicates the SerDes receive error packet counter.

SDS_RX_ERRCNT SDS Receive Error Counter Register (Register 21)						Offset 0015 _H					Reset	t Value 0000 _H	
15	1							-1					0
			1				RXEC						
	1	I	1		1	I	ro	1	1	1	1	I	<u> </u>

Field	Bits	Туре	Description
RXEC	15:0	RO	Error Counter Rx This RXEC field contains the error counter for the SerDes Rx. The counter increases by 1 at the first rising of RX_ER when RX_DV is high. Once the counter overflows, it remains at maximum value (65,535). The default is $0_{\rm B}$.

5.4.4 SDS Link Fail Counter Register (Register 22)

This section describes the SDS Link Fail Counter Register in detail.

SDS Link Fail Counter Register (Register 22)

This register contains the SerDes interface link fail counter.

SDS_LNK_FAILCNT SDS Link Fail Counter Register (Register 22)								Offset 0016 _H								Value 0000 _H
15							8		7							0
I		ļ	RE	s	Ι	ļ	I			ļ	I	L	=C	ļ	1	Ι
I		1	ro)	I	1	1			1	1	- <u> </u>	C	1	1	<u>i</u>

Field	Bits	Туре	Description
RES	15:8	RO	Reserved
LFC	7:0	RC	Link Fail Count This LFC field contains the link fail counter for the SerDes interface. The default is $0_{\rm B}$.

5.4.5 Extended Register Address Offset Register (Register 30)

This section describes the Extended Register Address Offset Register in detail.

Extended Register Address Offset Register (Register 30)

This section describes the Extended Register Address Offset Register in detail.

SDS_EXT_ADR Extended Register Address Offset Register (Register 30)							set IE _н						Reset	Value 0100 _H	
15															0
							EX	ТА	1	1	1	1	1	1	
							n	N							

Field	Bits	Туре	Description
EXTA	15:0	RW	Extended Register Address Offset This EXTA field contains the address offset of the extended register that
			is read or written. The default is 0 _B .

5.4.6 Extended Register Address Data (Register 31)

This section describes the Extended Register Address Offset Register in detail.

Extended Register Address Data (Register 31)

This section describes the Extended Register Address Offset Register in detail.

SDS_EXT_DATA Extended Register Address Data (Register 31)								Offset 001F _н							Value 0000 _H
15															0
	Ι		1		1	İ		EXTD	ļ			1			
	1	1		<u> </u>		I	I	rw		1	1	1	1	1	I

Field	Bits	Туре	Description
EXTD	15:0	RW	Extended Register Data This EXTD field contains the data to be written to or read from the address of the extended register in the SDS_EXT_ADR register. The default is 0_B .

MMD Registers Detailed Description

6 MMD Registers Detailed Description

Table 21 MMD Register Access Type

Mode	Symbol
Status Register (Status, or Ability Register)	RO
Read-Write Register (e.g. MDIO Register)	RW
Read-Write, Self-Clearing Register. The bit is cleared after being read from the MDIO interface.	RWSC

6.1 Standard PCS Registers for MMD=0003_H

This section describes the PCS registers for MMD device 0003_{H} .

Table 22 Registers Overview - Standard PCS Registers

Register Short Name	Register Long Name	Reset Value	
PCS_STAT1	PCS status 1 (Register 3.1)	0000 _H	
PCS_EEE_CAP	PCS EEE capability (Register 3.20)	0006 _H	

6.1.1 Standard PCS Registers for MMD=0003_H

This chapter describes all registers of PCS in detail.

PCS status 1 (Register 3.1)

IEEE Standard Register=3.1

PCS_STAT1

PCS status 1 (Register 3.1)

Reset Value

0000_н

15			12	11	10	9	8	7	6	5		3	2	1	0
	RES	3		TX_LP I_*	RX_LP I_*	TX_LP I_*	RX_LP I_*	FAUL T	тхск st		RES	I	PCS_ RX_*	LOW_ POW*	RES
	ro			ro	ro	ro	ro	ro	ro		ro		ro	ro	ro

Field	Bits	Туре	Description
RES	15:12	RO	Reserved
TX_LPI_RXD	11	RO	Tx Low Power Idle (LPI) Received0BLPI not received1BTx PCS has received LPI
RX_LPI_RXD	10	RO	Rx LPI received 0 _B LPI not received Rx 1 _B PCS has received LPI
TX_LPI_INDIC ATION	9	RO	Tx LPI Indication0 _B PCS is not currently receiving LPI1 _B Tx PCS is currently receiving LPI
RX_LPI_INDIC ATION	8	RO	Rx LPI Indication0 _B PCS is not currently receiving LPI1 _B Rx PCS is currently receiving LPI
FAULT	7	RO	Fault 0 No fault condition detected 1 B Fault condition detected
TXCKST	6	RO	Clock Stop Capable 0_B Clock not stoppable 1_B The MAC has the ability to stop the clock during LPI
RES	5:3	RO	Reserved
PCS_RX_LINK _STATUS	2	RO	PCS Receive Link Status 0 _B PCS receive link down 1 _B PCS receive link up
LOW_POWER _ABILITY	1	RO	Low-Power Ability 0_B PCS does not support low-power mode 1_B PCS supports low-power mode
RES	0	RO	Reserved

PCS EEE Capability (Register 3.20)

IEEE Standard Register=3.20

PCS_EEE_CAP

PCS EEE Capability (Register 3.20)

Reset Value 0006_H

15								7	6	5	4	3	2	1	0
				RES					R10G BAS*	R10G BAS*	R1000 BA*	R10G BAS*	R1000 BA*	R100B AS*	RES
	1	1	1	ro	1	1	1	1	ro	ro	ro	ro	ro	ro	ro

Field	Bits	Туре	Description
RES	15:7	RO	Reserved
R10GBASE_K R_EEE	6	RO	10GBASE-KR EEE 0_B EEE is not supported for 10GBASE-KR 1_B EEE is supported for 10GBASE-KR
R10GBASE_K X4_EEE	5	RO	10GBASE-KX4 EEE 0_B EEE is not supported for 10GBASE-KX4 1_B EEE is supported for 10GBASE-KX4
R1000BASE_ KX_EEE	4	RO	1000BASE-KX EEE0BEEE is not supported for 1000BASE-KX1BEEE is supported for 1000BASE-KX
R10GBASE_T _EEE	3	RO	10GBASE-T EEE 0_B EEE is not supported for 10GBASE-T 1_B EEE is supported for 10GBASE-T
R1000BASE_T _EEE	2	RO	1000BASE-T EEE 0_B EEE is not supported for 1000BASE-T 1_B EEE is supported for 1000BASE-T
R100BASE_T X_EEE	1	RO	100BASE-TX EEE 0_B EEE is not supported for 100BASE-TX 1_B EEE is supported for 100BASE-TX
RES	0	RO	Reserved

6.2 Standard Auto-Negotiation Registers for MMD=0007_H

This register file contains the auto-negotiation registers for MMD device 0007_H.

Table 23 Registers Overview - Standard Auto-Negotiation Registers

Register Short Name	Register Long Name	Reset Value		
ANEG_EEE_AN_ADV1	EEE Advertisement 1 (Register 7.60)	0000 _H		
ANEG_EEE_AN_LPAB1	EEE Link Partner Ability 1 (Register 7.61)	0000 _H		

6.2.1 Standard Auto-Negotiation Registers for MMD=0007_H

This section describes all registers of ANEG in detail.

EEE Advertisement 1 (Register 7.60)

IEEE Standard Register=7.60

ANEG_EEE_AN_ADV1

EEE Advertisement 1 (Register 7.60)

Reset Value 0000_H

15			7	6	5	4	3	2	1	0
	RES			EEE_1 0G*	EEE_1 0G*	EEE_1 00*	EEE_1 0G*	EEE_1 00*	EEE_1 00*	RES
	1 1	1 1								
	ro			ro	ro	ro	ro	rw	rw	ro

Field	Bits	Туре	Description
RES	15:7	RO	Reserved
EEE_10GBKR	6	RO	Support of 10GBASE-KR EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
EEE_10GBKX 4	5	RO	Support of 10GBASE-KX4 EEE 0_B DISABLED This PHY mode is not supported for EEE 1_B ENABLE This PHY mode is supported for EEE
EEE_1000BKX	4	RO	Support of 1000BASE-KX EEE 0 _B DISABLED This PHY mode is not supported for EEE 1 _B ENABLE This PHY mode is supported for EEE
EEE_10GBT	3	RO	Support of 10GBASE-T EEE 0 _B DISABLED This PHY mode is not supported for EEE 1 _B ENABLE This PHY mode is supported for EEE
EEE_1000BT	2	RW	Support of 1000BASE-T EEE 0_B DISABLED This PHY mode is not supported for EEE 1_B ENABLE This PHY mode is supported for EEE
EEE_100BTX	1	RW	Support of 100BASE-TX EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
RES	0	RO	Reserved

EEE Link Partner Ability 1 (Register 7.61)

After the ANEG process is completed, this register reflects the contents of the link partner's EEE advertisement register. The definitions are thee same as the ANEG_EEE_AN_ADV1 register.

IEEE Standard Register=7.61

All of the bits in the EEE LP ability 1 register are read-only. A write operation to the EEE LP advertisement register has no effect.

ANEG <u>.</u> EEE Li		_		(Regis	ster 7.6	61)								Reset	Value 0000 _H
15								 7	6	5	4	3	2	1	0
	1	1	1	RES					EEE_1 0G*	EEE_1 0G*	EEE_1 00*	EEE_1 0G*	EEE_1 00*	EEE_1 00*	RES
	1	1	1	ro	1	-1	I		ro						

Field	Bits	Туре	Description
RES	15:7	RO	Reserved
EEE_10GBKR	6	RO	Support of 10GBASE-KR EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
EEE_10GBKX 4	5	RO	Support of 10GBASE-KX4 EEE 0 _B DISABLED This PHY mode is not supported for EEE 1 _B ENABLE This PHY mode is supported for EEE
EEE_1000BKX	4	RO	Support of 1000BASE-KX EEE 0 _B DISABLED This PHY mode is not supported for EEE 1 _B ENABLE This PHY mode is supported for EEE
EEE_10GBT	3	RO	Support of 10GBASE-T EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
EEE_1000BT	2	RO	Support of 1000BASE-T EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
EEE_100BTX	1	RO	Support of 100BASE-TX EEE0BDISABLED This PHY mode is not supported for EEE1BENABLE This PHY mode is supported for EEE
RES	0	RO	Reserved

Extended Register Detailed Description

7 Extended Register Detailed Description

Table 24 Extended Register Access Type

Mode	Symbol
Status Register (Status, or Ability Register)	RO
Read-Write Register (e.g. MDIO Register)	RW
Read-Write, Self-Clearing Register. The bit is cleared after being read from the MDIO interface.	RWSC

7.1 Common Extended Register

This section describes the common extended registers.

Register Short Name	Register Long Name	Reset Value
COM_EXT_SMI_SDS_PHY	SerDes/PHY Control Access Register (Register A000H)	0000 _H
COM_EXT_CHIP_CFG	Chip Configuration Register (Register A001H)	8140 _H
COM_EXT_SDS_CONFIG	RGMII Configuration Register 1 (Register A002H)	1880 _H
COM_EXT_RGMII_CFG1	RGMII Configuration Register 1 (Register A003H)	1880 _H
COM_EXT_RGMII_CFG2	RGMII Configuration Register 2 (Register A004H)	00F1 _H
COM_EXT_RGMII_MDIO_CFG	RGMII in-band Status and MDIO Configuration Register (Register A005H)	00C0 _H
COM_EXT_MISC_CFG	Miscellaneous Control Register (Register A006H)	000D _H
COM_EXT_MAC_ADDR_CFG1	Wake on LAN Address Byte 5 and 4 (Register A007H)	0000 _H
COM_EXT_MAC_ADDR_CFG2	Wake on LAN Address Byte 3 and 2 (Register A008H)	0000 _H
COM_EXT_MAC_ADDR_CFG3	Wake on LAN Address Byte 1 and 0 (Register A009H)	0000 _H
COM_EXT_WOL_CFG	Wake on LAN Control Register (Register A00AH)	0002 _H
COM_EXT_LED_GEN_CFG	LED General Configuration Register (Register A00BH)	E000 _H
COM_EXT_LED0_CFG	LED0 Configuration Register (Register A00CH)	0610 _H
COM_EXT_LED1_CFG	LED1 Configuration Register (Register A00DH)	0620 _H
COM_EXT_LED2_CFG	LED2 Configuration Register (Register A00EH)	0640 _H
COM_EXT_LED BLINK_CFG	LED Blinking Configuration Register (Register A00FH)	0006 _H
COM_EXT_PAD_STR_CFG	Pin Driving Strength Configuration Register (Register A010H)	6BFF _H
COM_EXT_SYNCE_CFG	SyncE Configuration Register (Register A012H)	00C8 _H

Table 25 Registers Overview - Common Extended Register

7.1.1 SerDes/PHY Control Access Register (Register A000_H)

This section describes the SerDes/PHY Control Access Register in detail.

SerDes/PHY Control Access Register (Register A000_H)

This register is used for debugging SerDes Rx packets.

SerDes/PI	COM_EXT_SMI_SDS_PHY SerDes/PHY Control Access Register (Register A000H)					Offs A00						Reset Value 0000 _H		
15											2	1	0	
	I	1	1		R	ES	I	1	1	1	1	SMI	RES	
	1	1	1	1	r	0	I	1	1		1	rw	ro	

Field	Bits	Туре	Description
RES	15:2	RO	Reserved
SMI	1	RW	Selection of Management RegisterThis SMI field is used to select the MDIO management register mappingbetween the PHY and SerDes registers. The default value depends uponthe chip mode register COM_EXT_CHIP_CFG.MS field setting. Forexample, the default value is 1 when the chip mode has the fiber option.In dual media mode (automatic MDI selection), the SMI bit is read-only. 0_B MDIO management register mapping to STD (PHY) 1_B MDIO management register mapping to SDS
RES	0	RO	Reserved

7.1.2 Chip Configuration Register (Register A001_H)

This section describes the Chip Configuration Register in detail.

Chip Configuration Register (Register A001_H)

This register is used to control chip mode and configuration.

COM_I Chip C A001H	onfigu	_		er (Reg	gister		Off A0	set 01 _H						Reset	Value 8140 _H
15	14				10	9	8	7	6	5	4	3	2		0
MCR			RES	1	1	GERX C	RXDL Y	RES	ELDO	CL	DO	RES		MS	
rw sc	1	11	rw	1	1	rw	rw	ro	rw	r	W	ro		rw	

Field	Bits	Туре	Description
MCR	15	RW SC	Software Reset Mode This MCR field resets the chip to change the mode. The bit is active low and self clearing. The default is 1_B .
RES	14:10	RW	Reserved
GERXC	9	RW	RGMII Rx Clock Enable This GERXC field controls the RGMII Rx clock gating when the media linkis down. 0_B Do not close RXC when the media link is down. 1_B Close RXC when the media link is down.
RXDLY	8	RW	RGMII Rx Clock Delay This RXDLY field enables a delay for the RGMII RX_CLK. The delay is 2 ns for 125 Mhz or 8 ns for 2.5/25 MHz. The initial setting is defined by pin strapping. The default is $1_{\rm B}$.
RES	7	RO	Reserved
ELDO	6	RW	LDO EnableThis ELDO field controls the RGMII LDO. The default value is 0 and is setto 1 after power-on pin strapping is completed. 0_B LDO disabled. (Default) 1_B LDO enabled.
CLDO	5:4	RW	$\label{eq:LDO Configuration} \begin{array}{l} \mbox{This CLDO field sets the RGMII LDO voltage and RGMII/MDC/MDIO pin's level shifter control. The initial setting is defined by pin strapping. \\ \mbox{00}_{B} 3.3 \ V \mbox{-} \ Not regulated from 3.3 \ V \\ \mbox{01}_{B} 2.5 \ V \\ \mbox{10}_{B} 1.8 \ V \\ \mbox{11}_{B} 1.8 \ V \end{array}$
RES	3	RO	Reserved

Field	Bits	Туре	Description (cont'd)
Field MS	2:0	RW	Description (cont'd) Chip Mode Selection This MS field sets the chip mode and the default value depends upon the pin strapping configuration. 000_B UTP_TO_RGMII 001_B FIBER_TO_RGMII 010_B UTP_FIBER_TO_RGMII 011_B UTP_TO_SGMII 010_B SGPHY_TO_RGMAC 101_B SGMAC_TO_RGPHY 110_B UTP_TO_FIBER_AUTO
			111 _B UTP_TO_FIBER_FORCE

7.1.3 RGMII Configuration Register 1 (Register A002_H)

This section describes the RGMII Configuration Register 1 in detail.

RGMII Configuration Register 1 (Register A002_H)

This register controls the RGMII interface settings.

_	-	_	ONFIG on Regis	ster 1 (l	Regist	er		fset 02 _H				Reset	Value 1880 _H
15		13	12	11	10		8	7					0
	RES		ESTR	RES		RES			 ŗ	RES	Ţ	1	ļ
	ro		rw	rw		ro		1	<u> </u>	rw	Ì	<u> </u>	<u> </u>

Field	Bits	Туре	Description
RES	15:13	RO	Reserved
ESTR	12	RW	$\begin{array}{l} \textbf{Enable RXER Signal Suppression} \\ This ESTR field suppresses the RX_ER signal from the SerDes in SGMII \\ PHY mode when duplex mode is full, RX_DV is 0 and RX_LPI_ACTIVE \\ is 0. \\ 0_{B} Do not suppress \\ 1_{B} Suppress \end{array}$
RES	11	RW	Reserved
RES	10:8	RO	Reserved
RES	7:0	RW	Reserved

7.1.4 RGMII Configuration Register 1 (Register A003_H)

This section describes the RGMII Configuration Register 1 registers in detail.

RGMII Configuration Register 1 (Register A003_H)

This register controls the RGMII interface settings.

	-	_	FG1 n Register 1	(Regis	ter	Off A0					Rese	et Value 00F1 _H
15	14	13		10	9	8	7		4	3		0
RCM	RES	I	RDLYS	I	ERFC	ERC		TDSF	I	I	TDS	I
rw	rw	1	rw	1	rw	rw		rw	1	II	rw	

Field	Bits	Туре	Description
RCM	15	RW	RGMII Status Config Mode This RCM field controls the source of speed, duplex, and link status of the RGMII interface to SGMII PHY when the chip mode is SGPHY_TO_RGMAC. 0 _B RGMII interface status comes from the RGMII in-band status. 1 _B RGMII interface status comes from the COM_EXT_RGMII_CFG2 register.
RES	14	RW	Reserved
RDLYS	13:10	RW	RGMII Rx Delay SelectThis register controls the RGMII Rx clock delay training configuration.Each step adds approximately 150 ps of delay.0000 _B Disabled (Default)0001 _B 150 ps0010 _B 300 ps0011 _B 450 ps0101 _B 750 ps0111 _B 1050 ps1000 _B 1200 ps1011 _B 150 ps1010 _B 1350 ps1010 _B 1500 ps1011 _B 1650 ps1100 _B 1800 ps1101 _B 1950 ps1101 _B 12100 ps1110 _B 2100 ps1111 _B 2250 ps

Field	Bits	Туре	Description (cont'd)
ERFC	9	RW	 Enable RGMII In-Band Full Duplex with CRS This ERFC field in conjunction with the ERC field controls encoding of the GMII/MII CRS into RGMII in-band status. 0_B Encoding of GMII/MII CRS into RGMII in-band status is controlled by the ERC field. (Default) 1_B Encode GMII/MII CRS into RGMII in-band status if the field ERC is set to 1.
ERC	8	RW	Enable RGMII In-Band with CRS This ERC field controls encoding of GMII/MII CRS into RGMII in-band status. 0 _B Do not encode GMII/MII CRS into RGMII in-band status. (Default) 1 _B Encode GMII/MII CRS into RGMII in-band status on half-duplex mode or if field ERFC is also set to 1.
TDSF	7:4	RW	Fast Ethernet RGMII Tx Clock Delay SelectionThis TDSF field configures the RGMII TX_CLK delay train for 100 Mbpsor 10 Mbps link speed. Each step delays by about 150 ps.0000 _B Disabled0001 _B 150 ps0010 _B 300 ps0011 _B 450 ps0110 _B 600 ps0111 _B 750 ps0111 _B 1050 ps1000 _B 1200 ps1011 _B 1350 ps1010 _B 1500 ps1011 _B 1650 ps1110 _B 1950 ps1110 _B 1950 ps1110 _B 2100 ps1111 _B 2250 ps (Default)

Field	Bits	Туре	Description (cont'd)
TDS	3:0	RW	Gigabit Ethernet RGMII Tx Clock Delay Selection
			This TDS field configures the RGMII TX_CLK delay train for 1000 Mbps
			link speed. Each step delays by about 150 ps.
			0000 _B Disabled
			0001 _B 150 ps (Default)
			0010 _B 300 ps
			0011 _B 450 ps
			0100 _B 600 ps
			0101 _B 750 ps
			0110 _B 900 ps
			0111 _B 1050 ps
			1000 _B 1200 ps
			1001 _B 1350 ps
			1010 _B 1500 ps
			1011 _B 1650 ps
			1100 _B 1800 ps
			1101 _B 1950 ps
			1110 _B 2100 ps
			1111 _B 2250 ps

7.1.5 RGMII Configuration Register 2 (Register A004_H)

This section describes the RGMII Configuration Register 2 in detail.

RGMII Configuration Register 2 (Register A004_H)

This register is used for the RGMII in-band status.

	- VII Co	_	GMII_C guration		ster 2 (Regist	er	Off A00	set 04 _H						Reset	Value 0000 _H
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SPDP		DUPP	LNKP	РА	UP	EEEC P	EEEC CP	SP	DM	DUPM	LNKM	РА	UM	EEEC M	EEEC CM
	ro		ro	ro	r	0	ro	ro	r	w	rw	rw	r	w	rw	rw

Field	Bits	Туре	Description
SPDP	15:14	RO	RGMII PHY Speed StatusThis SPDP field reports the RGMII interface speed information when configured as an RGMII PHY. This is also the source of RGMII in-band status communication. 00_B 10 Mbps (Default) 01_B 100 Mbps 10_B 1000 Mbps 11_B Reserved
DUPP	13	RO	RGMII PHY Duplex Status Ths DUPP field reports the RGMII interface duplex information whenconfigured as an RGMII PHY. This is also the source of RGMII in-bandstatus. $0_{\rm B}$ Half-duplex (Default) $1_{\rm B}$ Full-duplex
LNKP	12	RO	RGMII PHY Link-up Status This LNKP field reports the RGMII interface linkup information when configured as an RGMII PHY. This is also the source of RGMII in-band status. 0 _B Link down (Default) 1 _B Link up
PAUP	11:10	RO	RGMII PHY Pause InformationThis PAUP field reports the RGMII interface pause information when configured as an RGMII PHY. 00_B No asymmetric pause (Default) 10_B Asymmetric pause 10_B No Pause symmetric pause 11_B Symmetric pause

114

Field	Bits	Туре	Description (cont'd)
EEECP	9	RO	RGMII PHY EEE Capability This EEECP field reports the capability of the RGMII interface for EEEwhen configured as RGMII PHY. 0_B The RGMII interface is not capable of EEE. (Default) 1_B The RGMII interface is capable of EEE.
EEECCP	8	RO	RGMII PHY EEE Clock Stopping This EEECCP field reports the capability of the RGMII interface for EEEclock stopping when configured as RGMII PHY. 0_B The RGMII interface is not capable of EEE clock stopping. (Default) 1_B The RGMII interface is capable of EEE clock stopping.
SPDM	7:6	RW	RGMII MAC Speed StatusThis SPDM field sets speed configuration of the RGMII MAC when the chip mode is SGPHY to RGMAC and COM_EXT_RGMII_CFG1.RCM is1.The default is 0 _B .
DUPM	5	RW	RGMII MAC Duplex Status This DUPM field sets duplex confguration of the RGMII MAC when the chip mode is SGPHY to RGMAC and COM_EXT_RGMII_CFG1.RCM is 1. The default is 0 _B .
LNKM	4	RW	RGMII MAC Link-up StatusThis LNKM field sets link state confguration of the RGMII MAC when the chip mode is SGPHY to RGMAC and COM_EXT_RGMII_CFG1.RCM is 1.1.The default is 0
PAUM	3:2	RW	RGMII MAC Pause Information This PAUM field reports the RGMII interface pause information whenconfigured as an RGMII MAC. 00_B No asymmetric_pause (Default) 10_B Asymmetric_pause (Default) 10_B No Pause symmetric pause 11_B Symmetric pause
EEECM	1	RW	RGMII MAC EEE Capability This EEECM field reports the capability of the RGMII interface for EEEwhen configured as RGMII MAC. 0_B The RGMII interface is not capable of EEE. (Default) 1_B The RGMII interface is capable of EEE.
EEECCM	0	RW	$\begin{array}{l} \textbf{RGMII MAC EEE Clock Stopping Capability} \\ This EEECCM field reports the capability of the RGMII interface for EEE clock stopping when configured as RGMII MAC. \\ \textbf{0}_{B} The RGMII interface is not capable of EEE clock stopping. (Default) \\ \textbf{1}_{B} The RGMII interface is capable of EEE clock stopping. \end{array}$

7.1.6 RGMII in-band Status and MDIO Configuration Register (Register A005_H)

This section describes the RGMII in-band Status and MDIO Configuration Register in detail.

RGMII in-band Status and MDIO Configuration Register (Register A005_H)

This register shows the RGMII in-band status and MDIO settings.

COM_E	EXT_R	GMII_N		CFG			Offset						Reset Value
RGMII Config						Ň	A005 _H						00С0 _н
Conng	uratio	n Regi	ster (R	egister	A005H))							
15	14	13	12	11	10		7	6	5	4			0
SPI	DS	DUPS	LNKS	RES	1	RES	1	EPA0	EBA		· · ·	ва	1
rc	C	ro	ro	ro		ro		rw	rw			rw	

Field	Bits	Туре	Description
SPDS	15:14	RO	RGMII MAC Speed In-band Status This SPDS field indicates the speed information from the RGMII MAC in- band status. The default is 0 _B .
DUPS	13	RO	RGMII MAC Duplex In-band Status This DUPS field indicates the duplex information from RGMII MAC in- band status. The default is 0 _B .
LNKS	12	RO	RGMII MAC Link-up In-band Status This LNKS field indicates the link status information from RGMII MAC in- band status. The default is $0_{\rm B}$.
RES	11	RO	Reserved
RES	10:7	RO	Reserved
EPA0	6	RW	Enable PHY Address 0 Broadcast ResponsesThis field controls whether the PHY responds to the MDIO interface'sbroadcasts access from PHY address 0. 0_B Disabled 1_B Enabled (Default)
EBA	5	RW	Enable PHY BA Broadcast Responses This field controls whether the PHY responds to broadcasts from a PHY address defined in COM_ETX_RGMII_MIDO_CFG.BA. 0 _B Disabled (Default) 1 _B Enabled
BA	4:0	RW	Broadcast Address This BA field defines the address for accepting broadcast access response. The default value is 0. The default is $0_{\rm B}$.

7.1.7 Miscellaneous Control Register (Register A006_H)

This section describes the Miscellaneous Control Register in detail.

Miscellaneous Control Register (Register A006_H)

This register controls miscellaneous PHY settings.

COM_EXT Miscellan A006H)	er	Off A00							Reset Value 000D _H				
15				9	8	7	6	5	4	3	2	1	0
I	RES						RLBS	RLBP	RES	BGFR	cv	VTS	FSS
. <u> </u>	rw	rw	rw	rw	rw	rw	r	w	rw				

Field	Bits	Туре	Description
RES	15:9	RW	Reserved
FHPC	8	RW	Fiber/Copper Priority in Dual Media ModeThis FHPC field selects in dual media mode which media gets priority.00BGive UTP a higher priority. (Default)11BFiber is given a higher priority in UTP_FIBER_TO_RGMII mode.
JE	7	RW	Jumbo Frame EnableThis JE field controls the use of jumbo frames. 0_B Jumbo frames are disabled. (Default) 1_B Jumbo frames are enabled.
RLBS	6	RW	SDS Remote Loopback EnableThis RLBS field controls remote loopback for SDS. 0_B Disabled. 1_B Enabled.
RLBP	5	RW	PHY Remote LoopbackThis RLBP field controls setting of remote loopback for PHY. 0_B Disabled. (Default) 1_B Enabled.
RES	4	RW	Reserved
BGFR	3	RW	Bypass GMII Overflow and Reset This BGFR field controls whether to bypass the GMII FIFO overflow and underflow RST. 0 _B Enable to reset GMII FIFO automatic when overflow or underflow happens. 1 _B Disable to reset GMII FIFO when overflow or underflow happen. This is the default.

Field	Bits	Туре	Description (cont'd)
CWTS	2:1	RW	Dual Media Mode Wait Timer SelectionThis CWTS field selects in dual mode the wait timer for the first prioritymedia after the second priority media is link up. 00_B 1 second 01_B 5 seconds 10_B 15 seconds (Default) 11_B 25 seconds
FSS	0	RW	Fiber Speed SelectionThis FSS field selects the fiber speed for auto sensing is disabled. 0_B 100FX 1_B 1000BX

7.1.8 Wake on LAN Address Byte 5 and 4 (Register A007_H)

This section describes the Wake on LAN Address Byte 5 and 4 registers in detail.

Wake on LAN Address Byte 5 and 4 (Register A007_H)

This register holds the WoL MAC address's bytes 5 and 4.

COM_EXT_MAC_ADDR_CFG1 Wake on LAN Address Byte 5 and 4 (Register A007H))ffset .007 _H						Value 0000 _H
15														0
		1	1	1	ļ	I.	N	IALH	1		1	1	ļ	
		rw												

Field	Bits	Туре	Description
MALH	15:0	RW	$\begin{array}{l} \textbf{MAC Address Location 47-32} \\ \text{This MALH field holds the first two octets of the MAC address used for WOL.} \\ \text{The default is } 0_{\text{B}}. \end{array}$

7.1.9 Wake on LAN Address Byte 3 and 2 (Register A008_H)

This section describes the Wake on LAN Address Byte 3 and 2 registers in detail.

Wake on LAN Address Byte 3 and 2 (Register A008_H)

This register holds the WoL MAC address's bytes 3 and 2.

COM_EXT_MAC_ADDR_CFG2 Wake on LAN Address Byte 3 and 2 (Register A008H)							fset 08 _H						Value 0000 _H	
15														0
	MALM													
							w							

Field	Bits	Туре	Description
MALM	15:0	RW	$\begin{array}{l} \textbf{MAC Address Location 31-16} \\ \text{This MALM field holds the middle two octets of the MAC address used for WOL.} \\ \text{The default is } 0_{\text{B}}. \end{array}$

7.1.10 Wake on LAN Address Byte 1 and 0 (Register A009_H)

This section describes the Wake on LAN Address Byte 1 and 0 registers in detail.

Wake on LAN Address Byte 1 and 0 (Register A009_H)

This register holds the WoL MAC address's bytes 1 and 0.

COM_EXT_MAC_ADDR_CFG3 Wake on LAN Address Byte 1 and 0 (Register A009H)								ffset 009 _H						Value 0000 _H
15														0
MALL													1	
								rw						

Field	Bits	Туре	Description
MALL	15:0	RW	MAC Address Location 15-0This MALL field holds the last two octets of the MAC address used for WOL.The default is 0_B .

7.1.11 Wake on LAN Control Register (Register A00A_H)

This section describes the Wake on LAN Control Register in detail.

Wake on LAN Control Register (Register A00A_H)

This register configures the WoL function.

COM_EXT_ Wake on LA A00AH)	WOL_CFG AN Control Regis	er		fset 0A _H						Reset	Value 0002 _H	
15				8	7	6	5	4	3	2		0
		1	SCR	RES	WOLS M	WOLS S	WOLE		RES			
I	ro	1	1	rw	rw	rw	rw	rw		rw	L	

Field	Bits	Туре	Description
RES	15:8	RO	Reserved
SCR	7	RW	RGMII EnableThis SCR field enables or disables the RGMII interface. 0_B Enable the RGMII interface. (Default) 1_B Disable the RGMII interface.
RES	6	RW	Reserved
WOLSM	5	RW	Manually Enable Wake on LAN Source This WOLSM field controls how the media source for WOL is selected. 0 _B Automatically set the WOL media source to match the chip mode. When UTP is present, the WOL event comes from UTP. Otherwise, it comes from SDS. (Default) 1 _B Manually control which media source the WOL event comes from.
WOLSS	4	RW	Wake on LAN Source SelectionThis WOLSS field selects the media source for WOL if the field WOLSMis set to 1. 0_B WOL event comes from UTP. (Default) 1_B WOL event comes from SDS.
WOLE	3	RW	WOL EnableThis WOLE field controls the operation mode of the Wake-on-LAN feature. 0_B WOL is disabled. (Default) 1_B WOL is enabled.
RES	2:0	RW	Reserved

7.1.12 LED General Configuration Register (Register A00B_H)

This section describes the LED General Configuration Register in detail.

LED General Configuration Register (Register A00B_H)

This register controls the LED general configuration.

COM_EXT_LED_GEN_CFG LED General Configuration Register (Register A00BH)								set)B _H		Reset Value E000 _H					
15	14	13	12	11		9	8	7	6	5	4	3	2	1	0
COLB S	JABL D	LPLD	DLDT		RES		L2FE	L2	FM	L1FEN	L1	FM	LOFE	LOFM	
rw	rw	rw	rw		ro			r	W	rw	rw		rw	r	w

Field	Bits	Туре	Description						
COLBS	15	RW	 LED Collision Blink Frequency This COLBS field controls the collision LED blinking frequency. The blin function is only value if COM_EXT_LED0_CFG.LCBE0, COM_EXT_LED1_CFG.LCBE0, or COM_EXT_LED0_CFG.LCBE0 is set to 1_B. 0_B When a collision occurs, blink with the frequency defined in field LFEQ1 in COM_EXT_LED_BLINK_CFG register. 1_B When a collision occurs, blink with the frequency defined in field LFEQ2 in COM_EXT_LED_BLINK_CFG register. 						
JABLD	14	RW	LED Jabber BlinkThis JABLD field controls LED blinking on a jabber condition. 0_B Blinking under jabber conditions. 1_B No blinking under jabber conditions. (Default)						
LPLD	13	RW	LED Loopback Display This LPLD field controls whether the LED should indicate an internal loopback condition. 0 _B Blinking under loopback conditions. 1 _B No blinking under loopback conditions. (Default)						
DLDT	12	RW	Auto-Negotiation Display This DLDT field controls whether the LED should indicate the auto-negotiation state. 0 _B Blinking when auto-negotiation is at LINK_GOOD_CHECK condition. It means the link is not yet ready. (Default) 1 _B No blinking to indicate auto-negotiation state.						
RES	11:9	RO	Reserved						
L2FE	8	RW	LED2 Force EnableThis L2FE field control the enable of LED2 force mode defined in theL2FM field. 0_B Disable LED2 force mode (Default) 1_B Enable LED2 force mode.						

Field	Bits	Туре	Description (cont'd)						
L2FM	7:6	RW	LED2 Force Mode This L2FM field controls the LED2 blink pattern in force mode. Force mode is enabled with the L2FE bit. 00 _B Force the LED off. (Default) 01 _B Force the LED on. 10 _B Force the LED to blink with the frequency defined in field LFEQ1 in COM_EXT_LED_BLINK_CFG register. 11 _B Force the LED to blink with the frequency defined in field LFEQ2 in COM_EXT_LED_BLINK_CFG register.						
L1FEN	5	RW	LED1 Force EnableThis L1FE field control the enable of LED1 force mode defined in theL1FM field. 0_B Disable LED1 force mode. (Default) 1_B Enable LED1 force mode.						
L1FM	4:3	RW	 LED1 Force Mode This L1FM field controls the LED1 blink pattern in force mode. Force mode is enabled with the L1FE bit. 00_B Force the LED off. 01_B Force the LED on. 10_B Force the LED to blink with the frequency defined in COM_EXT_LED_BLINK_CFG.LFEQ1. 11_B Force the LED to blink with the frequency defined in COM_EXT_LED_BLINK_CFG.LFEQ2. 						
LOFE	2	RW	LED0 Force EnableThis L0FE field control the enable of LED0 force mode defined in the L0FM field. 0_B Disable LED0 force mode. (Default) 1_B Enable LED0 force mode.						
LOFM	1:0	RW	LED0 Force Mode This L0FM field controls the LED0 blink pattern in force mode. Force mode is enabled with the L0FE bit. 00 _B Force the LED off. 01 _B Force the LED on. 10 _B Force the LED to blink with the frequency defined in field LFEQ1 in COM_EXT_LED_BLINK_CFG.LFEQ1. 11 _B Force the LED to blink with the frequency defined in field LFEQ2 in COM_EXT_LED_BLINK_CFG.LFEQ2.						

7.1.13 LED0 Configuration Register (Register A00C_H)

This section describes the LED0 Configuration Register in detail.

LED General Configuration Register (Register A00C_H)

This register configures LED0.

COM_EXT_LED0_CFG LED0 Configuration Register (Register A00CH)									Offset A00C _H							Value 0610 _H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	L0	SL	LAB0	LFDE0	LHDE 0	LTAB E0	LRAB E0	LTAE0	LRAE 0	LGE0	LFE0	LBE0	LCBE 0	LGBE 0	LFBE0	LBBE 0
_	n	w	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description						
LOSL	15:14	RW	LED0 Signal Source SelectionThis L0SL field selects the source of the internal signals controlling LEDThe default value of the LED0 configuration depends on the chip modevia pin strapping. 00_B UTP 01_B SerDes 10_B UTP and SerDes 11_B UTP or SerDes						
LAB0	13	RW	LED0 Activity Blink IndicatorThis LAB0 field configures LED blinking when there is traffic activity no matter LED under constant on or off state.00BLED0 will only blink at Link LED0 under ON state. (Default)11BLED0 will blink no matter LED0 is under ON or OFF state.						
LFDE0	12	RW	LED0 Full-Duplex Status This LFDE0 field controls the LED to show full-duplex status. 0 _B No full-duplex status support. (Default) 1 _B When PHY link is up and duplex mode is full-duplex, LED0 will be ON. If the LED also has blink setting, Blink setting has higer priority.						
LHDE0	11	RW	LED0 Half-Duplex Status This LHDE0 field controls how LED0 indicates half-duplex status. 0 _B Half-duplex mode is not indicated. (Default) 1 _B When the PHY link is up and the duplex mode is half-duplex, LED0 is ON. If the LED also has blink setting, the Blink setting has a higher priority.						
LTABE0	10	RW	LED0 Tx Activity Blink This LTABE0 field controls how LED0 indicates Tx activity status. 0 _B Tx activity is not indicated. 1 _B When the PHY link is up and Tx activity occurs, LED0 blinks at the frequency defined in field COM_EXT_LED_BLINK_CFG.LFEQ2 in the COM_EXT_LED_BLINK_CFG register. (Default)						

Field	Bits	Туре	Description (cont'd)					
LRABE0	9	RW	LED0 Rx Activity Blink This LRABE0 field controls how LED0 indicates Rx activity status. 0 _B Rx activity is not indicated. 1 _B When the PHY link is up and Rx activity occurs LED0 blinks at the frequency defined in field COM_EXT_LED_BLINK_CFG.LFEQ2 in the COM_EXT_LED_BLINK_CFG register. (Default)					
LTAE0	8	RW	LED0 Tx Activity Minimum On TimeThis LTAE0 field controls a minimum ON time for LED0 when Tx is active.00No minimum ON time for LED0 when Tx is active. (Default)11When the PHY link is up and Tx is active, LED0 is ON for at least10 ms. If the LED also has a blink setting for Tx activity the blinksetting has a higher priority.					
LRAE0	7	RW	LED0 Rx Activity Minimum On TimeThis LRAE0 field controls a minimum ON time for LED0 when Rx is active.00No minimum ON time for LED0 when Rx is active. (Default)110When the PHY link is up and Rx is active, LED0 is ON for at least10ms. If the LED also has a blink setting for Rx activity the blinksetting has a higher priority.					
LGE0	6	RW	LED0 1000Base-T Ethernet Link BehaviorThis LGE0 field controls how LED0 indicates 1000 Mbps link speed.0BNo change to LED0 behavior. (Default)1BWhen the PHY link up is and the speed mode is 1000 Mbps, LED0 is ON. If the LED also has a blink setting the blink setting has a higher priority.					
LFE0	5	RW	LED0 100Base-T Ethernet Link BehaviorThis LFE0 field controls how LED0 indicates 100 Mbps link speed.0 _B No change to LED0 behavior. (Default)1 _B When the PHY link is up and the speed mode is 100 Mbps, LED0 is ON. If the LED also has blink setting the blink setting has a higher priority.					
LBE0	4	RW	LED0 10Base-T Ethernet Link BehaviorThis LBE0 field controls how LED0 indicates 10 Mbps link speed.0BNo change to LED0 behavior.1BWhen the PHY link up and the speed mode is 10 Mbps, LED0 is ON. If the LED also has blink setting the blink setting has a higher priority. (Default)					
LCBE0	3	RW	LED0 Collision BehaviorThis LCBE0 field controls how LED0 indicates collisions.0No change to LED0 behaviour. (Default)1BWhen the PHY link up and a collision occurs, blink LED0.					
LGBE0	2	RW	LED0 1000Base-T Ethernet Link BlinkThis LGBE0 field controls how LED0 indicates 1000 Mbps link speed.0 _B No change to LED0 behavior. (Default)1 _B When the PHY link is up and the speed mode is 1000 Mbps, blink LED0.					

Field	Bits	Туре	Description (cont'd)
LFBE0	1	RW	LED0 100Base-T Ethernet Link BlinkThis LFBE0 field controls how LED0 indicates 100 Mbps link speed.0BNo change to LED0 behavior. (Default)1BWhen the PHY link is up and the speed mode is 100 Mbps, blink LED0.
LBBE0	0	RW	LED0 10Base-T Ethernet Link BlinkThis LBBE0 field controls how LED0 indicates 10 Mbps link speed.0 _B No change to LED0 behavior. (Default)1 _B When the PHY link is up and the speed mode is 10 Mbps, blink LED0.

7.1.14 LED1 Configuration Register (Register A00D_H)

This section describes the LED1 Configuration Register in detail.

LED General Configuration Register (Register A00D_H)

This register configures LED1.

COM_EXT_LED1_CFG LED1 Configuration Register (Register A00DH)									Offset A00D _H							Value 0620 _H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	L1	SL	LAB1	LFDE1	LHDE 1	LTAB E1	LRAB E1	LTAE1	LRAE 1	LGE1	LFE1	LBE1	LCBE 1	LGBE 1	LFBE1	LBBE 1
	r	w	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description				
LISL	15:14	RW	LED1 Signal Source Selection This L1SL field selects the source of the internal signals controlling LED1. The default value of the LED1 configuration depends on the chip mode via pin strapping. The logic and usage is identical to COM_EXT_LED0_CFG.L0SL. The default is 0 _B .				
LAB1	13	RW	LED1 Activity Blink Indicator Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .				
LFDE1	12	RW	LED1 Full-Duplex Status Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .				
LHDE1	11	RW	V LED1 Half-Duplex Status Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .				
LTABE1	10	RW	LED1 Tx Activity Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .				
LRABE1	9	RW	LED1 Rx Activity Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .				
LTAE1	8	8 RW LED1 Tx Activity Minimum On Time Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .					
LRAE1	7	RW	LED1 Rx Activity Minimum On Time Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .				

Field	Bits	Туре	Description (cont'd)			
LGE1	6	RW	LED1 1000Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .			
LFE1	5	RW	LED1 100Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .			
LBE1	4	RW	LED1 10Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .			
LCBE1	3	RW	LED1 Collision Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .			
LGBE1	2	RW	LED1 1000Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .			
LFBE1	1	RW	LED1 100Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .			
LBBE1	0	RW	LED1 10Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .			

7.1.15 LED2 Configuration Register (Register A00E_H)

This section describes the LED2 Configuration Register in detail.

LED2 Configuration Register (Register A00E_H)

The register controls LED2 configuration

COM_EXT_LED2_CFG LED2 Configuration Register (Register A00EH)								Offset A00E _н								Value 0640 _H
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	L2S	SL	LAB2	LFDE2	LHDE 2	LTAB E2	LRAB E2	LTAE2	LRAE 2	LGE2	LFE2	LBE2	LCBE 2	LGBE 2	LFBE2	LBBE 2
	rv	v	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description						
L2SL	15:14 RW		LED2 Signal Source Selection This L2SL field selects the source of the internal signals controlling LED2 The default value of the LED2 configuration depends on the chip mode via pin strapping. The logic and usage is identical to $COM_EXT_LED0_CFG.L0SL$. The default is 0 _B .						
LAB2	13	RW	LED2 Activity Blink Indicator Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .						
LFDE2	12	RW	LED2 Full-Duplex Status Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .						
LHDE2	11	RW	 LED2 Half-Duplex Status Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B. 						
LTABE2	10	RW	LED2 Tx Activity Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .						
LRABE2	9	RW	LED2 Rx Activity Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .						
LTAE2	8	8 RW LED2 Tx Activity Minimum On Time Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .							
LRAE2	7	RW	LED2 Rx Activity Minimum On Time Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .						

Field	Bits	Туре	Description (cont'd)					
LGE2 6 RW			LED2 1000Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 1 _B .					
LFE2	5	RW	LED2 100Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .					
LBE2	4	RW	LED2 10Base-T Ethernet Link Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .					
LCBE2	3	RW	LED2 Collision Behavior Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .					
LGBE2	2	RW	LED2 1000Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0 _B .					
LFBE2	1	RW	LED2 100Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is 0_B .					
LBBE2	0	RW	LED2 10Base-T Ethernet Link Blink Same as LED0. See the COM_EXT_LED0_CFG description. The default is $0_{\rm B}$.					

7.1.16 LED Blinking Configuration Register (Register A00F_H)

This section describes the LED blinking Configuration Register in detail.

LED2 Configuration Register (Register A00F_H)

This register configures the LED blink frequency.

COM_EX LED Blink (Register	king Conf			ster		offset 00F _H							Value 0006 _H
15						7	6		4	3	2	1	0
		ļ	RES					LDTY		LFE	EQ2	LF	EQ1
I			ro		1			rw		r	W	r	w

Field	Bits	Туре	Description
RES	15:7	RO	Reserved
LDTY	6:4	RW	LED Duty Cycle This LDTY field configures the blink duty cycle. 000_B 50% on and 50% off. 001_B 67% on and 33% off. 010_B 75% on and 25% off. 011_B 83% on and 17% off. 100_B 50% on and 50% off. 100_B 50% on and 67% off. 101_B 33% on and 67% off. 110_B 25% on and 75% off. 111_B 17% on and 83% off.
LFEQ2	3:2	RW	LED Blink Mode 2 FrequencyThis LFEQ2 field configures the blink frequency for blink mode 2. 00_B 2 Hz 01_B 4 Hz (Default) 10_B 8 Hz 11_B 16 Hz
LFEQ1	1:0	RW	LED Blink Mode 1FrequencyThis LFEQ1 field configures the blink frequency for blink mode 1. 00_B 2 Hz 01_B 4 Hz 10_B 8 Hz (Default) 11_B 16 Hz

7.1.17 Pin Driving Strength Configuration Register (Register A010_H)

This section describes the Pin Driving Strength Configuration Register in detail.

Pin Driving Strength Configuration Register (Register A010_H)

This register sets the pin interface's I/O drive strength.

Pin D	EXT_P/ riving S ster A01	trengt	_		on Reg	ister		iset 10 _н						Reset	Value 6BFF _н
15		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSDR		RSD2	IODE	IAHL	DS	E	D	м	RSI	D10	D	11	D	L
	rw		rw	rw	rw	rw	1	۲١	N	٢	V	n	N	n	N

Field	Bits	Туре	Description
RSDR	15:13	RW	RGMII Rx Clock Pin Drive StrengthThis RSDR field configures the output drive strength of the RX_CLK pin.Values range from 0 (weakest setting) to 7 (strongest setting). 000_B Weakest 001_B Weaker 010_B Weak 011_B Default 101_B Strong 110_B Stronger 111_B Strongest
RSD2	12	RW	Drive Strength of RGMII Data and ControlThis RGMII_SW_DR2 field holds bit 2 of the drive strength of theRXD/RX_CTL pin. See COM_EXT_PAD_STR_CFG.RGMII_SW_DR10.The RSD value is formed by combining 1 bit from this field as MSB withthe 2 bits from the RSD10 field as LSB into a 3-bit wide value.Values range from 0 (weakest setting) to 7 (strongest setting). 000_B Weakest 001_B Weake 011_B Default 101_B Strong 111_B Strongest
IODE	11	RW	Interrupt Output Open Drain EnableThis IODE field controls the interrupt pin output mode. 0_B This interrupt pin acts as a push-pull output. 1_B This interrupt pin acts as open drain. (Default)
IAHL	10	RW	Interrupt Polarity Active HighThis IAHL field configures the interrupt line polarity sensitivity. 0_B The interrupt line is low-active. (Default) 1_B The interrupt line is high-active.

133

Field	Bits	Туре	Description (cont'd)
DSE	9:8	RW	SyncE Pin Drive StrengthThis DSE field configures the output driver strength of the SyncE pin.Values range from 0 (weakest setting) to 3 (strongest setting). 00_B Weakest 01_B Weak 10_B Strong 11_B Strongest (Default)
DM	7:6	RW	$\begin{array}{c c} \textbf{MDIO Pin Drive Strength} \\ This DM field configures the output driver strength of the MDIO pin. \\ Values range from 0 (weakest setting) to 3 (strongest setting). \\ 00_{B} & Weakest \\ 01_{B} & Weak \\ 10_{B} & Strong \\ 11_{B} & Strongest (Default) \end{array}$
RSD10	5:4	RW	Drive Strength of RGMII Data and ControlThis RGMII_SW_DR10 field sets the drive strength of the RXD/RX_CTLpin. This field holds bit 1 and bit 0. Bit 2 is held inCOM_EXT_PAD_STR_CFG.RGMII_SW_DR2. The RSD value is formedby combining 1 bit from the RSD2 field as MSB with the 2 bits from thisfield as LSB into a 3-bit wide value.Values range from 0 (weakest setting) to 7 (strongest setting).000 _B Weakest001 _B Weaker010 _B Weak011 _B Strong110 _B Stronger111 _B Strongest
DII	3:2	RW	Interrupt Pin Drive StrengthThis DII field configures the output drive strength of the interrupt pin.Values range from 0 (weakest setting) to 3 (strongest setting). 00_B Weakest 01_B Weak 10_B Strong 11_B Strongest (Default)
DL	1:0	RW	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

7.1.18 SyncE Configuration Register (Register A012_H)

This section describes the SyncE Configuration Register in detail.

SyncE Configuration Register (Register A012_H)

This register controls the SyncE setting.

COM_EXT_S ^v SyncE Config A012H)	_	ster (Regist	er	Off A01								t Value 00C8 _H
15				8	7	6	5	4	3		1	0
	RE	ES			PF	ESE	ESED N	CFS		CSS	1	PCTS S
I	ro	0		ļ	rw	rw	rw	rw		rw	1	rw

Field	Bits	Туре	Description
RES	15:8	RO	Reserved
PF	7	RW	PHY to Fiber This PF field controls UTP activation. 0 _B Always enable UTP. 1 _B In UTP to FIBER mode, do not enable UTP until the fiber link is up. (Default)
ESE	6	RW	SyncE Output ControlThis ESE field controls the SyncE clock output. 0_B Disable SyncE clock output. 1_B Enable SyncE clock output. (Default)
ESEDN	5	RW	Enable Synce Clock Output under No LinkThis ESEDN field controls Synce clock output behavior in link down state. 0_B No Synce clock output when the link is down. (Default) 1_B Force Synce clock output when the link is down.
CFS	4	RW	SyncE Clock Frequency SelectThis CFS field selects the clock frequency. 0_B 25 MHz. (Default) 1_B 125 MHz.
CSS	3:1	RW	SyncE Clock Source SelectThis CSS field selects the clock source for generating SyncE clock output. 000_B Use the internal 125 MHz PLL as the output clock. 001_B Use the TPI recovered clock. 010_B Reserved 011_B Use the RGMII Tx clock. 100_B Use the reference 25 MHz clock. (Default) 101_B Use 25 MHz with SSC.

Field	Bits	Туре	Description (cont'd)
PCTSS	0	RW	PTP/SyncE Clock Output Source Selection
			This PCTSS field enables the internal RGMII TXC clock source on SyncE clock output.
			 0_B Output one internal clock, randomly selected from any channel. 1_B Ouput the internal RGMII TXC clock on the SyncE ouput.

7.2 UTP Extended Register

This section describes the UTP extended register.

Table 26	Registers Overview - UTP Extended Register
----------	--

Register Short Name	Register Long Name	Reset Value
UTP_EXT_10BT_DBG	10 M Base-Te Debug Mode Register (Register 000AH)	1000 _H
UTP_EXT_SLEEP_CTRL	Sleep Mode Control Register (Register 0027H)	E812 _H
UTP_EXT_PKG_RX_VALID_0	Packet Rx Valid High Register (Register 00A3H)	0000 _H
UTP_EXT_PKG_RX_VALID_1	Packet Rx Valid Low Register (Register 00A4H)	0000 _H
UTP_EXT_PKG_RX_OS_0	Packet Rx Oversize High Register (Register 00A5H)	0000 _H
UTP_EXT_PKG_RX_OS_1	Packet Rx Oversize Low Register (Register 00A6H)	0000 _H
UTP_EXT_PKG_RX_US_0	Packet Rx Undersize High Register (Register 00A7H)	0000 _H
UTP_EXT_PKG_RX_US_1	Packet Rx Undersize Low Register (Register 00A8H)	0000 _H
UTP_EXT_PKG_RX_ERR	Packet Rx CRC Register (Register 00A9H)	0000 _H
UTP_EXT_PKG_RX_OS_BAD	Packet Rx CRC Oversize Register (Register 00AAH)	0000 _H
UTP_EXT_PKG_RX_FRAGMENT	Packet Rx Fragment Register (Register 00ABH)	0000 _H
UTP_EXT_PKG_RX_NOSFD	Packet Rx No SFD Register (Register 00ACH)	0000 _H
UTP_EXT_PKG_TX_VALID_0	Packet Tx High Register (Register 00ADH)	0000 _H
UTP_EXT_PKG_TX_VALID_1	Packet Tx Low Register (Register 00AEH)	0000 _H
UTP_EXT_PKG_TX_OS_0	Packet Tx Oversize High Register (Register 00AFH)	0000 _H
UTP_EXT_PKG_TX_OS_1	Packet Tx Oversize Low Register (Register 00B0H)	0000 _H
UTP_EXT_PKG_TX_US_0	Packet Tx Undersize High Register (Register 00B1H)	0000 _H
UTP_EXT_PKG_TX_US_1	Packet Tx Undersize Low Register (Register 00B2H)	0000 _H
UTP_EXT_PKG_TX_ERR	Packet Tx CRC Register (Register 00B3H)	0000 _H
UTP_EXT_PKG_TX_OS_BAD	Packet Tx CRC Oversize Register (Register 00B4H)	0000 _H
UTP_EXT_PKG_TX_FRAGMENT	Packet Tx Fragment Register (Register 00B5H)	0000 _H
UTP_EXT_PKG_TX_NOSFD	Packet Tx No SFD Register (Register 00B6H)	0000 _H

ro

rw swc

rw

rw

7.2.1 10 M Base-Te Debug Mode Register (Register 000A_H)

This section describes the 10 M Base-Te Debug Mode Register in detail.

10 M Base-Te Debug Mode Register (Register 000A_H)

This register is used for 10 Base-T mode IEEE compliance and external loopback testing.

rw

UTP_EXT_10 10 M Base-Te 000AH)	BT_DBG Offe Debug Mode Register (Register 000					Reset Value 1000 _H
15 14	13	5	4	3	2	0
RES	RES	1 1	ELB	RES		TM10

Field	Bits	Туре	Description
RES	15:14	RO	Reserved Reserved The default is 0 _B .
RES	13:5	RW	Reserved
ELB	4	RW	External Loopback ControlThis field enables/disables the external loopback. 1_B Enable the external loopback. 0_B Disable the external loopback. (Default)
RES	3	RW	Reserved
TM10	2:0	RW SWC	 10Base-T Ethernet Test Mode This field configures the 10Base-Te test modes. 000_B Normal operation (Default) 101_B Normal operation 110_B Normal operation 001_B Used for IEEE harmonic test with 10 MHz sine wave and packets with "all ones". 010_B Enables a pseudo random packet for TP_IDLE/Jitter/Differential Voltage testing. 011_B Enables a "normal" link pulse 110_B Used to generate a 5 MHz sine wave

7.2.2 Sleep Mode Control Register (Register 0027_H)

This section describes the Sleep Mode Control Register in detail.

Sleep Mode Control Register (Register 0027_H)

This register configures the power saving mode.

_	EXT_SL Mode (_		ter (Re	egister		Offset 0027 _н					Reset \ E	/alue 812 _H
15	14	13	12	11	10			6	5	4			0
ESS	PLIS	SPS	R	ES		RE	S	I	SLP		RES	1 1	
rw	rw	rw	n	W	1 1	ro	I	1	ro		ro	<u> </u>	

Field	Bits	Туре	Description
ESS	15	RW	Sleep Mode ControlThis field enables/disables the sleep mode feature of the PHY. In sleepmode, the PHY automatically disables AFE when the TPI has no link aftera amount of certain time. 0_B Disables the sleep mode feature. 1_B Enables the sleep mode feature. (Default)
PLIS	14	RW	Sleep Mode PLL ControlThis field configures the PLL in the sleep mode of the PHY. 0_B PLL stops in sleep mode. (Default) 1_B PLL remains active in sleep mode.
SPS	13	RW	Sleep Mode Periodic Pulse Control This field configures the PHY sending periodic pulse signal in sleep mode. 0 _B Disables sending periodic pulses. 1 _B Enables sending periodic pulses. (Default)
RES	12:11	RW	Reserved
RES	10:6	RO	Reserved Reserved The default is 0 _B .
SLP	5	RO	Sleep StatusThis SLP field reports the status of the PHY. 0_B PHY is enabled. (Default) 1_B PHY is in sleep mode.
RES	4:0	RO	Reserved

Data Sheet

7.2.3 Packet Rx Valid High Register (Register 00A3_H)

This section describes the Packet Rx Valid High Register in detail.

Packet Rx Valid High Register (Register 00A3_H)

UTP_E Packe 00A3H	t Rx Va	_	_	—	Registe	r		fset A3 _H						Value 0000 _H
15														0
				ļ	1	Ţ	PI	VH	1	I			I	1
	1	1	1	1	1	1	rc	rc	1 1	 1	1	1	1	I

Field	Bits	Туре	Description
PIVH	15:0	RO RC	Rx Packet Valid Count High This PIVH field reports the number of Rx packets from line to PHY side with correct CRC and a packet length >= 64 bytes and <= 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in UTP_EXT_PKG_RX_OS_1.PIVL. The default is 0 _B .

7.2.4 Packet Rx Valid Low Register (Register 00A4_H)

This section describes the Packet Rx Valid Low Register in detail.

Packet Rx Valid Low Register (Register 00A4_H)

UTP_E Packe 00A4H	t Rx Va		(_VALI w Regi		legiste	ər		fset A4 _H							Value 0000 _H
15															0
	I			1	1		Р	IVL	I		1	1	ļ	I	1
	1	1		1			r	o rc	1	1	1	1	1	1	<u>I</u>

Field	Bits	Туре	Description
PIVL	15:0	RO RC	Rx Packet Valid Count Low This PIVL field reports the number of Rx packets from line to PHY side with correct CRC and a packet length >= 64 bytes and <= 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in UTP_EXT_PKG_RX_VALID_0.PIVH. The default is 0 _B .

7.2.5 Packet Rx Oversize High Register (Register 00A5_H)

This section describes the Packet Rx Oversize High Register in detail.

Packet Rx Valid Low Register (Register 00A5_H)

UTP_E Packe 00A5H	t Rx Ov				er (Reg	ister		iset A5 _H					Reset	Value 0000 _H
15														0
	1	1	1	I	I	1	PIO	GH	Ι	1	I	1	I	I
	1	1	11		I	11	ro	rc	İ	1	1	1	1	<u> </u>

Field	Bits	Туре	Description
PIOGH	15:0	RO RC	Oversize Rx Packet Count High This PIOGH field represents the number of Rx packets from line to PHY side with correct CRC and a packet length > 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in UTP_EXT_PKG_RX_OS_1.PIOGL. The default is 0 _B .

7.2.6 Packet Rx Oversize Low Register (Register 00A6_H)

This section describes the Packet Rx Oversize Low Register in detail.

Packet Rx Valid Low Register (Register 00A6_H)

Packet	UTP_EXT_PKG_RX_OS_1 Packet Rx Oversize Low Register (Register 00A6H)						Offset 00A6 _H						Reset	Value 0000 _H
15														0
	I	Ι	I	1 1	I	Ι	PIOGL	I	I	1	1	Ι	I	I
	1	1	1	11	I	I	ro rc			1	1	1	1	<u> </u>

Field	Bits	Туре	Description
PIOGL	15:0	RO RC	Oversize Rx Packet Count Low This PIOGL field represents the number of Rx packets from line to PHY side with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in UTP_EXT_PKG_RX_OS_0.PIOGH. The default is 0 _B .

7.2.7 Packet Rx Undersize High Register (Register 00A7_H)

This section describes the Packet Rx Undersize High Register in detail.

Packet Rx Undersize High Register (Register 00A7_H)

UTP_E Packe 00A7H	t Rx Ur	_			ter (Re	gister	Offse 00A7						Rese	t Value 0000 _H
15														0
	1	I	I	1	I	1 1	PIUG	н	I	I	I	Ι	I	I
	1	1	1	1	1	<u> </u>	ro ro	;	I	I				

Field	Bits	Туре	Description
PIUGH	15:0	RO RC	Good Rx Packet Count High This PIUGH field represents the number of Rx packets from line to PHY side with correct CRC and a packet length < 64 bytes.These are the upper 16-bits of a 32-bit value. The lower 16-bits are in UTP_EXT_PKG_RX_US_1.PIUGL. The default is 0 _B .

7.2.8 Packet Rx Undersize Low Register (Register 00A8_H)

This section describes the Packet Rx Undersize Low Register in detail.

Packet Rx Undersize Low Register (Register 00A8_H)

UTP_E Packe 00A8H	t Rx Ur				er (Re	gister		iset 48 _H						Reset	Value 0000 _H
15															0
	I	1	Ι	I	I	I	PIL	JGL	I	I	Ι	1	Ι		
	1	1	I	<u> </u>	<u> </u>	1	ro	rc	<u> </u>	I	1	1	1	<u> </u>	

Field	Bits	Туре	Description
PIUGL	15:0	RO RC	Good Rx Packet Count Low This PIUGL field represents the number of Rx packets from line to PHY side with correct CRC and a packet length < 64 bytes.These are the lower 16-bits of a 32-bit value. The upper 16-bits are in UTP_EXT_PKG_RX_US_0.PIUGH. The default is 0 _B .

7.2.9 Packet Rx CRC Register (Register 00A9_H)

This section describes the Packet Rx CRC Register in detail.

Packet Rx CRC Register (Register 00A9_H)

UTP_E Packe	_	_	(_ERR gister (Regist	er 00A	9H)		Offset 0A9 _H					Reset	Value 0000 _H
15														0
	ļ	ļ					I	PIE		T	ļ	T	Ţ	
	1	1	1		1	1	1	ro rc	 I	1	1		1	<u>I</u>

Field	Bits	Туре	Description
PIE	15:0	RO RC	Rx Packet Error Count
			This PIE field represents the number of Rx packets from line to PHY side with corrupted CRC and a packet length >= 64 bytes and <= 1518 bytes. The default is $0_{\rm B}$.

7.2.10 Packet Rx CRC Oversize Register (Register 00AA_H)

This section describes the Packet Rx CRC Oversize Register in detail.

Packet Rx CRC Oversize Register (Register 00AA_H)

This register is used for debugging Rx packets.

UTP_E Packe 00AAF	t Rx Cl				er (Reg	ister	Offset 00AA _H						Reset	t Value 0000 _H
15														0
	1	1	I	I	1	1 1	PIOB	Ι	I	l	I	I	I	I
	1	1	<u>i</u>	<u>i</u>	1	1 1	ro rc	I	I			<u> </u>	1	<u> </u>

Field	Bits	Туре	Description
PIOB	15:0	RO RC	Rx Oversize Packet CRC Error Count
			This field represents the number of Rx packets from line to PHY side with
			corrupted CRC and a packet length >= 1518 bytes.
			The default is 0 _B .

7.2.11 Packet Rx Fragment Register (Register 00AB_H)

This section describes the Packet Rx Fragment Register in detail.

Packet Rx CRC Oversize Register (Register 00AB_H)

_	t Rx Fr	_	(_FRAG nt Regis			r	Offset 00AB _H					Reset	t Value 0000 _H
15													0
				1			PIF			I.	I.		
	1	1	1	1	1	1 1	ro rc	L	l.	1	1	 1	J

Field	Bits	Туре	Description
PIF	15:0	RO RC	Rx Fragment Packet Error Count This field represents the number of Rx packets from line to PHY side with corrupted CRC and a packet length <=64 bytes. The default is $0_{\rm B}$.

7.2.12 Packet Rx No SFD Register (Register 00AC_H)

This section describes the Packet Rx No SFD Register in detail.

Packet Rx CRC Oversize Register (Register 00AC_H)

_	EXT_PF t Rx No	_	_		ister 0()ACH)		ffset АС _н						Reset	Value 0000 _H
15															0
		I	I	Ι	I	1	P	INF		Ι	I	I	Ι	[
	1	1	L	1	1	L	r	o rc	1	1	1	1	1	1	<u> </u>

Field	Bits	Туре	Description
PINF	15:0	RO RC	Rx Packet Missing Start Frame Delimiter Count
			This PINF field represents the number of Rx packets from line to PHY side, with missing Start Frame Delimiter (SFD). The default is 0_B .

7.2.13 Packet Tx High Register (Register 00AD_H)

This section describes the Packet Tx High Register in detail.

Packet Rx CRC Oversize Register (Register 00AD_H)

UTP_E Packet	_	 _	_	er 00A	DH)	Off: 00A				Reset	t Value 0000 _H
15											0
	1			1		PO	VH				
						ro	rc				

Field	Bits	Туре	Description
POVH	15:0	RO RC	Tx Packet Valid Count High This POVH field represents the number of Tx packets sending from PHY GMII interface with correct CRC and a packet length >= 64 bytes and <=1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in UTP_EXT_PKG_TX_VALID_1.POVL. The default is $0_{\rm B}$.

7.2.14 Packet Tx Low Register (Register 00AE_H)

This section describes the Packet Tx Low Register in detail.

Packet Tx Low Register (Register 00AE_H)

UTP_E Packet	_		_	—	er 00A	NEH)		Offset 00AE _H						Rese	et Value 0000 _H
15															0
	Γ	1	1	T	I	I	I	POVL	1	1	Ι	1	1	1	
	1	1	1	1	1		1	ro rc		1		1	I		

Field	Bits	Туре	Description
POVL	15:0	RO RC	Tx Packet Valid Count Low This POVL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length >= 64 bytes and <=1518 bytes. These are the lower 16-bit of a 32-bit value. The higher 16-bit are in the field UTP_EXT_PKG_TX_VALID_0.POVH. The default is 0_{p} .

7.2.15 Packet Tx Oversize High Register (Register 00AF_H)

This section describes the Packet Tx Oversize High Register in detail.

Packet Tx Oversize High Register (Register 00AF_H)

UTP_E Packe 00AFH	t Tx Ov			Registe	r (Regi	ister	Offs 00A						Reset	Value 0000 _H
15														0
	1	1	Ι	I	Ι	Ι	POO	GH	I	Ι	I	I	Ι	
	1	1	1		1	1	ro i	rc	I	I	1	1	1	<u> </u>

Field	Bits	Туре	Description
POOGH	15:0	RO RC	Oversize Tx Packet Count High This POOGH field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are UTP_EXT_PKG_TX_OS_1.POOGL. The default is $0_{\rm p}$.

7.2.16 Packet Tx Oversize Low Register (Register 00B0_H)

This section describes the Packet Tx Oversize Low Register in detail.

Packet Tx Oversize Low Register (Register 00B0_H)

UTP_E Packe 00B0H	t Tx Ov		_OS_1 Low R		r (Regi	ster	Off 00E						Reset	Value 0000 _H
15														0
	I	1	1	I	Ι	1	POC	OGL	I	1	I	I	Ι	I
	1	1	1	1	1	1	ro	rc		1	1	1	1	<u> </u>

Field	Bits	Туре	Description
POOGL	15:0	RO RC	Oversize Tx Packet Count Low This POOGL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are UTP_EXT_PKG_TX_OS_0.POOGH. The default is 0 _B .

7.2.17 Packet Tx Undersize High Register (Register 00B1_H)

This section describes the Packet Tx Undersize High Register in detail.

Packet Tx Oversize Low Register (Register 00B1_H)

UTP_E Packet 00B1H	t Tx Un	_			er (Re	gister	Offs 00B							Reset	Value 0000 _H
15															0
	Ι		I	Γ		ļ	POU	GH		ļ	ļ	ļ	ļ	1	
	1	I	1	1	I		roı	rc	I	1	1	I	I	1	<u> </u>

Field	Bits	Туре	Description
POUGH	15:0	RO RC	Good Tx Packet Count High This POUGH field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length < 64 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in UTP_EXT_PKG_TX_US_1.POUGL. The default is 0 _B .

7.2.18 Packet Tx Undersize Low Register (Register 00B2_H)

This section describes the Packet Tx Undersize Low Register in detail.

Packet Tx Undersize Low Register (Register 00B2_H)

UTP_E Packet 00B2H	t Tx Ur	_		-	ster (R	egister	Offse 00B2						Rese	et Value 0000 _H
15	1	1			1									0
	I	I	I	I	Ι	1 1	POUC	L	I	I	I	I	I	I
	İ	1	I	Ì	I		ro ro	[;	I	I	I			

Field	Bits	Туре	Description
POUGL	15:0	RO RC	Good Tx Packet Count Low This POUGL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in UTP_EXT_PKG_TX_US_0.POUGH. The default is 0 _B .

7.2.19 Packet Tx CRC Register (Register 00B3_H)

This section describes the Packet Tx CRC Register in detail.

Packet Tx Undersize Low Register (Register 00B3_H)

This register is used for debugging Tx packets.

UTP_E Packe	—	_	(_ERR gister (l	Registe	er 00B:	3H))ffset 0B3 _н						Value 0000 _H
15														0
				T	ļ		I	POE	ļ ļ	1	ļ	1	T	
	1	1	1	1	1	1 1	l	ro rc	11	1	1		1	<u>I</u>

Field	Bits	Туре	Description
POE	15:0	RO RC	Tx Packet Error Count This POE field represents the number of Tx packets from PHY GMIIinterface with wrong CRC and a packet length >= 64 bytes and <= 1518

7.2.20 Packet Tx CRC Oversize Register (Register 00B4_H)

This section describes the Packet Tx CRC Oversize Register in detail.

Packet Tx CRC Oversize Register (Register 00B4_H)

This register is used for debugging Tx packets.

UTP_EXT_PKG_TX_OS_BAD Packet Tx CRC Oversize Register (Register 00B4H)						ister	Offset 00B4 _H					Reset	t Value 0000 _H
15													0
	1	T		1	1		POOB	Τ	1		T	ļ	
	1	1	1	1	1	1 1	ro rc	I	I	 		1	

Field	Bits	Туре	Description
POOB	15:0	RO RC	Tx Oversize Packet CRC Error Count
			This POOB field represents the number of Tx packets from PHY GMII
			interface with wrong CRC and a packet length > 1518 bytes.
			The default is 0 _B .

7.2.21 Packet Tx Fragment Register (Register 00B5_H)

This section describes the Packet Tx Fragment Register in detail.

Packet Tx Fragment Register (Register 00B5_H)

This register is used for debugging Tx packets.

UTP_EXT_PKG_TX_FRAGMENT Packet Tx Fragment Register (Register 00B5H)							Offs 00E						Reset	Value 0000 _H
15														0
	Ι	I	I	I	I	1 1	PO)F	I	Ι	1	1	I	
	1	1	1	1	1	1 1	ro	rc	I	1	1	1	1	

Field	Bits	Туре	Description
POF	15:0	RO RC	Tx Fragment Packet Error Count
			This POF field represents the number of Tx packets from PHY GMII
			interface with a packet length < 64 bytes.
			The default is 0 _B .

7.2.22 Packet Tx No SFD Register (Register 00B6_H)

This section describes the Packet Tx No SFD Register in detail.

Packet Tx No SFD Register (Register 00B6_H)

_	UTP_EXT_PKG_TX_NOSFD Packet Tx No SFD Register (Register 00B6H)							fset B6 _H						Reset	Value 0000 _H
15	15														0
									Ι	[Ι	ļ	ļ	[
	1	1	1	1	1	1 1	rc	rc	1	<u> </u>	1	1	1	1	L

Field	Bits	Туре	Description
PONF	15:0	RO RC	Tx Packet Missing Start Frame Delimiter Count
			This PONF field represents the number of Tx packets from PHY GMII interface, with missing SFD. The default is $0_{\rm B}$.

7.3 SDS Extended Register

This section describes the SDS extended register.

Table 27 Registers Overview - SDS Extended Register

Register Short Name	Register Long Name	Reset Value
SDS_EXT_RX_VAL_H	SerDes Rx Packet High Register (Register 01A3H)	0000 _H
SDS_EXT_RX_VAL_L	SerDes Rx Packet Low Register (Register 01A4H)	0000 _H
SDS_EXT_RX_OS_H	SerDes Rx Packet Oversize High Register (Register 01A5H)	0000 _H
SDS_EXT_RX_OS_L	SerDes Rx Packet Oversize Low Register (Register 01A6H)	0000 _H
SDS_EXT_RX_US_H	SerDes Rx Packet Undersize High Register (Register 01A7H)	0000 _H
SDS_EXT_RX_US_L	SerDes Rx Packet Undersize Lower (Register 01A8H)	0000 _H
SDS_EXT_RX_ERR	SerDes Rx Packet CRC Register (Register 01A9H)	0000 _H
SDS_EXT_RX_OS_ERR	SerDes Rx Packet CRC Oversize Register (Register 01AAH)	0000 _H
SDS_EXT_RX_FRAGMENT	SerDes Rx Packet Fragment Register (Register 01ABH)	0000 _H
SDS_EXT_RX_NOSFD	SerDes Rx Packet No SFD Register (Register 01ACH)	0000 _H
SDS_EXT_TX_VALID_H	SerDes Tx Packet High Register (Register 01ADH)	0000 _H
SDS_EXT_TX_VALID_L	SerDes Tx Packet Low Register (Register 01AEH)	0000 _H
SDS_EXT_TX_OS_H	SerDes Tx Packet Oversize High Register (Register 01AFH)	0000 _H
SDS_EXT_TX_OS_L	SerDes Tx Packet Oversize Low Register (Register 01B0H)	0000 _H
SDS_EXT_TX_US_H	SerDes Tx Packet Undersize High Register (Register 01B1H)	0000 _H
SDS_EXT_TX_US_L	SerDes Tx Packet Undersize Low Register (Register 01B2H)	0000 _H
SDS_EXT_TX_ERR	SerDes Tx Packet CRC Register (Register 01B3H)	0000 _H
SDS_EXT_TX_OS_ERR	SerDes Tx Packet CRC Oversize Register (Register 01B4H)	0000 _H
SDS_EXT_TX_FRAGMENT	SerDes Tx Packet Fragment Register (Register 01B5H)	0000 _H
SDS_EXT_TX_NOSFD	SerDes Tx Packet No SFD Register (Register 01B6H)	0000 _H

7.3.1 SerDes Rx Packet High Register (Register 01A3_H)

This section describes the SerDes Rx Packet High Register in detail.

SerDes Rx Packet High Register (Register 01A3_H)

SDS_EXT_RX_VAL_H SerDes Rx Packet High Register (Register 01A3H)								iset A3 _H						Reset	Value 0000 _H
15															0
	Į	Ι	Ţ	I	Ι	I	SP	IVH	ļ	I	Ι	Ι	I	Ι	1
	1	1	1	1	1	1	ro	rc	1	I	1	1	1	1	L

Field	Bits	Туре	Description
SPIVH	15:0	RO RC	Rx Packet Valid Count High This SPIVH field reports the number of Rx packets from line to PHY side with correct CRC and a packet length >= 64 bytes and <= 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in SDS_EXT_RX_VAL_L.SPIVL. The default is $0_{\rm B}$.

7.3.2 SerDes Rx Packet Low Register (Register 01A4_H)

This section describes the SerDes Rx Packet Low Register in detail.

SerDes Rx Packet Low Register (Register 01A4_H)

SDS_EXT_RX_VAL_L SerDes Rx Packet Low Register (Register 01A4H)								set A4 _H						Reset	Value 0000 _H
15															0
	Ι	Ι	Ι	Ι	Ι	I	SP	IVL	I	Ι	Ι	I	ļ	Ι	1
	1	1	1	1	1	1	ro	rc	1	1	1	1	1	1	I

Field	Bits	Туре	Description
SPIVL	15:0	RO RC	Rx Packet Valid Count Low This SPIVL field reports the number of Rx packets from line to PHY side with correct CRC and a packet length >= 64 bytes and <= 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in SDS_EXT_RX_OS_H.SPIVH. The default is $0_{\rm B}$.

7.3.3 SerDes Rx Packet Oversize High Register (Register 01A5_H)

This section describes the SerDes Rx Packet Oversize High Register in detail.

SerDes Rx Packet Oversize High Register (Register 01A5_H)

SDS_EXT_RX_OS_H SerDes Rx Packet Oversize High Register (Register 01A5H)						gister		ffset A5 _H				Reset	Value 0000 _H
15													0
			1				SP	IOGH		1		1	
							r	o rc					I

Field	Bits	Туре	Description
SPIOGH	15:0	RO RC	Oversize Rx Packet Count High This SPIOGH field represents the number of Rx packets from line to PHY side with correct CRC and a packet length > 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in SDS_EXT_RX_OS_L.SPIOGL. The default is 0 _p .

7.3.4 SerDes Rx Packet Oversize Low Register (Register 01A6_H)

This section describes the SerDes Rx Packet Oversize Low Register in detail.

SerDes Rx Packet Oversize Low Register (Register 01A6_H)

SDS_EXT_RX_OS_L SerDes Rx Packet Oversize Low Register (Register 01A6H)						gister		Offset 01A6 _H				Reset	: Value 0000 _H
15													0
	1	1		ļ			1	SPIOGL	Ţ	1	Ţ	ļ	1
			1				1	ro rc					<u> </u>

Field	Bits	Туре	Description
SPIOGL	15:0	RO RC	Oversize Rx Packet Count Low This SPIOGL field represents the number of Rx packets from line to PHY side with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in SDS_EXT_RX_OS_H.SPIOGH. The default is 0 _B .

7.3.5 SerDes Rx Packet Undersize High Register (Register 01A7_H)

This section describes the SerDes Rx Packet Undersize High Register in detail.

SerDes Rx Packet Undersize High Register (Register 01A7_H)

SDS_EXT_RX_US_H SerDes Rx Packet Undersize High Register (Register 01A7H)						ster	Off: 01 <i>4</i>						Reset	Value 0000 _H
15														0
								JGH	I	Ι	1	I	I	I
	1	1	1	1	1 1		ro	rc	1	1	1	1	1	<u>I</u>

Field	Bits	Туре	Description
SPIUGH	15:0	RORC	Good Rx Packet Count High This SPIUGH field represents the number of Rx packets from line to PHY side with correct CRC and a packet length < 64 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in SDS_EXT_RX_US_L.SPIUGL.
			SDS_EXT_RX_US_L.SPIUGL. The default is 0 _B .

7.3.6 SerDes Rx Packet Undersize Lower (Register 01A8_H)

This section describes the SerDes Rx Packet Undersize Lower registers in detail.

SerDes Rx Packet Undersize Lower (Register 01A8_H)

SDS_EXT_RX_US_L SerDes Rx Packet Undersize Lower (Register 01A8H)						Offs 01A						Rese	t Value 0000 _H	
15	15													0
								IGL	I	I	I	I	I	I
	I	1	1		1	11	ro	rc	I	I				

Field	Bits	Туре	Description
SPIUGL	15:0	RO RC	Good Rx Packet Count Low This SPIUGL field represents the number of Rx packets from line to PHY side with correct CRC and a packet length < 64 bytes.These are the lower 16-bits of a 32-bit value. The upper 16-bits are in SDS_EXT_RX_US_H.SPIUGH. The default is 0 _p .

7.3.7 SerDes Rx Packet CRC Register (Register 01A9_H)

This section describes the SerDes Rx Packet CRC Register in detail.

SerDes Rx Packet CRC Register (Register 01A9_H)

SDS_EXT_RX_ERR SerDes Rx Packet CRC Register (Register 01A9H)						ster	Offs 01A							Reset	Value 0000 _H
15															0
	I	Ţ	Ι	I	Ţ	I	SP	IE	I	Ι	Ι	Į	Ι	ļ	1
	1	1	1	1	1		ro	rc	I	I	1	1	1	1	<u> </u>

Field	Bits	Туре	Description
SPIE	15:0	RO RC	Rx Packet Error Count
			This SPIE field represents the number of Rx packets from line to PHY side
			with corrupted CRC and a packet length >= 64 bytes and <= 1518 bytes.
			The default is 0 _B .

7.3.8 SerDes Rx Packet CRC Oversize Register (Register 01AA_H)

This section describes the SerDes Rx Packet CRC Oversize Register in detail.

SerDes Rx Packet CRC Oversize Register (Register 01AA_H)

This register is used for debugging SerDes Rx packets.

SDS_EXT_RX_OS_ERR SerDes Rx Packet CRC Oversize Register (Register 01AAH)						ster	Off 01 <i>4</i>						Reset	t Value 0000 _H
15													- I	0
	1	1	I	I	Ι	l	SPI	ОВ	I	I	I	I	I	Ĩ
								rc	I	I	1	1	1	<u> </u>

Field	Bits	Туре	Description
SPIOB	15:0	RO RC	Rx Oversize Packet CRC Error Count
			This field represents the number of Rx packets from the line side to the
			PHY side with corrupted CRC and a packet length >= 1518 bytes.
			The default is 0 _B .

7.3.9 SerDes Rx Packet Fragment Register (Register 01AB_H)

This section describes the SerDes Rx Packet Fragment Register in detail.

SerDes Rx Packet Fragment Register (Register 01AB_H)

This register is used for debugging SerDes Rx packets.

SDS_EXT_RX_FRAGMENT SerDes Rx Packet Fragment Register (Register 01ABH)								fset AB _H					Reset	: Value 0000 _H
15														0
	Ι	I	Ι	Ι	I	Ι	S	PIF	ļ	Ī	Ι	Ι	I	T
							rc	o rc						<u> </u>

Field	Bits	Туре	Description
SPIF	15:0	RO RC	Rx Fragment Packet Error Count
			This field represents the number of Rx packets from the line side to the
			PHY side with packet length <=64 bytes.
			The default is 0 _B .

7.3.10 SerDes Rx Packet No SFD Register (Register 01AC_H)

This section describes the SerDes Rx Packet No SFD Register in detail.

SerDes Rx Packet No SFD Register (Register 01AC_H)

This register is used for debugging SerDes Rx packets.

SDS_EXT_RX_NOSFD SerDes Rx Packet No SFD Register (Register 01ACH)								iset AC _H						Reset	Value 0000 _H
15															0
	I	I	I	I		I	SP	INF		I	I	I	I	I	
	1	1	1	1	1	1	ro	rc	1	1	1	1	1	1	<u> </u>

Field	Bits	Туре	Description
SPINF	15:0	RO RC	Rx Packet Missing Start Frame Delimiter Count
			This SPINF field represents the number of Rx packets from the line side
			to the PHY side, with missing SFD.
			The default is 0 _B .

7.3.11 SerDes Tx Packet High Register (Register 01AD_H)

This section describes the SerDes Tx Packet High Register in detail.

SerDes Tx Packet High Register (Register 01AD_H)

SDS_EXT_TX_VALID_H SerDes Tx Packet High Register (Register 01ADH)						ter	Offs 01A							Reset	Value 0000 _H
15															0
		ļ			ļ	ļ	SPO	OVH						ļ	
	I	1		1	1	1	ro	rc	I	<u> </u>	I	1	1	I	<u> </u>

Field	Bits	Туре	Description
SPOVH	15:0	RO RC	Tx Packet Valid Count High This SPOVH field represents the number of Tx packets sending from PHY GMII interface with correct CRC and a packet length >= 64 bytes and <=1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in SDS_EXT_TX_VALID_L.SPOVL. The default is $0_{\rm B}$.

7.3.12 SerDes Tx Packet Low Register (Register 01AE_H)

This section describes the SerDes Tx Packet Low Register in detail.

SerDes Tx Packet Low Register (Register 01AE_H)

SDS_EXT_TX_VALID_L SerDes Tx Packet Low Register (Register 01AEH)						ter	Offs 01A						Reset	Value 0000 _H
15														0
	Į	Ι	Ţ	Ι	Į	Ι	SPO	OVL	Ι	Ι	Ι	Ţ	Ι	1
	1	I	1	1	1	I	ro	rc	I	I	I	1	1	<u> </u>

Field	Bits	Туре	Description
SPOVL	15:0	RO RC	Tx Packet Valid Count Low This SPOVL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length >= 64 bytes and <=1518 bytes. These are the lower 16-bit of a 32-bit value. The higher 16-bit are in the field SDS_EXT_TX_VALID_H.SPOVH. The default is $0_{\rm B}$.

7.3.13 SerDes Tx Packet Oversize High Register (Register 01AF_H)

This section describes the SerDes Tx Packet High Register in detail.

SerDes Tx Packet Oversize High Register (Register 01AF_H)

SDS_EXT_TX_OS_H SerDes Tx Packet Oversize High Register (Register 01AFH)					ter	Offse 01AF						Rese	t Value 0000 _H	
15	15													0
	1	1	I	1	I	Ι	SPOO	GH	Ι	Ι	Ι	I	I	Ι
	1	1	1	1	1	I	ro ro	;	I		- 1		1	

Field	Bits	Туре	Description
SPOOGH	15:0	RO RC	Oversize Tx Packet Count High This SPOOGH field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are SDS_EXT_TX_OS_L.SPOOGL. The default is 0 _B .

7.3.14 SerDes Tx Packet Oversize Low Register (Register 01B0_H)

This section describes the SerDes Tx Packet Oversize Low Register in detail.

SerDes Tx Packet Oversize Low Register (Register 01B0_H)

SDS_EXT_TX_OS_L SerDes Tx Packet Oversize Low Register (Register 01B0H)						ffset 1B0 _H						Reset	Value 0000 _H		
15															0
	1	1	I	I	I	I	SP	OOGL	I	I	1	I	I	I	I
	1	1		I	<u> </u>	1	I	ro rc	İ	<u> </u>	1	1	1	<u> </u>	<u> </u>

Field	Bits	Туре	Description
SPOOGL	15:0	RO RC	Oversize Tx Packet Count Low This SPOOGL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are SDS_EXT_TX_OS_H.SPOOGH. The default is 0_{p} .

7.3.15 SerDes Tx Packet Undersize High Register (Register 01B1_H)

This section describes the SerDes Tx Packet Undersize High Register in detail.

SerDes Tx Packet Undersize High Register (Register 01B1_H)

SDS_EXT_TX_US_H SerDes Tx Packet Undersize High Register (Register 01B1H)						er	Offset 01B1 _H						Reset	t Value 0000 _H
15														0
	1	1	I	I	1 1	Ι	SPOUGH	I	I	I	I	Ι	I	I
	1	1	1	1	1 1	I	ro rc		1	1	1		1	1

Field	Bits	Туре	Description
SPOUGH	15:0	RO RC	Good Tx Packet Count High This SPOUGH field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length < 64 bytes. These are the upper 16-bits of a 32-bit value. The lower 16-bits are in SDS_EXT_TX_US_L.SPOUGL. The default is 0 _B .

7.3.16 SerDes Tx Packet Undersize Low Register (Register 01B2_H)

This section describes the SerDes Tx Packet Undersize Low Register in detail.

SerDes Tx Packet Undersize Low Register (Register 01B2_H)

SerDe	SDS_EXT_TX_US_L SerDes Tx Packet Undersize Low Register (Register 01B2H)					egister		fset B2 _H						Value 0000 _H
15														0
	1	1	I	I	Ι	Ι	SPC	UGL	I	Ι	1	Ι	I	I
	1	I	1		I		ro	rc		1	1	1	1	I

Field	Bits	Туре	Description
SPOUGL	15:0	RO RC	Good Tx Packet Count Low This SPOUGL field represents the number of Tx packets from PHY GMII interface with correct CRC and a packet length > 1518 bytes. These are the lower 16-bits of a 32-bit value. The upper 16-bits are in SDS_EXT_TX_US_H.SPOUGH. The default is 0 _B .

7.3.17 SerDes Tx Packet CRC Register (Register 01B3_H)

This section describes the SerDes Tx Packet CRC Register in detail.

SerDes Tx Packet CRC Register (Register 01B3_H)

SDS_EXT_TX_ERR SerDes Tx Packet CRC Register (Register 01B3H)							fset B3 _H					Rese	et Value 0000 _H
15													0
	I			I		SF	POE		I	I	I	I	1
I	1		I		1	rc	rc	11	_1		I	1	

Field	Bits	Туре	Description
SPOE	15:0	RO RC	Tx Packet Error Count This SPOE field represents the number of Tx packets from PHY GMII interface with wrong CRC and a packet length >= 64 bytes and <= 1518 bytes. The default is $0_{\rm B}$.

7.3.18 SerDes Tx Packet CRC Oversize Register (Register 01B4_H)

This section describes the SerDes Tx Packet CRC Oversize Register in detail.

SerDes Tx Packet CRC Oversize Register (Register 01B4_H)

This register is used for debugging SerDes Tx packets.

SDS_E SerDe (Regis	s Tx Pa	acket C		/ersize	Regist	er	Offset 01B4 _H						Rese	t Value 0000 _H
15														0
	Ι	1	I	1	I	I I	SPOOB	Ι	I	I	I	Ι	I	I
	1	1	1	1	1	II	ro rc		1	1	1		1	

Field	Bits	Туре	Description
SPOOB	15:0	RO RC	Tx Oversize Packet CRC Error Count
			This SPOOB field represents the number of Tx packets from PHY GMII
			interface with wrong CRC and a packet length > 1518 bytes.
			The default is 0 _B .

7.3.19 SerDes Tx Packet Fragment Register (Register 01B5_H)

This section describes the SerDes Tx Packet Fragment Register in detail.

SerDes Tx Packet Fragment Register (Register 01B5_H)

This register is used for debugging SerDes Tx packets.

SDS_EXT_TX_FRAGMENT SerDes Tx Packet Fragment Register (Register 01B5H)						Offset 01B5 _H			Reset	Value 0000 _H
15										0
						SPOF		T		
						ro rc				I

Field	Bits	Туре	Description
SPOF	15:0	RO RC	Tx Fragment Packet Error Count This SPOF field represents the number of Tx packets from PHY GMIIinterface with a packet length < 64 bytes.

7.3.20 SerDes Tx Packet No SFD Register (Register 01B6_H)

This section describes the SerDes Tx Packet Fragment Register in detail.

SerDes Tx Packet No SFD Register (Register 01B6_H)

This register is used for debugging SerDes Tx packets.

SDS_E SerDe: 01B6H	s Tx Pa	_) Regis	ster (R	legister	Offs 01B					Res	et Value 0000 _H
15												0
						SPO	NF	1	I		I	
						ro i	rc					

Field	Bits	Туре	Description
SPONF	15:0	RO RC	Tx Packet Missing Start Frame Delimiter Count
			This field represents the number of Tx packets from PHY GMII interface,
			with missing SFD.
			The default is 0 _B .

8 Electrical Characteristics

This chapter provides the electrical characteristics for the MxL86111.

8.1 Absolute Maximum Ratings

Table 28 provides the absolute maximum ratings.

Table 28Absolute Maximum Ratings

Parameter	Symbol		Value	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Storage Temperature Limits	T _{STG}	-	_	40	°C	Devices should be stored according to these criteria: - The temperature must be less than 40 °C. - The relative humidity must be less than 90%. Before removing the devices from the moisture barrier bag, ensure that there is no condensation in the air.	
Soldering Temperature	T _{SOL}	_	_	260	°C	Solder the devices with lead- free (Pb) solder that complies with J-STD-020D	
Moisture Level 3 Temperature Limits	T _{ML3}	-	-	260	°C	According to IPS J-STD 020	
Absolute Junction Temperature	T _{JABS}	_	-	125	°C	-	
VDD3V3/VDDDAV3	V _{max}	-0.3	3.3	3.7	V	-	
VDDA1V1/VDD	V _{max}	-0.2	1.1	1.4	V	-	
2.5 V RGMII	V _{max}	-0.3	2.5	2.8	V	-	
1.8 V RGMII	V _{max}	-0.3	1.8	2.3	V	-	
3.3 V DC Input	V _{max}	-0.3	3.3	3.7	V	-	
VDD/VDDA1V1 DC Input	V _{max}	-0.3	1.1	1.4	V	-	

Attention: Stresses above the maximum values listed in this table may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

8.2 Operating Range

Table 29 defines the maximum values of voltages and temperature that must be applied to guarantee proper operation of the Gigabit Ethernet PHY. The values are relative to a ground voltage source supply (VSS) of 0.0 V.

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
VDD3V3/VDDDAV3	V _{max}	2.97	3.3	3.63	V	-
VDDA1V1/VDD	V _{max}	1.045	1.1	1.32	V	-
2.5 V RGMII	V _{max}	2.25	2.5	2.75	V	-
1.8 V RGMII	V _{max}	1.62	1.8	1.98	V	-
Maximum Operating Junction Temperature	T _{JMAX}	-	-	125	°C	-
3.3 V Minimum High Level Output Voltage	V _{OH}	2.4	-	3.63	V	-
3.3 V Maximum Low Level Output Voltage	V _{OL}	-0.3	-	0.4	V	-
2.5 V Minimum High Level Output Voltage	V _{OH}	2	-	2.8	V	-
2.5 V Maximum Low Level Output Voltage	V _{OL}	-0.3	-	0.4	V	-
1.8 V Minimum High Level Output Voltage	V _{OH}	1.62	-	2.1	V	-
1.8 V Maximum Low Level Output Voltage	V _{OL}	-0.3	-	0.4	V	-
3.3 V Minimum High Level Input Voltage	V _{IH}	2	-	-	V	-
3.3 V Maximum Low Level Input Voltage	V _{IL}	_	-	0.8	V	-
2.5 V Minimum High Level Input Voltage	V _{IH}	1.7	-	-	V	_
2.5 V Maximum Low Level Input Voltage	V _{IL}	_	-	0.7	V	_
1.8 V Minimum High Level Input Voltage	V _{IH}	1.2	-	-	V	-
1.8 V Maximum Low Level Input Voltage	V _{IL}	-	-	0.5	V	_

Table 29	Supply Voltage and Temperature

8.3 AC Characteristics

The following sections describe the AC characteristics of the external interfaces as well as the power up and power down sequence.

8.3.1 Power Up and Power Down Sequence

Figure 13 shows the power up and power down sequence.

Figure 13 Power Up and Power Down Sequence

Note: When 1.1 V in external supply mode, the sequence for 3.3 V and 1.1 V can be powered up at the same time. The 1.1 V power supply must always be lower than 3.3 V power supply.

Table 30 Sequence Timing Parameter	Table 30	Sequence	Timing	Parameters
------------------------------------	----------	----------	--------	------------

Parameter	Symbol V		Values	Values		Note / Test Condition	
		Min.	Тур.	Max.			
3.3 V Rising Time	Tvh_ramp_up	0.5	-	-	ms	-	
3.3 V and 1.1 V Power-Down Duration	Tpower_down	100	-	-	ms	-	
Core Power 1.1 V Ready Time	Tvl_ramp_up	_	-	2.5	ms	-	
Internal LDO Ready Time	TLDO	_	-	100	us	-	

8.3.2 Power Supply Rail Requirements

The maximum noise per power rail must be under these limits:

- 3.3 V: < 100 mV peak-to-peak
- VDD (1.1 V): < 80 mV peak-to-peak
- VDDA (1.1 V): < 50 mV peak-to-peak

8.3.3 Device Power Consumption

Table 31 to Table 36 show the power consumption for the MxL86111.

Power consumption at 25 °C ambient temperature is indicated in **Table 31** to **Table 35** for the different modes. The Link-up conditions are full-speed, bidirectional, and full-duplex. Power numbers are indicated for internal DCDC SVR.

Table 31 Device in UTP_TO_RGMII Mode Power Consumption

Condition 25 °C 100 m Cable	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption (mW)
Link Down	1	7	21	95.7
Link Up at 1000 Mbps	13	51	61	412.5
Traffic at 1000 Mbps	28	57	61	481.8

Note: Test by typical corner chip with VDDP/VDD3V3/VDDA3V3 = 3.3 V and VDD/VDDA1V1 = 1.1 V under room temperature.

Condition 25 °C 100 m Cable	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption (mW)
Link Down	12	8	13	108.9
Link Up at 1000 Mbps	13	9	13	115.5
Traffic at 1000 Mbps	29	9	13	168.3

Table 32 Device in FIBER_TO_RGMII Mode Power Consumption

Table 33 Device in SGMII_TO_RGMII Mode Power Consumption

Condition 25 °C 100 m Cable	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption (mW)
Link Down	12	8	13	108.9
Link Up at 1000 Mbps	12	9	13	112.2
Traffic at 1000 Mbps	30	9	13	171.6

Table 34 Device in UTP_TO_SGMII Mode Power Consumption

Condition 25 °C 100 m Cable	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption (mW)
Link Down	0	14	28	138.6
Link Up at 1000 Mbps	0	58	69	419.1
Traffic at 1000 Mbps	0	64	68	435.6

Condition 25 °C 100 m Cable	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption (mW)
Link Down	0	7	13	66
Link Up at 1000 Mbps	0	58	69	419.1
Traffic at 1000 Mbps	0	64	69	438.9

Table 35 Device in UTP_TO_FIBER Mode Power Consumption

Table 36Maximum Device Power Consumption

Condition 85 °C	VDDP (mA)	VDD3V3 (mA)	VDDA3V3 (mA)	Power Consumption
100 m Cable				(mW)
Traffic at 1000 Mbps	30.8	62.7	67.1	530

Note: Test by fast corner chip with VDDP/VDD3V3/VDDA3V3 = 3.3 V and VDD/VDDA1V1 = 1.1 V at 85 °C.

8.3.4 MDIO Interface

Figure 14 shows a timing diagram of the slave MDIO interface for a clock cycle in the read, write, and turnaround modes. The timing measurements are annotated. The defined absolute values are summarized in **Table 37**.

Figure 14 Timing Diagram for the MDIO Interface

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
MDC High Time	t _{CH}	32.0	-	_	ns	All provided
MDC Low Time	t _{CL}	32.0	-	_	ns	timings were
MDC Clock Period	t _{CP}	80.0	-	_	ns	captured from a probe attached to
MDC Clock Frequency ¹⁾	t _{CP}	-	2.5	12.5	MHz	the MDC pin of
MDC Rise Time	t _R	-	-	10.0	ns	the device.
MDC Fall Time	t _F	-	-	10.0	ns	
MDIO Input Setup Time	t _S	10.0	-	-	ns	Gigabit Ethernet PHY receive

Table 37	Timing Characteristics of the MDIO Interface (cont'd)

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
MDIO Input Hold Time	t _H	10.0	-	-	ns	Gigabit Ethernet PHY receive
MDIO Output Delay Time	t _D	0.0	-	20	ns	Gigabit Ethernet PHY transmit
MDIO Output Setup Time	t _s	10.0	-	-	ns	MAC transmit
MDIO Output Hold Time	t _H	10.0	_	_	ns	MAC transmit

1) MDC clock supports range of frequencies up to 12.5 MHz. The typical (and default) frequency is 2.5 MHz.

8.3.5 **RGMII** Interface

This section describes the AC characteristics of the RGMII interface on the MxL86111. This interface conforms to the RGMII specification version 1.3 and version 2.0, as defined in [3] and [4] respectively. The RGMII interface operates at speeds of 10 Mbit/s, 100 Mbit/s, or 1000 Mbit/s.

8.3.5.1 Transmit Timing Characteristics

Figure 15 shows the timing diagram of the transmit RGMII interface on the MxL86111. **Table 38** provides the RGMII timing requirements. Note the data and control signals are clocked in using the internal delayed version of the TX_CLK which is the external clock delayed by the integrated delay. The delay is adjustable in steps of 0.15 ns. This amount is configurable using the COM_EXT_RGMII_CFG1 register. See Section 7.1. An additional 2 ns of delay is available via pin strapping. See Section 3.17.

Figure 15 RGMII Transmit Timing Diagram

Table 38	RGMII Transmit Timing Characteristics
----------	--

Parameter	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Transmit Clock Frequency (TX_CLK)	f _{TX_CLK}	-50 ppm	125.0	+50 ppm	MHz	For 1000 Mbit/s speed	
			25.0		MHz	For 100 Mbit/s speed	
			2.5		MHz	For 10 Mbit/s speed	
Transmit Clock Period (TX_CLK)	t _{CP}	7.2	8.0	8.8	ns	For 1000 Mbit/s speed	
		36.0	40.0	44.0	ns	For 100 Mbit/s speed	
		360.0	400.0	440.0	ns	For 10 Mbit/s speed	
Duty Cycle	t _{CH} /t _{CP,} t _{CL} /t _{CP}	45.0	50.0	55.0	%	Speed-independent	
Transmit Clock Rise Time (TX_CLK)	t _R	-	_	750.0	ps	20%→80%	
Transmit Clock Fall Time (TX_CLK)	t _F	-	_	750.0	ps	80%→20%	
Setup Time to ↑↓ TX_CLK	t _s	1.0	_	_	ns	-	

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Hold Time to ↑↓ TX_CLK	t _H	1.0	_	_	ns	-
Integrated Transmit Clock Delay	t _{ID}	0.0	k x 0.15	4.25	ns	Adjustable via COM_EXT_RGMII_CF G1

Table 38 RGMII Transmit Timing Characteristics

8.3.5.2 Receive Timing Characteristics

Figure 16 shows the timing diagram of the receive RGMII interface on the MxL86111. It is referred to by **Table 39**, which specifies the timing requirements. The external clock on the pin is delayed by the integrated delay, which is adjustable in steps of 0.15 ns. This amount is configurable using the COM_EXT_RGMII_CFG1 register. See **Section 7.1**. An additional 2 ns of delay is available via pin strapping. See **Section 3.17**. If the integrated delay is not used it must be set to zero, in which case all the timings are related directly to the RX_CLK on the pin.

Figure 16 RGMII Receive Timing Diagram

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Receive Clock Frequency (RX_CLK)	f _{RX_CLK}	-50 ppm	125.0	+50 ppm	MHz	For 1000 Mbit/s speed	
			25.0		MHz	For 100 Mbit/s speed	
			2.5		MHz	For 10 Mbit/s speed	
Receive Clock Period (RX_CLK)	t _{CP}	7.2	8.0	8.8	ns	For 1000 Mbit/s speed	
		36	40.0	46	ns	For 100 Mbit/s speed	
		360	400.0	460	ns	For 10 Mbit/s speed	
Duty Cycle	t _{CH} /t _{CP,} t _{CL} /t _{CP}	45.0	50.0	55.0	%	Speed-independent	
Receive Clock Rise Time (TX_CLK)	t _R	_	_	750.0	ps	20% → 80%	
Receive Clock Fall Time (TX_CLK)	t _F	_	_	750.0	ps	80% → 20%	

Data Sheet

Table 39 RGMII Receive Timing Characteristics

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock-to-Data Skew	t _{skew}	-0.5	0.0	0.5	ns	The skew between the RXC and RXC/RX_CTL should be less than 500 ps
Integrated Receive Clock Delay	t _{ID}	0.0	k x 0.15	4.25	ns	Adjustable via COM_EXT_RGMII_CF G1 and the RXDLY pin strapping

8.3.6 SGMII Interface

This section describes the AC characteristics of the SGMII Interface on the MxL86111C and MxL86111I. This interface conforms to the SGMII specification v1.7, as defined in [2]. The SGMII interface can operate at 1.25 Gbaud. The net data-rate is 1000 Mbit/s. Using repetition modes, 10 Mbit/s and 100 Mbit/s are supported.

8.3.6.1 Transmit Timing Characteristics

Figure 17 shows the timing diagram of the transmit SGMII interface on the MxL86111C and MxL86111I. It is referred to by **Table 40**, which specifies the timing requirements.

Figure 17 SGMII Transmit Timing Diagram

Table 40 SGMII Transmit	Timing Characteristics
-------------------------	-------------------------------

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Transmit baud rate	f _b	-75 ppm	f _b	+75 ppm	Mbaud	f _b = 1.25 Gbaud	
Differential transmit rise time	T_tr	30 ps	_	0.25 UI	_	20%→80% ¹⁾	
Differential transmit fall time	T_tf	30 ps	-	0.25 UI	_	80%→20%	
Output timing jitter	T_TJ	-	-	0.375	UI _{pp} ²⁾		
Time skew between pairs	t _{Skew}	-	-	15	ps	-	
Output differential voltage	V _{OD}	0.8 x VDDA1V 1	-	1.2 x VDDA1V1	mV	Peak-peak amplitude	
Output impedance (differential)	R _o	80	100	120	Ω	_	

1) UI = $1/f_b$, Unit Interval.

2) Refer to [5] for details. The p-p (peak to peak) measurement states the maximum to minimum amount of time deviation.

8.3.6.2 Receive Timing Characteristics

Figure 18 shows the timing diagram of the receive SGMII interface on the MxL86111C and MxL86111I. It is referred to by **Table 41**, which specifies the timing requirements. The integrated SGMII operates using a Clock and Data Recovery (CDR), and therefore does not require the 625 MHz differential receive clock. Consequently, there are no timing requirement related to this clock.

Figure 18 SGMII Receive Timing Diagram

Table 41	SGMII Receive Timing Characteristics
----------	--------------------------------------

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Receive baud rate	f _b	-75 ppm	f _b	+75 ppm	Mbaud	f _b = 1.25/3.125 Gbaud
Receive data jitter tolerance	R_TJ	-	_	0.625	UI _{pp} ¹⁾	-
Input differential voltage	V _{ID}	100	-	1.2 x VDDA1V1	mV	peak-peak amplitude
Input impedance (differential)	R _I	80	100	120	Ω	-

1) Refer to [5] for details.

8.3.7 Crystal Specification

The 25 MHz crystal must follow the specification given in Table 42.

Table 42Specification of the Crystal

Parameter	Symbol	bol Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Frequency with 25 MHz Input	f _{clk25}	_	25.0	-	MHz	-	
Total Frequency Stability ¹⁾	-	-50	_	+50	ppm	-	
Series Resonant Resistance	-	_	_	50	Ω	-	
Drive Level	-	_	_	0.5	mW	-	
Crystal Output High Level	V _{ih}	1.4	_	-	V	-	
Crystal Output Low Level	V _{il}	_	_	0.7	V	-	

1) Total frequency stability refers to the sum all effects, not limited to general tolerance, aging, and temperature influences.

8.3.8 External Clock Requirements

Table 43 shows the external clock requirements.

Table 43	Specification of the External Clock
----------	-------------------------------------

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Frequency with 25 MHz Input	f _{clk25}	_	25.0	_	MHz	-
Total Frequency Stability	_	-50	_	+50	ppm	-
Duty Cycle	_	40	_	60	%	-
Clock Output High	V _{ih}	1.4	-	VDDA3V 3+0.3	V	-
Clock Output Low	V _{il}	_	_	0.7	V	-
Rise Time (10% - 90%)	_	_	_	10	ns	-
Fall Time (10% - 90%)	-	-	_	10	ns	-

9 Package Outline

The MxL86111 device is available in a 48-pin Quad Flat Non-leaded (QFN) package with an exposed pin (EPAD). The pin pitch is 0.4 mm and the size of the EPAD is 4.3 x 4.3 mm. The EPAD is used as the common ground and must be connected to the PCB ground plane. The package is a lead-free "green package", and its exact name for reference purposes is PG-QFN-48.

 Table 44 provides the mechanical dimensions for the PG-QFN-48 package.
 Figure 19 shows the top, side and bottom dimension drawings of the PG-QFN-48 package.

Parameter		Symbol	Minimum	Nominal	Maximum
Total Thickness		A	0.80	0.85	0.95
Stand Off		A1	0	0.02	0.05
Mold Thickness		A2	-	0.65	-
L/F Thickness		A3	0.203 Ref	I	L
Lead Width		b	0.15	0.20	0.25
Body Size		D	6.00 BSC		
	Υ	E	6.00 BSC		
Lead Pitch		е	0.40 BSC		
EP Size	X	D2	4.10	4.30	4.50
	Y	E2	4.10	4.30	4.50
Lead Length		L	0.30	0.40	0.50

Table 44 PG-QFN-48 Mechanical Dimensions

Figure 19 PG-QFN-48 Mechanical Drawing

Data Sheet

9.1 Thermal Resistance

Table 45 shows the package thermal resistance values.

Symbol	Parameter	Condition	Тур	Units
$\theta_{JA} = ($	Thermal resistance - junction to ambient $\theta_{JA} = (T_J - T_A)/P$	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow TA=25 °C	30.2	°C/W
	P = Total power dissipation	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow TA=85 °C	27.7	°C/W
θ _{JB}	Thermal resistance - junction to board $\theta_{JB} = (T_J - T_B) / P_{bottom}$ $P_{bottom} = Power dissipation from the bottom of the package to the PCB surface$	JEDEC with no air flow	10.5	°C/W
$\theta_{\text{JC-Top}}$	Thermal resistance - junction to case $\theta_{JC} = (T_J - T_C)/P_{top}$ P_{top} = Power dissipation from the top of the package	JEDEC with no air flow	22	°C/W

Table 45 Thermal Resistance

9.2 Chip Identification and Ordering Information

Figure 20 shows an example of the marking pattern on the MxL86111 device.

Figure 20 Chip Marking

Table 46 explains the chip marking information.

Table 46 Chip Marking Pattern				
Marking	Description			
MxL	MaxLinear Logo			
AAAA	MaxLinear Part Number			
BBBBBB	Wafer Lot Number			
XX	First wafer number in assembly lot, such as 01			
YY	Year			
WW	Work Week			
S	Supplier Manufacturing Code			

Table 46 Chip Marking Pattern

 Table 47 provides the chip ordering information.

Table 47Chip Ordering Information

Marketing Part Number	Ordering Part Number	Temperature Range	Package (X x Y mm)	MAC Interface	Description	
MxL86111C	MXL86111C- AQB-R	0 °C to 70 °C	QFN48 (6 x 6)	RGMII/SGMII	Ethernet Gigabit PHY with	
MxL86111I	MXL86111I- AQB-R	-40 °C to 85 °C	QFN48 (6 x 6)	RGMII/SGMII	RGMII/SGMII	

Note: For more information about part numbers, as well as the most up-to-date information and additional information on environmental rating, go to https://www.maxlinear.com/support/product-change-notification.

Data Sheet

Table 48 provides the chip specific information.

Table 48 Chip Specific Information

SMGII Interface	MxL86111
OUI	F04CD5
Device ID	0018 _H
Revision	0008 _H
Register 2 PHY ID1	C133 _H
Register 3 PHY ID2	5588 _H

Standards References

Standards References

- [1] IEEE 802.3-2018: "IEEE Standard for Ethernet", IEEE Computer Society
- [2] Serial-GMII Specification: Revision 1.8, Cisco Systems, November 2 2005
- [3] Hewlett Packard, "Reduced Gigabit Media Independent Interface (RGMII)", Version 1.3, 12.10.2000
- [4] Hewlett Packard, "Reduced Gigabit Media Independent Interface (RGMII)", Version 2.0, 04.01.2002
- [5] Common Electrical I/O (CEI) Electrical and Jitter Interoperability agreements for 6G+ bps and 11G+ bps I/O (IA # OIF-CEI-02.0) 28th February 2005

Terminology

Terminology

Α	
ADS	Auto-Downspeed
ANEG	Auto-Negotiation
В	
BER	Bit Error Rate
С	
CAT5	Category 5 Cabling
CDR	Clock and Data Recovery
CRS	Carrier Sense
D	
DEC	Digital Echo Canceler
E	
EEE	Energy-Efficient Ethernet
EMI	Electromagnetic Interference
G	
GbE	Gigabit Ethernet
GMII	Gigabit Media-Independent Interface
н	
HCD	Highest Common Denominator
I	
IEEE	Institute of Electrical and Electronics Engineers
L	
LAN	Local Area Network
LED	Light Emitting Diode
LPI	Low Power Idle
LSB	Least Significant Bit
Μ	
MAC	Media Access Controller
MDI	Media-Dependent Interface
MDIO	Management Data Input/Output
MDIX	Media-Dependent Interface Crossover
MII	Media-Independent Interface
MMD	MDIO Manageable Device
MSB	Most Significant Bit
Ν	
NC	Not Connected
0	
OSI	Open Systems Interconnection

Terminology

OUI	Organizationally Unique Identifier
Р	
PCB	Printed Circuit Board
PCS	Physical Coding Sublayer
PHY	Physical Layer (device)
Q	
QFN	Quad Flat Non-leaded
R	
Rx	Receive
S	
SDF	Start Frame Delimiter
SFP	Small Form-Factor Pluggable
SGMII	Serial Gigabit Media-Independent Interface
SoC	System on Chip
SQE	Signal Quality Errors
STA	Station Management Entity (MAC SoC), defined in IEEE 802.3
SVR	Selecting Voltage Regulator
т	
TPI	Twisted Pair Interface
Тх	Transmit
V	
VSS	Voltage Source Supply
W	
Wi-Fi	Wireless Local Area Network
WoL	Wake-on-LAN
x	
XNP	Extended Next Page