

Low Capacitance, Low Charge Injection, ±15 V/+12 V iCMOS Quad SPST Switches

ADG1212-EP Enhanced Product

FEATURES

1 pF off capacitance 2.6 pF on capacitance <1 pC charge injection 33 V supply range 120 Ω on resistance Fully specified at $\pm 15 \text{ V}$, +12 VNo V_L supply required 3 V logic-compatible inputs **Rail-to-rail operation** 16-lead TSSOP

Typical power consumption: <0.03 μW

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range: -55°C to +125°C Controlled manufacturing baseline 1 assembly/test site 1 fabrication site **Product change notification** Qualification data available on request

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems **Audio signal routing** Video signal routing **Communication systems**

GENERAL DESCRIPTION

The ADG1212-EP is a monolithic complementary metal-oxide semiconductor (CMOS) device containing four independently selectable switches designed on an *i*CMOS[®] (industrial CMOS) process. iCMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

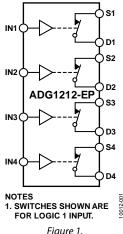


Figure 1.

The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the part suitable for video signal switching.

iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

The ADG1212-EP contains four independent single-pole/ single-throw (SPST) switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

Additional application and technical information can be found in the ADG1212 data sheet.

PRODUCT HIGHLIGHTS

- Ultralow capacitance.
- <1 pC charge injection.
- 3. 3 V logic compatible digital inputs: $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$.
- No V_L logic power supply required.
- Ultralow power dissipation: <0.03 μW.
- 16-lead TSSOP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2018 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

TABLE OF CONTENTS

Features
Enhanced Product Features
Applications1
General Description
Functional Block Diagram
Product Highlights
Revision History
Specifications
Dual Supply3
REVISION HISTORY
5/2018—Rev. A to Rev. B
Change to Enhanced Product Features Section
Changes to Ordering Guide
7/2012—Rev. 0 to Rev. A
Changed Operating Temperature Range from −40°C to +125°C
to -55°C to +125°C; Table 35

Single Supply	.4
Absolute Maximum Ratings	.5
ESD Caution	.5
Pin Configuration and Function Descriptions	.6
Typical Performance Characteristics	.7
Test Circuits	.9
Outline Dimensions	1
Ordering Guide 1	l 1

11/2011—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	−40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	٧	
On Resistance (R _{ON})	120			Ωtyp	$V_{s} = \pm 10 \text{ V}, I_{s} = -1 \text{ mA}; \text{ see Figure 15}$
, , ,	190	230	260	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	2.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
in the state of th	6	10	11	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	20			Ωtyp	$V_s = -5 \text{ V/0 V/+5 V; I}_s = -1 \text{ mA}$
OTT MESISTATION THAT THE STATE OF THE STATE	57	72	79	Ω max	
LEAKAGE CURRENTS		1 -		1211107	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}; \text{ see Figure 11}$
Source Off Leakage, 15 (Off)	±0.02	±0.6	±1		Vs = ±10 V, Vb = ±10 V, see Figure 11
Duain Off Lockers L (Off)		±0.6	±1	nA max	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Drain Off Leakage, I _D (Off)	±0.02		. 4	nA typ	$V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}; \text{ see Figure 11}$
	±0.1	±0.6	±1	nA max	V V .40V 5: 40
Channel On Leakage, ID, Is (On)	±0.02			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 12
	±0.1	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	2.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	65			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	80	95	110	ns max	$V_S = 10 \text{ V}$; see Figure 18
t _{off}	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	100	115	135	ns max	V _s = 10 V; see Figure 18
Charge Injection	-0.3			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 19
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 13
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 14
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz}$ to 20 kHz;
10.00.	01.5			70 17	see Figure 17
−3 dB Bandwidth	1000			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 16
C _s (Off)	0.9			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
-5 ()	1.1			pF max	$V_S = 0 V, f = 1 MHz$
C _D (Off)	1			pF typ	$V_s = 0 \text{ V, } f = 1 \text{ MHz}$
CD (OH)	1.2			pF max	$V_s = 0 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	2.6			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
CD, CS (OH)	3			pF max	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS	3	+		рі пах	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
	0.001			۸ +	$V_{DD} = +10.5 \text{ V}, V_{SS} = -10.5 \text{ V}$ $Digital inputs = 0 \text{ V or } V_{DD}$
I_{DD}	0.001		1.0	μA typ	Digital iliputs – 0 v of v _{DD}
	220		1.0	μA max	Dinital invests 5 V
I _{DD}	220		420	μA typ	Digital inputs = 5 V
			420	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V_{DD}
	1		1.0	μA max	
I_{SS}	0.001			μA typ	Digital inputs = 5 V
			1.0	μA max	

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0VtoV_{DD}$	V	
On Resistance (R _{ON})	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA; see Figure } 15$
	475	567	625	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	4.5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$
	12	26	27	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	60			Ω typ	$V_S = 3 \text{ V/6 V/9 V, } I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 11}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 11}$
	±0.1	±0.6	±1	nA max	
Channel On Leakage, ID, IS (On)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V; see Figure } 12$
	±0.1	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	105	125	140	ns max	$V_S = 8 \text{ V}$; see Figure 18
t _{OFF}	90			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	115	140	165	ns max	$V_S = 8 \text{ V}$; see Figure 18
Charge Injection	0			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 19}$
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 13
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 14
–3 dB Bandwidth	900			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 16
C _s (Off)	1.2			pF typ	$V_S = 6 V, f = 1 MHz$
	1.4			pF max	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
C_D (Off)	1.3			pF typ	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
	1.5			pF max	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
C_D , C_S (On)	3.2			pF typ	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
	3.9			pF max	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
I _{DD}	220			μA typ	Digital inputs = 5 V
			420	μA max	

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V_{DD} to GND	-0.3 V to +25 V
V _{SS} to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current per Channel, S or D	25 mA
Operating Temperature Range	−55°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance (4-Layer Board)	112°C/W
Lead Temperature, Soldering	As per JEDEC J-STD-020

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

Table 4. ADG1212-EP Truth Table

ADG1212-EP INx	Switch Condition
1	On
0	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

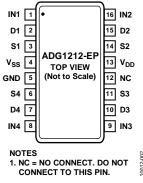


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. This pin can be an input or output.
3	S1	Source Terminal. This pin can be an input or output.
4	V _{SS}	Most Negative Power Supply Potential.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal. This pin can be an input or output.
7	D4	Drain Terminal. This pin can be an input or output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. This pin can be an input or output.
11	S3	Source Terminal. This pin can be an input or output.
12	NC	No Connection.
13	V_{DD}	Most Positive Power Supply Potential.
14	S2	Source Terminal. This pin can be an input or output.
15	D2	Drain Terminal. This pin can be an input or output.
16	IN2	Logic Control Input.

TYPICAL PERFORMANCE CHARACTERISTICS

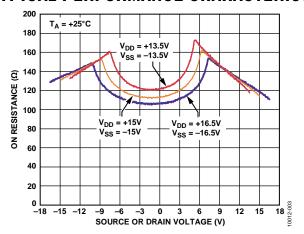


Figure 3. On Resistance as a Function of V_D (V_S) for Dual Supply

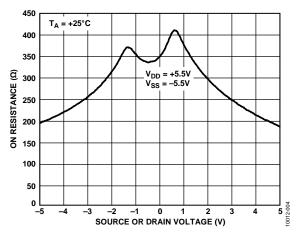


Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

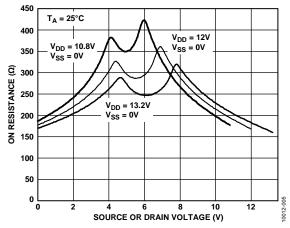


Figure 5. On Resistance as a Function of V_D (V_S) for Single Supply

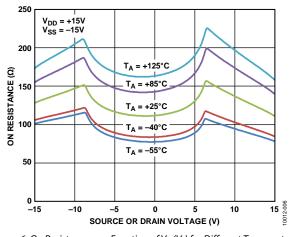


Figure 6. On Resistance as a Function of $V_{\rm D}$ ($V_{\rm S}$) for Different Temperatures, Dual Supply

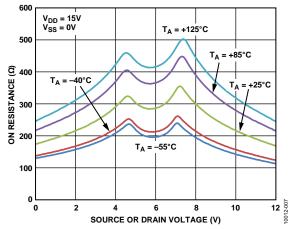


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

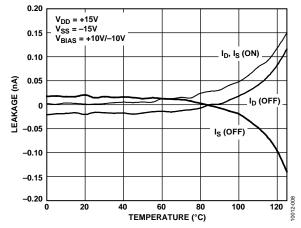


Figure 8. Leakage Currents as a Function of Temperature, Dual Supply

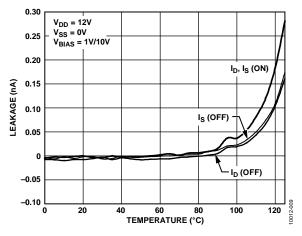


Figure 9. Leakage Currents as a Function of Temperature, Single Supply

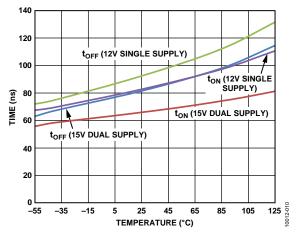


Figure 10. t_{ON}/t_{OFF} Times vs. Temperature

TEST CIRCUITS

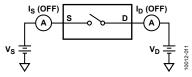


Figure 11. Off Leakage

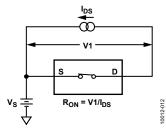


Figure 12. On Leakage

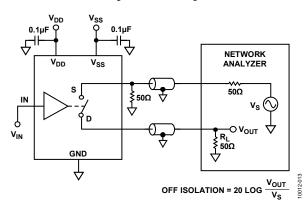


Figure 13. Off Isolation

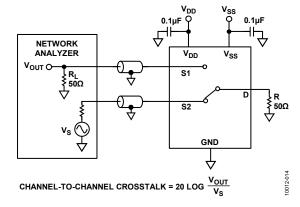


Figure 14. Channel-to-Channel Crosstalk

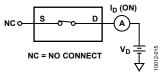


Figure 15. On Resistance

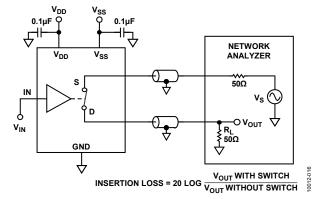


Figure 16. Bandwidth

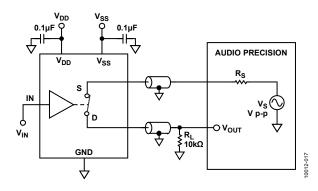


Figure 17. THD + Noise

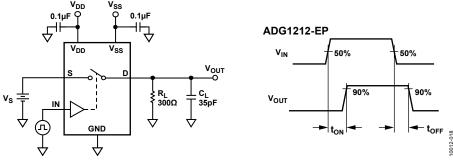


Figure 18. Switching Times

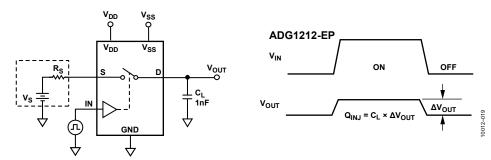
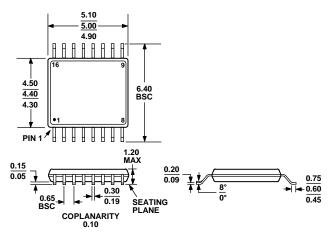



Figure 19. Charge Injection

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 20. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1212SRU-EP-RL7	−55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1212SRUZ-EP-RL7	−55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 $^{^{1}}$ Z = RoHS Compliant Part

NOTES