

Description

The SiT9551 is a ruggedized ultra-low jitter differential ApexMEMS™ oscillator engineered for military and aerospace applications. It delivers the most stable timing under environmental stressors such as shock, vibration, high heat, rapid thermal transients, and power supply noise.

In addition to standard differential signal types, a unique FlexSwing™ output-driver performs like LVPECL and provides independent control of voltage swing and DC offset to simplify interfacing with chipsets having non-standard input voltage requirements and eliminate all external source-bias resistors. The device also integrates multiple on-chip regulators to filter power supply noise, eliminating the need for an external dedicated LDO.

The SiT9551 is factory programmed for specific combinations of frequency, stability, output signaling, voltage, and output enable functionality. Programmability enables designers to optimize clock configurations while eliminating long lead times and customization costs associated with quartz devices where each combination is custom built.

The wide frequency range and programmability makes this device ideal for communications, enterprise, and military and aerospace applications that require a variety of frequencies and operate in noisy environments.

Refer to [Manufacturing Notes](#) for proper reflow profile, tape and reel dimension, and other manufacturing related information.

Block Diagram

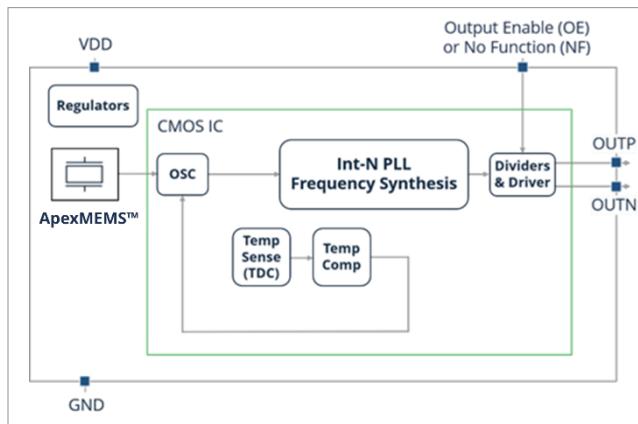


Figure 1. SiT9551 Block Diagram

Features

- 0.04 or 0.1 ppb/g acceleration sensitivity for harsh environments
- Select frequencies from 25 MHz to 644.53125 MHz. See [Ordering Information](#)
- 70 fs RMS typical phase jitter, 12 kHz to 20 MHz
- 50 fs RMS typical phase jitter for SerDes applications
- 9 fs/mV typical PSNR
- LVPECL, LVDS, HCSL, Low-power HCSL, and FlexSwing signaling options
- ± 20, ±30 and ±50 ppm frequency stabilities
- Wide temperature range (-55°C to 125°C)
- Factory programmable options for low lead time
- 1.8 V, 2.5 V, 3.3 V, and wide continuous power supply voltage range options
- 2 x 1.6, 2.5 x 2, 3.2 x 2.5 mm x mm package

Applications

- Airborne Communications
- Command and Control
- Field Communications
- Airframe/Engine Management Control
- Radar
- SATCOM

Package Pinout

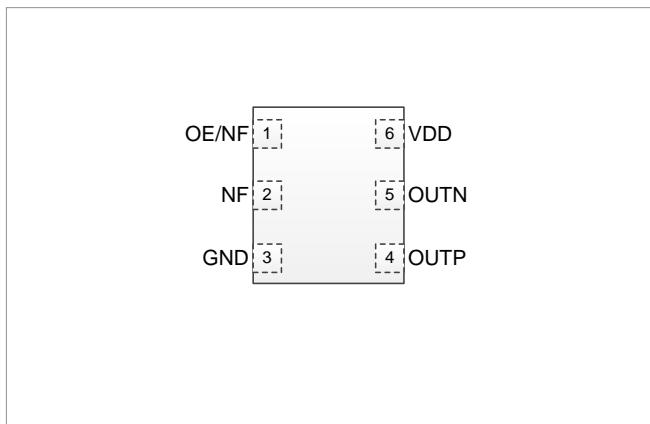


Figure 2. Pin Assignments (Top view)
(Refer to [Table 16](#) for Pin Descriptions)

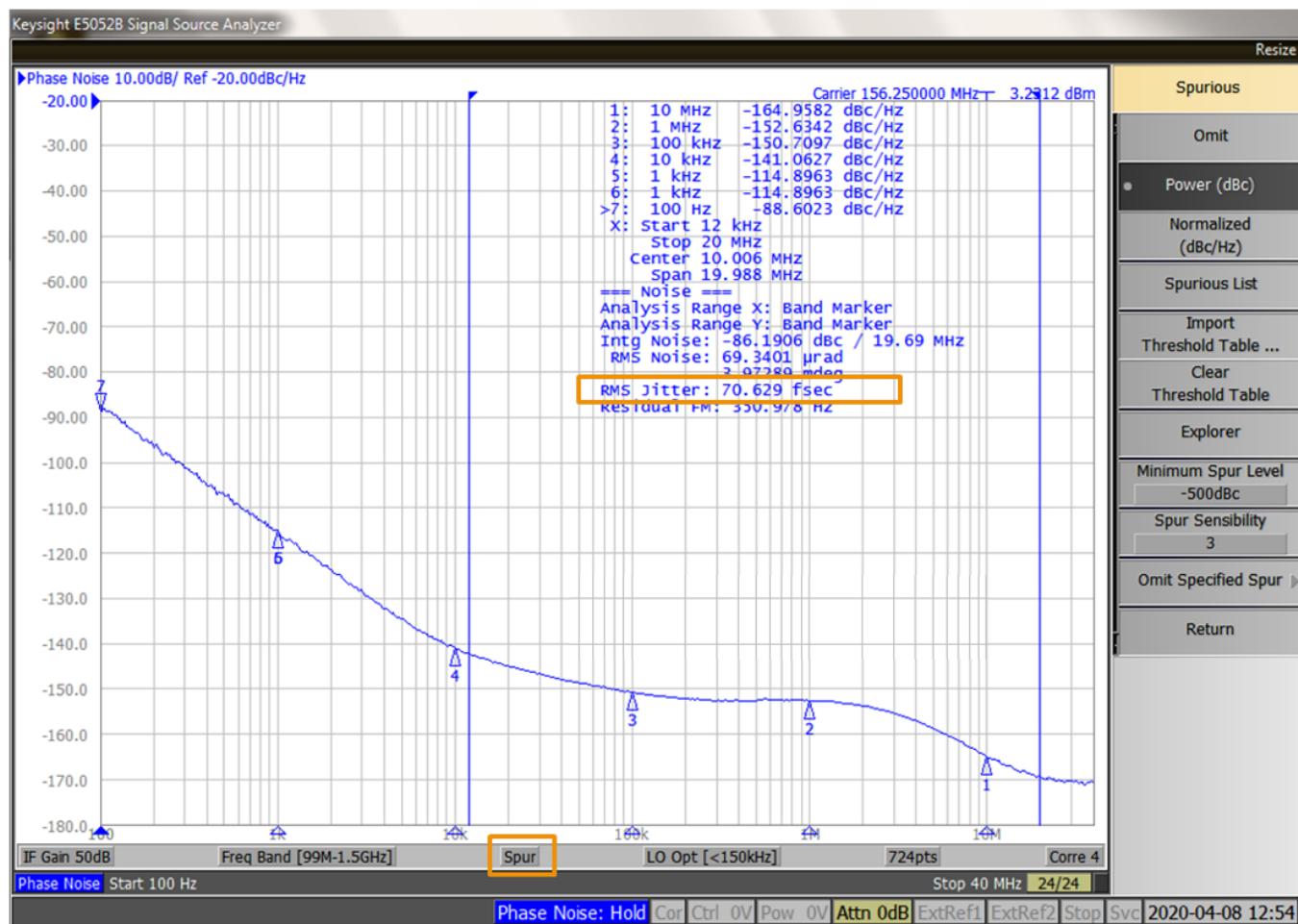


Figure 3. Typical Phase Noise Plot of 3.3 V
 156.25 MHz LVPECL Device at 25°C, Spur turn on

SiT9551 features 45 fs RMS phase jitter for SerDes applications. Figure 4 shows the phase noise (green curve) observed by the system, after accounting for aliased phase noise when filtering (gray curve) the measured SiT9551 phase noise (blue curve). This “4-16A” phase jitter analysis methodology more accurately estimates reference clock

jitter than the legacy “12 kHz to 20 MHz” brick-wall filter methodology. It can be applied to all modern SerDes applications to optimize system performance. See “4-16A” Phase Jitter Methodology for SerDes Applications for more information.

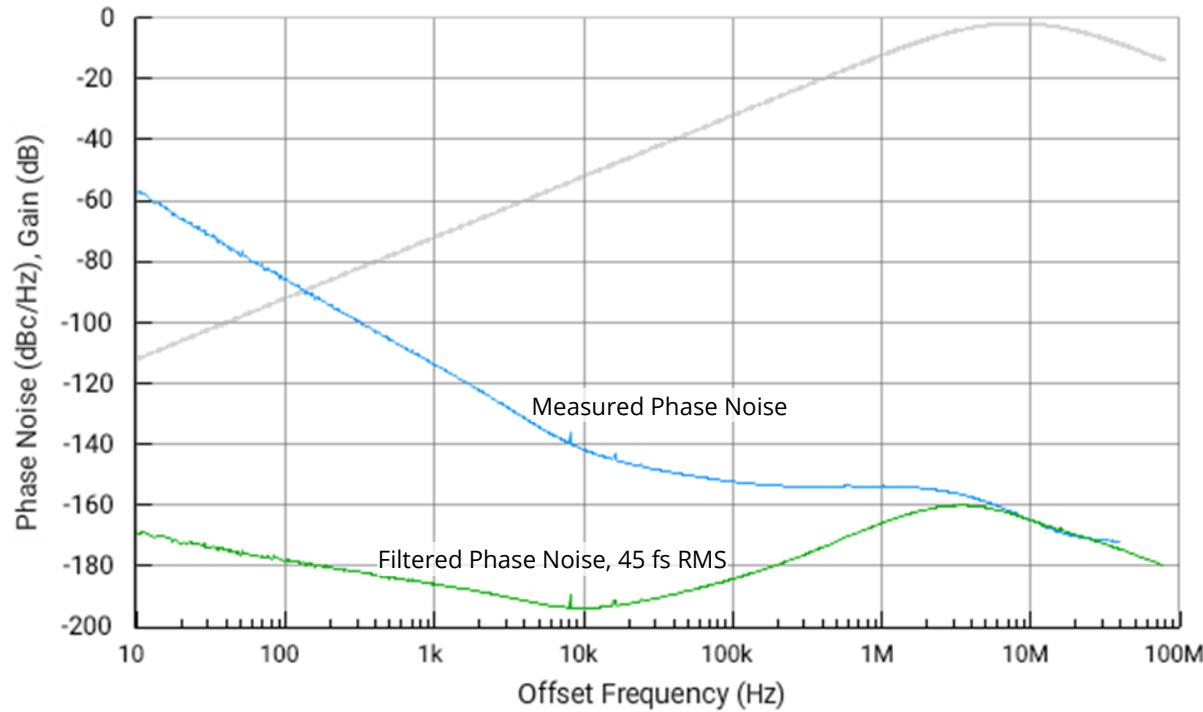


Figure 4. Phase noise before and after filtering for SiT9551 (156.25 MHz, LVPECL, 2.5V, 25°C). The filter is applied to analyze phase noise with aliasing included up to the 3rd harmonic and features first-order filter cutoff frequencies of 4 MHz (high pass) and 16 MHz (low pass).

Ordering Information**SiT9551A M-01B2A3310-125.000000D****Table 1. Ordering Codes for Supported Tape & Reel Packing Method**

Device Size (mm x mm)	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)
2.0 x 1.6	D	E	G
2.5 x 2.0	D	E	G
3.2 x 2.5	D	E	G

Table 2. Supported Frequencies

25.000000 MHz	39.062500 MHz	50.000000 MHz	53.125000 MHz	62.500000 MHz	78.125000 MHz	125.000000 MHz	156.250000 MHz
161.132813 MHz	250.000000 MHz	312.500000 MHz	322.265625 MHz	625.000000 MHz	644.531250 MHz		

Table Of Contents

Description	1
Features	1
Applications	1
Block Diagram	1
Package Pinout	1
Ordering Information	4
Electrical Characteristics	6
Pin Description	17
“4-16A” Phase Jitter Methodology for SerDes Applications	18
FlexSwing Configurations	21
Test Circuit Diagrams	23
Test Setups for LVPECL Measurements	23
Test Setups for FlexSwing Measurements	24
Test Setups for LVDS Measurements	25
Test Setups for HCSL Measurements	26
Test Setups for Low-Power HCSL Measurements	27
Waveform Diagrams	28
Termination Diagrams	30
LVPECL and FlexSwing Termination	30
LVDS, Supply Voltage: 1.8 V \pm 5%, 2.5 V \pm 10%, 3.3 V \pm 10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	31
HCSL, Supply Voltage: 1.8 V \pm 5%, 2.5 V \pm 10%, 3.3 V \pm 10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	31
Low-power HCSL, Supply Voltage: 1.8 V \pm 5%, 2.5 V \pm 10%, 3.3 V \pm 10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	31
Dimensions and Patterns — 2.0 x 1.6 mm x mm	32
Dimensions and Patterns — 2.5 x 2.0 mm x mm	33
Dimensions and Patterns — 3.2 x 2.5 mm x mm	34
Additional Information	35
Revision History	35

Electrical Characteristics

All Min and Max limits in the Electrical Characteristics tables are specified over operating temperature and rated operating voltage with standard output termination shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage. See [Test Circuit Diagrams](#) for the test setups used with each signaling type.

Table 3. Electrical Characteristics – Common to All Output Signaling Types

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Frequency Range						
Output Frequency Range	f	Standard frequencies			MHz	Refer to frequencies listed in Ordering Information
Frequency Stability						
Frequency Stability	F_stab	–	–	±20	ppm	Frequency ordering code "1" –40°C to +105°C (Temperature Ordering Code "I" and "E") Inclusive of initial tolerance, operating temperature, rated power supply voltage, load variation of 2 pF ± 10%, and 10 years aging at 85°C
		–	–	±30	ppm	Frequency ordering code "8" –40°C to +105°C (Temperature Ordering Code "I" and "E") –40°C to +125°C, ± 50 ppm for +105°C to +125°C (Temperature Ordering Code "A") Inclusive of initial tolerance, operating temperature, rated power supply voltage, load variation of 2 pF ± 10%, and 10 years aging at 85°C
		–	–	±50	ppm	Frequency ordering code "2" Inclusive of initial tolerance, operating temperature, rated power supply voltage, load variation of 2 pF ± 10%, and 10 years aging at 85°C
10 Year Aging	F_10y	–	±0.7	2.3	ppm	Ambient temperature of 85°C
Rugged Characteristics						
Acceleration (g) sensitivity, Gamma Vector	F-g	–	0.025	0.04	ppb/g	Ultra-low sensitivity grade; total gamma over 3 axes; 330 Hz to 1.9kHz, 20g, MIL-PRF-55310, section 4.8.18.3.1.
		–	–	0.1	ppb/g	Low sensitivity grade; total gamma over 3 axes; 330 Hz to 1.9kHz, 20g, MIL-PRF-55310, section 4.8.18.3.1.
Temperature Range						
Operating Temperature Range	T_use	-40	–	+85	°C	Industrial, ambient temperature
		-40	–	+105	°C	Extended industrial, ambient temperature
		-40	–	+125	°C	Automotive, ambient temperature
		-55	–	+125	°C	Military, ambient temperature
Supply Voltage						
Supply Voltage	Vdd	1.71	–	3.63	V	Voltage-supply order code "YY" Not supported for LVPECL and FlexSwing
		2.25	–	3.63	V	Voltage-supply order code "XX"
		1.71	1.80	1.89	V	Voltage-supply order code "18". Not supported for LVPECL and FlexSwing
		2.25	2.50	2.75	V	Voltage-supply order code "25"
		2.97	3.30	3.63	V	Voltage-supply order code "33"
Input Characteristics						
Input Voltage High	VIH	70%	–	–	Vdd	Logic High function for Pin 1
Input Voltage Low	VIL	–	–	30%	Vdd	Logic High function for Pin 1
Input Pull-up/Pull-down Impedance	Z_in	–	120	–	kΩ	Pin 1 for OE function
Output Characteristics						
Duty Cycle	DC	48	–	52	%	See Figure 20 for waveform.
Startup, OE and SE Timing						
Startup Time	T_start	–	1.2	2	ms	Measured from the time Vdd reaches its rated minimum value
Output Enable Time 1	T_oe	–	–	100+3 clock cycles	ns	For all signaling types except Low-Power HCSL. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 26 for waveform.
Output Enable Time 2	T_oe	–	–	500+3 clock cycles	ns	For Low-Power HCSL signaling type. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 26 for waveform.
Output Disable Time	T_od	–	–	100+3 clock cycles	ns	Measured from the time OE pin toggles to disable logic level to the last clock edge. See Figure 27 for waveform.

Table 3. Electrical Characteristics – Common to All Output Signaling Types (continued)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Jitter and Phase Noise, measured at f = 156.25 MHz						
4-16A Phase Jitter^[1]	T_416A	–	50	64 ^[2]	fs RMS	Measured with phase noise analyzer, extending (flat) phase noise to 3rd harmonic (i.e., 312.5 MHz offset), folding phase noise below the Nyquist frequency (i.e., 78.125 MHz offset), filtering and integrating from 10 kHz to Nyquist. Uses 4 MHz high pass and 16 MHz low pass filters, each with 20 dB/dec roll off. Includes spurs. See “4-16A” Phase Jitter Methodology for SerDes Applications for additional details.
0.012-20 Phase Jitter (legacy)^[1]	T_phj	–	70	100	fs	Measured with phase noise analyzer, integrating between 12 kHz and 20 MHz offset frequency. Recommended for SONET OC-48 applications. Contact SiTime for 85 fsec Max phase jitter option.
Spurious Phase Noise	T_spn	–	–	-101	dBc	12 kHz to 20 MHz offset frequency range
RMS Period Jitter^[3]	T_jitt_per	–	0.5	0.72	ps	Measured based on 10K cycle
Peak Cycle-to-cycle Jitter^[3]	T_jitt_cc	–	3.5	4.4	ps	Measured based on 1K cycle

Note:

1. Recommended for SerDes applications to improve the accuracy of clock jitter analysis, replacing the traditional 12 kHz to 20 MHz brick wall filter when application-specific filter characteristics are not explicitly specified.
2. Max phase jitter for LVPECL.
3. Measured according to JESD65B using Keysight DSAX91604A Oscilloscope.

Table 4. Electrical Characteristics – LVPECL | Supply voltage (“order code”): 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), All typical specifications are measured at nominal supply voltage of 2.5 V and nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 9](#) and [Figure 10](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption, f = 156.25 MHz						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	28.5	35.5	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination 1	Idd_oe_wt1	–	39	49	mA	Including load termination current as shown in Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V and R3=220 Ohms.
		–	39	45.5	mA	Including load termination current as shown in Figure 31 for Vdd=2.5 V \pm 10% and R3=220 Ohms.
Current Consumption, Output Enabled with Termination 2	Idd_oe_wt2	–	55	61	mA	Including load termination current. See Figure 32 for termination.
Current Consumption Output Disabled with Termination 1	Idd_od_wt1	–	46.5	58	mA	Including load termination current as shown in Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V and R3=220 Ohms. Driver output is at logic-high voltage levels.
		–	46.5	53.5	mA	Including load termination current as shown in Figure 31 for Vdd=2.5 V \pm 10% and R3=220 Ohms. Driver output is at logic-high voltage levels.
Current Consumption, Output Disabled with Termination 2	Idd_od_wt2	–	66	73	mA	Including load termination current. See Figure 32 for termination. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	Vdd-1.095	Vdd-0.95	Vdd-0.855	V	See Figure 19 for waveform.
Output Low Voltage	VOL	Vdd-1.845	Vdd-1.7	Vdd-1.61	V	See Figure 19 for waveform.
Output Differential Voltage Swing	V_Swing	1.4	1.5	1.65	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	170	220	ps	20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	45	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 30	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	12	–	%	Measured as percent of V_Swing. See Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	9	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz
		–	2.0	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 9 .
Power Supply-Induced Phase Noise	PSPN	–	-79	–	dBc	50 mV peak-peak ripple on VDD.
		–	-92	–	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 9 .

Table 5. Electrical Characteristics – FlexSwing | Supply voltage (“order code”) referred to VDD only: 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), 2.25 V to 3.63 V (“XX”). All typical specifications are measured at nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 11](#) and [Figure 12](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	29.5	38	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	37	47.5	mA	Including load termination current, for FlexSwing order code “ER”. See Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V, and R3=220 Ohms.
		–	37	43.5	mA	Including load termination current, for FlexSwing order code “ER”. See Figure 31 for Vdd=2.5 V \pm 10%, and R3=220 Ohms.
Current Consumption Output Disabled with Termination	Idd_od_wt	–	42.5	53	mA	Including load termination current, for FlexSwing order code “ER”. See Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V, and R3=220 Ohms. Driver output is at logic-high voltage levels.
		–	42.5	49.5	mA	Including load termination current, for FlexSwing order code “ER”. See Figure 31 for Vdd=2.5 V \pm 10%, and R3=220 Ohms. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	VHn -0.14	VHn	VHn +0.1	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOH (i.e. VHn) values
Output Low Voltage	VOL	VLn -0.15	VLn	VLn +0.12	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOL (i.e. VLn) values
Output Differential Voltage Swing	V_Swing	-15%	2*(VHn-VLn)	+15%	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	170	200	ps	20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	60	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 40	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	12	–	%	Measured as percent of V_Swing. see Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	14	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “ER”.
		–	2	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “ER”. Using RC power supply filter as shown in Figure 11 .
Power Supply-Induced Phase Noise	PSPN	–	-75	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “ER”.
		–	-93	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “ER”. Using R C power supply filter as shown in Figure 11 .

Table 6. Electrical Characteristics – FlexSwing | Supply voltage (“order code”) referred to GND, only: 1.8 V \pm 5% (“18”), 1.71 V to 3.63 V (“YY”). All typical specifications are measured at nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 11](#) and [Figure 12](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	31	37.5	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	38.5	44	mA	Including load termination current, for FlexSwing order code “3E”. See Figure 31 for Vdd=1.8 V \pm 5% and R3=220 Ohms.
		–	38.5	45.5	mA	Including load termination current, for FlexSwing order code “3E”. See Figure 31 for Vdd=1.71 V to 3.63 V and R3=220 Ohms.
Current Consumption Output Disabled with Termination	Idd_od_wt	–	44.5	50	mA	Including load termination current, for FlexSwing order code “3E”. See Figure 31 for Vdd=1.8 V \pm 5% and R3=220 Ohms. Driver output is at logic-high voltage levels.
		–	44.5	51.5	mA	Including load termination current, for FlexSwing order code “3E”. See Figure 31 for Vdd=1.71 V to 3.63 V and R3=220 Ohms. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	VHn -0.1	VHn	VHn +0.12	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOH (i.e. VHn) values
Output Low Voltage	VOL	VLn -0.1	VLn	VLn +0.12	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOL (i.e. VLn) values
Output Differential Voltage Swing	V_Swing	-15%	2*(VHn-VLn)	+15%	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	170	215	ps	20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	60	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 40	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	12	–	%	Measured as percent of V_Swing. See Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	12	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “3E”.
		–	2	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “3E”. Using RC power supply filter as shown in Figure 11 .
Power Supply-Induced Phase Noise	PSPN	–	-76	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “3E”.
		–	-95	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “3E”. Using RC power supply filter as shown in Figure 11 .

Table 7. Electrical Characteristics – FlexSwing | Supply voltage (“order code”) referred to GND, only:
 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), 2.25 V to 3.63 V (“XX”). All typical specifications are measured at nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 11](#) and [Figure 12](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	30	36	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	37.5	44	mA	Including load termination current, for FlexSwing order code “VP”. See Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V, and R3=220 Ohms.
Current Consumption Output Disabled with Termination	Idd_od_wt	–	46	53	mA	Including load termination current, for FlexSwing order code “VP”. See Figure 31 for Vdd=3.3 V \pm 10%, Vdd=2.25 V to 3.63 V, and R3=220 Ohms. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	VHn - 0.115	VHn	VHn + 0.1	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOH (i.e. VHn) values
Output Low Voltage	VOL	VLn - 0.1	VLn	VLn + 0.1	V	See Figure 19 for waveform; Refer to Table 17 or Table 18 order codes for nominal VOL (i.e. VLn) values
Output Differential Voltage Swing	V_Swing	-15%	2*(VHn - VLn)	+15%	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	170	210	ps	20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	60	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 40	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	12	–	%	Measured as percent of V_Swing. See Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	14	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “VP”
		–	2	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. For FlexSwing order code “VP”. Using RC power supply filter as shown in Figure 11 .
Power Supply-Induced Phase Noise	PSPN	–	-75	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “VP”.
		–	-93	–	dBc	50 mV peak-peak ripple on VDD. For FlexSwing order code “VP”. Using RC power supply filter as shown in Figure 11 .

Table 8. Electrical Characteristics – LVDS | Supply voltage (“order code”): 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), 2.25 V to 3.63 V (“XX”). All typical specifications are measured at nominal supply of 2.5 V and nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 13](#) and [Figure 14](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	25.5	32	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	29	35	mA	Including load termination current. See Figure 35 for termination.
Current Consumption Output Disabled with Termination	Idd_od_wt	–	34.5	41	mA	Including load termination current. See Figure 35 for termination. Driver output is at logic-high voltage levels.
Output Characteristics						
Differential Output Voltage	VOD	250	360	450	mV	See Figure 21 for waveform.
Delta VOD	Δ VOD	–	–	50	mV	See Figure 21 for waveform.
Offset Voltage	VOS	1.125	1.25	1.375	V	See Figure 21 for waveform.
Delta VOS	Δ VOS	–	–	50	mV	See Figure 21 for waveform.
Rise/Fall Time	Tr, Tf	–	290	340	ps	Measured 20% to 80% using Figure 35 for termination. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	25	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 40	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	8	–	%	Measured as percent of VOD. See Figure 25 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	18	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz
	PSJS	–	3.5	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 13 .
Power Supply-Induced Phase Noise	PSPN	–	-73	–	dBc	50 mV peak-peak ripple on VDD.
	PSPN	–	-88	–	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 13 .

Table 9. Electrical Characteristics – LVDS | Supply voltage (“order code”): 1.8 V \pm 5% (“18”), 1.71 V to 3.63 V (“YY”). All typical specifications are measured at nominal supply of 2.5V and nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 13](#) and [Figure 14](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	25.5	32	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	29	35	mA	Including load termination current. See Figure 34 and Figure 35 for termination.
Current Consumption Output Disabled with Termination	Idd_od_wt	–	34.5	41	mA	Including load termination current. See Figure 34 and Figure 35 for termination. Driver output is at logic-high voltage levels.
Output Characteristics						
Differential Output Voltage	VOD	250	330	450	mV	See Figure 21 for waveform.
Delta VOD	Δ VOD	–	–	50	mV	See Figure 21 for waveform.
Offset Voltage	VOS	1.125	1.25	1.375	V	See Figure 21 for waveform.
Delta VOS	Δ VOS	–	–	50	mV	See Figure 21 for waveform.
Rise/Fall Time	Tr, Tf	–	290	340	ps	Measured 20% to 80% using Figure 35 for termination. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	25	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 40	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	8	–	%	Measured as percent of VOD. See Figure 25 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	22.5	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz
		–	3.5	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 13 .
Power Supply-Induced Phase Noise	PSPN	–	-71	–	dBc	50 mV peak-peak ripple on VDD.
		–	-88	–	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 13 .

Table 10. Electrical Characteristics – HCSL | Supply voltage (“order code”): 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), 2.25 V to 3.63 V (“XX”), 1.8 V \pm 5% (“18”), 1.71 V to 3.63 V (“YY”). All typical specifications are measured at nominal supply of 2.5V and nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 15](#) and [Figure 16](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	25	31	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	39.5	45.5	mA	Including load termination current. See Figure 36 for termination.
Current Consumption, Output Disabled with Termination	Idd_od_wt	–	45	52	mA	Including load termination current. See Figure 36 for termination. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	0.60	0.7	0.95	V	See Figure 19 for waveform.
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 19 for waveform.
Output Differential Voltage Swing	V_Swing	1.1	1.4	1.6	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	340	385	ps	Measured 20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	65	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 70	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	0	–	%	Measured as percent of V_Swing. See Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	27	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz
		–	3.5	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 15 .
Power Supply-Induced Phase Noise	PSPN	–	-70	–	dBc	50 mV peak-peak ripple on VDD
		–	-88	–	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 15 .

Table 11. Electrical Characteristics – Low-Power HCSL | Supply voltage (“order code”): 2.5 V \pm 10% (“25”), 3.3 V \pm 10% (“33”), 2.25 V to 3.63 V (“XX”), 1.8 V \pm 5% (“18”), 1.71 V to 3.63 V (“YY”). All typical specifications are measured at nominal supply of 2.5V and nominal frequency of 156.25 MHz unless otherwise stated. See [Figure 17](#) and [Figure 18](#) for test setups.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Current Consumption						
Current Consumption, Output Enabled without Termination	Idd_oe_nt	–	26	31.5	mA	Excluding load termination current.
Current Consumption, Output Enabled with Termination	Idd_oe_wt	–	26.5	32	mA	Including load termination current. See Figure 37 for termination.
Current Consumption, Output Disabled with Termination	Idd_od_wt	–	28.5	35	mA	Including load termination current. See Figure 37 for termination. Driver output is at logic-high voltage levels.
Output Characteristics						
Output High Voltage	VOH	0.8	0.92	1.15	V	See Figure 19 for waveform.
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 19 for waveform.
Output Differential Voltage Swing	V_Swing	1.6	1.83	2.0	V	See Figure 20 for waveform.
Rise/Fall Time	Tr, Tf	–	330	365	ps	Measured 20% to 80%. See Figure 20 for waveform.
Differential Asymmetry, peak-peak	V_da	–	55	–	mV	See Figure 22 for waveform.
Differential Skew, peak	V_ds	–	\pm 30	–	ps	See Figure 23 for waveform.
Overshoot Voltage, peak	V_ov	–	1	–	%	Measured as percent of V_Swing. See Figure 24 for waveform.
Power Supply Noise Immunity						
Power Supply-Induced Jitter Sensitivity	PSJS	–	18	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz
		–	6.5	–	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 17 .
Power Supply-Induced Phase Noise	PSPN	–	-73	–	dBc	50 mV peak-peak ripple on VDD.
		–	-82	–	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 17 .

Table 12. Absolute Maximum Ratings

Operation outside the absolute maximum ratings may cause permanent damage to the part.

Performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Conditions	Min.	Max.	Unit
Continuous Power Supply Voltage Range (Vdd)		-0.5	4.0	V
Input Voltage, Maximum	Any input pin	—	Vdd + 0.3	V
Input Voltage, Minimum	Any input pin	-0.3	—	V
Storage Temperature		-65	150	°C
Maximum Junction Temperature		—	135	°C

Table 13. Thermal Considerations^[4]

Package	θ_{JA} (°C/W)	Ψ_{JT} (°C/W)	θ_{JB} (°C/W)	$\theta_{JC,Top}$ (°C/W)
3225, 6-pin	111	5.1	34	86
2520, 6-pin	126	4.8	39	118
2016, 6-pin	149	3.9	40	163

Notes:

4. θ_{JA} , Ψ_{JT} , θ_{JB} and θ_{JC} are provided according to JEDEC standards 51-2A, 51-7, 51-8, and 51-12.01 with a 25C ambient and 250 mW power consumption (typical of 1 GHz f_{out}). The conduction thermal resistances θ_{JB} and θ_{JC} are obtained with the assumption that all heat flows from the junction to a heat sink through either the solder pads (θ_{JB}) or the top of the package ($\theta_{JC,Top}$). These may be used in a two-resistor compact model. The values of θ_{JA} and Ψ_{JT} are strongly application dependent, and we report values based on the JEDEC thermal environment. θ_{JA} is the thermal resistance to ambient on a JEDEC PCB - it is a highly conservative estimate, since the JEDEC board does not have vias to PCB planes in the vicinity of the package. Ψ_{JT} can be used to estimate the junction temperature from measurements of the temperature at the top of the package if the thermal environment is similar to the JEDEC environment.

Table 14. Maximum Operating Junction Temperature^[5]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
85°C	95°C
105°C	115°C
125°C	TBD

Notes:

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 15. Environmental Compliance

Parameter	Test Conditions	Value	Unit
Mechanical Shock Resistance	MIL-STD-883F, Method 2002	30,000	g
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007	70	g
Altitude	MIL-STD-202, Method 105, Condition C	70,000	ft
Soldering Temperature (follow standard Pb free soldering guidelines)^[6]	MIL-STD-883F, Method 2003	260	°C
Moisture Sensitivity Level	MSL1 @ 260°C		
Electrostatic Discharge (HBM)	HBM, JESD22-A114	2,000	V
Charge-Device Model ESD Protection	JESD220C101	750	V
Latch-up Tolerance	JESD78 Compliant		

Notes:

6. Please refer to [SiTime Manufacturing Notes](#).

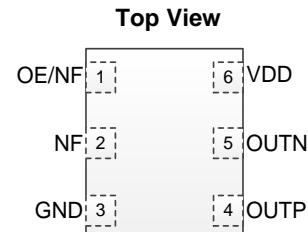

Pin Description

Table 16. Pin Description

Pin	Map	Functionality	
1	OE/NF	Output Enable (OE)	H ^[7] : Specified frequency output L ^[8] : OUT: Logic HIGH,
		No Function (NF)	Open, 120 kΩ internal pull-down resistor to GND
2	NF	No Function	H or L or Open: No effect on output frequency or other device functions. ^[9]
3	GND	Power	Power Supply Ground
4	OUTP	Output	Oscillator output
5	OUTN	Output	Complementary oscillator output
6	VDD	Power	Power supply voltage ^[10]

Notes:

7. OE pin includes a 120 kΩ internal pull-up resistor to VDD when active high, and a 120 kΩ internal pull-down resistor to GND when active low. In noisy environments, the OE pin is recommended to include an external 10 kΩ resistor (Use 10kΩ pull-up if active high OE; use 10kΩ pull-down if active low OE) when the pin is not externally driven.
8. Differential Logic high means OUTP=VOH, OUTN=VOL
9. Can be left open. SiTime recommends grounding it for better thermal performance.
10. A capacitor of value 0.1 µF or higher between VDD and GND pins is required.

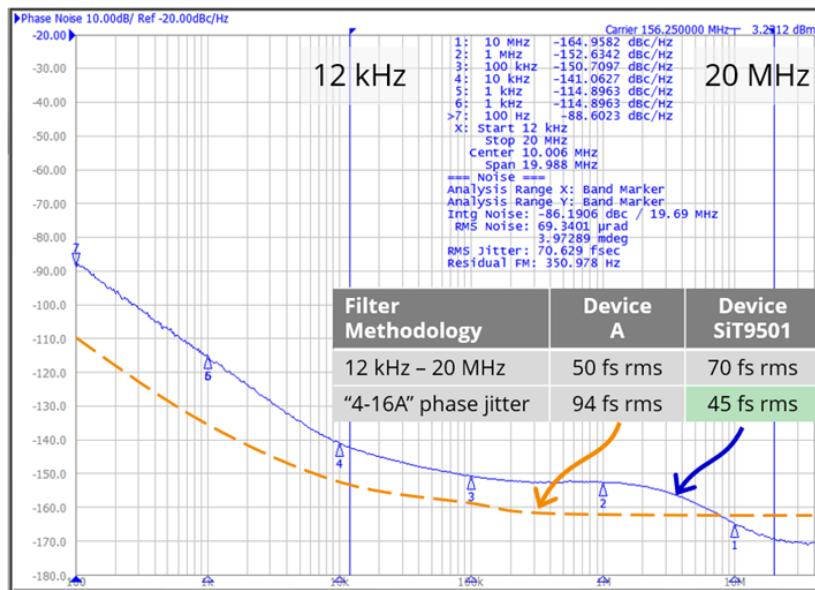
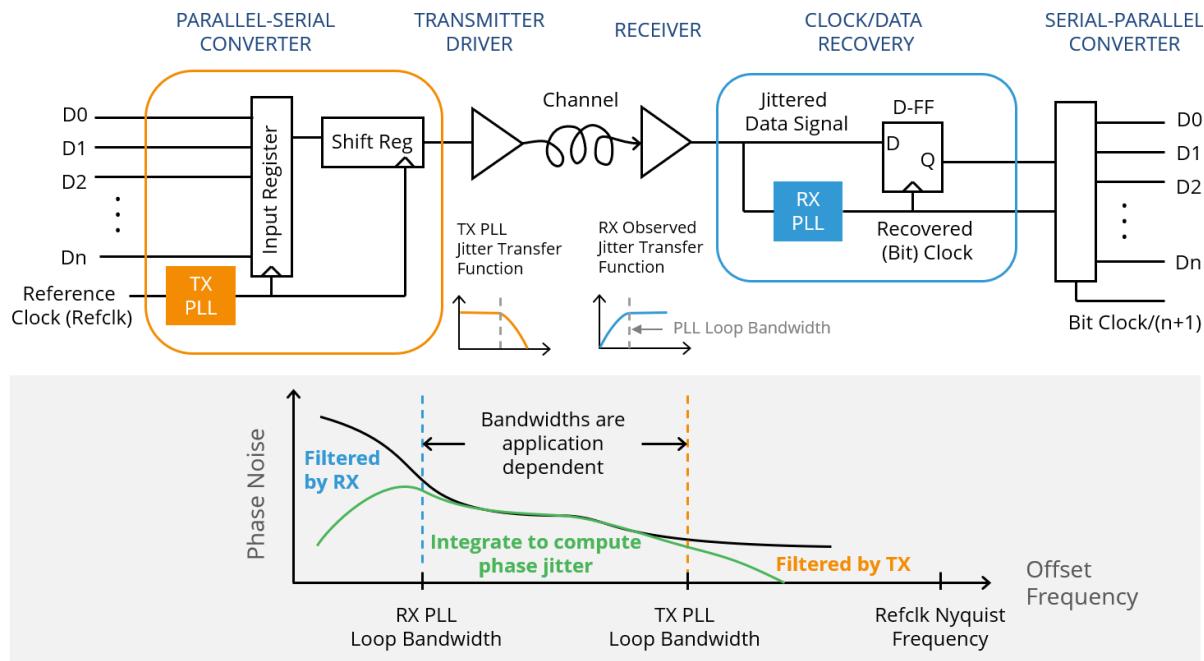


Figure 5. Pin Assignments

“4-16A” Phase Jitter Methodology for SerDes Applications

Proper evaluation of reference clock (refclk) jitter is critical to optimize system performance in high-speed serial links.

Figure 6 shows how the traditional 12 kHz to 20 MHz analysis of filtering refclk jitter can mislead designers to select components that degrade rather than improve link performance. Using a more accurate filter analysis predicts a 50% reduction (45 vs 94 fs RMS) in jitter. Therefore, this datasheet replaces the legacy 12 kHz to 20 MHz filter analysis with a more accurate and established methodology adopted by several industry standards (e.g. PCI Express, CXL, UCIe) and implemented here as “4-16A” phase jitter. A brief overview follows.


Figure 6. Two products analyzed with 2 different methodologies lead to opposite conclusions. The “4-16A” phase jitter methodology more accurately predicts in-system performance for modern SerDes applications.

Established in 1991 for SONET OC-48 line rates, the traditional 12 kHz to 20 MHz jitter filter served as a golden reference to evaluate refclk jitter for over 30 years. The filter is used in nearly all clock and timing datasheets today. However, the results it provides no longer correlate with system performance and can create suboptimum link performance. Sources of filter error include incorrect corner frequencies, unrealistic brick-wall roll offs and a lack of accounting for aliased phase noise. Errors of tens of femtoseconds are significant today and will become more significant as data rates increase. For these reasons, we recommend customers adopt the more accurate “4-16A” phase jitter methodology for SerDes applications.

The conventional refclk jitter analysis uses a band-pass filter, as shown in Figure 7, to extract the refclk contribution to jitter observed at the receiver. Historically the refclk jitter filter was arbitrarily applied to phase noise up to an offset equal to the refclk Nyquist frequency. However, this ignores higher-offset phase noise that aliases when the refclk is sampled by a PLL's digital phase detector. Studies have shown that extending the measured phase noise data flat to the third harmonic (or, twice the fundamental frequency in the offset-frequency axis) accurately estimates worst-case phase jitter^[11]. Above the third harmonic, phase noise rolls off quickly and can be ignored.

Note:

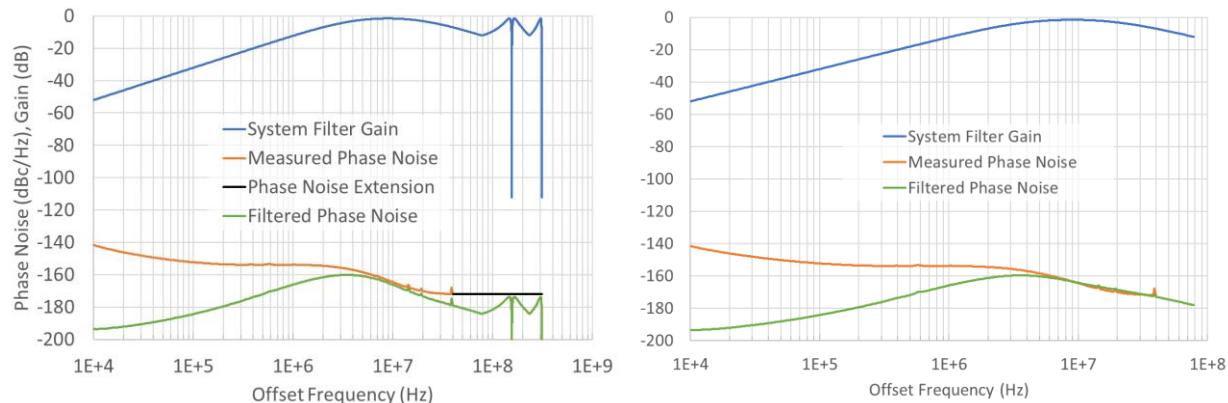

11. “How to evaluate reference-clock phase noise in high-speed serial links”, Signal Integrity Journal (May 3, 2019).

Figure 7. A generic serial link (top) uses a transmit PLL and receive CDR to low and high pass filter, respectively, refclk phase noise. This forms a band-pass system filter (bottom) for computing phase jitter.

The left Figure 8 chart illustrates this methodology of filtering aliased phase noise for a 156.25 MHz clock. Direct phase noise analyzer instruments (e.g., E5052B or FSWP) include an anti-aliasing filter. Thus, to account for aliasing, the phase noise is extended flat to the 3rd harmonic (468.75 MHz in the signal spectrum, or 312.5 MHz in offset frequency spectrum) and the jitter filter is folded across

Nyquist-zone boundaries (at 156.25/2, 156.25 and 156.25×3/2 MHz). Then the phase noise data is filtered and integrated to derive phase jitter. The right chart in Figure 8 illustrates a mathematically equivalent process that aliases the extended phase noise below an offset equal to the Nyquist frequency before filtering in the first Nyquist zone^[11].

Figure 8. Illustration of two equivalent processes to filter aliased phase noise. The left chart extends (black) the measured phase noise (orange) to the 3rd harmonic, mirrors the filter (blue) across higher Nyquist zones before deriving the filtered phase noise (green). Alternatively, the right chart aliases the extended phase noise (not shown) below the Nyquist frequency before filtering (green). Integrating either green curve produces the same phase jitter.

A shorthand label for this methodology is “#-#A” phase jitter where the first and second numbers “#” are replaced with RX CDR and TX PLL bandwidths, respectively, and assuming 20 dB/dec roll offs (unless specified otherwise), and “A” indicates that aliasing is included. For example, “4-16A” phase jitter uses 4 MHz RX and 16 MHz TX bandwidths with aliasing. Here, 4 MHz represents the most common serial standard, Ethernet, which typically specifies a CDR bandwidth of 4 MHz for 10 Gbps and higher link

rates, and 16 MHz represents a worst-case estimate for TX PLL bandwidth (the PLL becomes unstable at higher bandwidths). This shorthand terminology makes it easy to describe variations. For example, “2-10A” phase jitter describes the same methodology but for 2 MHz RX CDR and 10 MHz TX PLL bandwidths. In practice, the exact bandwidths are application dependent, and “4-16A” is simply chosen here to represent the most common application (Ethernet).

FlexSwing Configurations

A FlexSwing output-driver performs like LVPECL and additionally provides independent control of voltage swing and DC offset voltage levels. This simplifies interfacing with chipsets having non-standard input voltage requirements

and can eliminate all external source-bias resistors. FlexSwing supports power supply voltages from 1.71 V to 3.63 V, and the programmable VOH and VOL levels may be referenced to the voltage on either VDD or GND pins.

Table 17. FlexSwing 2-digit Order Codes specifying VHn and VLn referenced to voltage on VDD pin

Order Code V_Swing (V)		VLn																						
		Vdd-2.31V	Vdd-2.26V	Vdd-2.21V	Vdd-2.16V	Vdd-2.11V	Vdd-2.06V	Vdd-2.01V	Vdd-1.96V	Vdd-1.91V	Vdd-1.86V	Vdd-1.82V	Vdd-1.77V	Vdd-1.72V	Vdd-1.67V	Vdd-1.62V	Vdd-1.57V	Vdd-1.52V	Vdd-1.47V	Vdd-1.42V	Vdd-1.37V	Vdd-1.32V	Vdd-1.28V	
VHn	A									AJ	AK	AL	AM	AN	AP	AQ	AR	AS	AT	AU	AV	AW	AX	
	B								1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76	
	C									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	D									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	E									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	F									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	G									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	H									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	J									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	K									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	L									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	M									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	N									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	P									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	Q									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	R									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	S									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	T									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	U									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	V									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76
	W									1.94	1.86	1.77	1.69	1.61	1.52	1.44	1.35	1.27	1.18	1.10	1.01	0.93	0.85	0.76

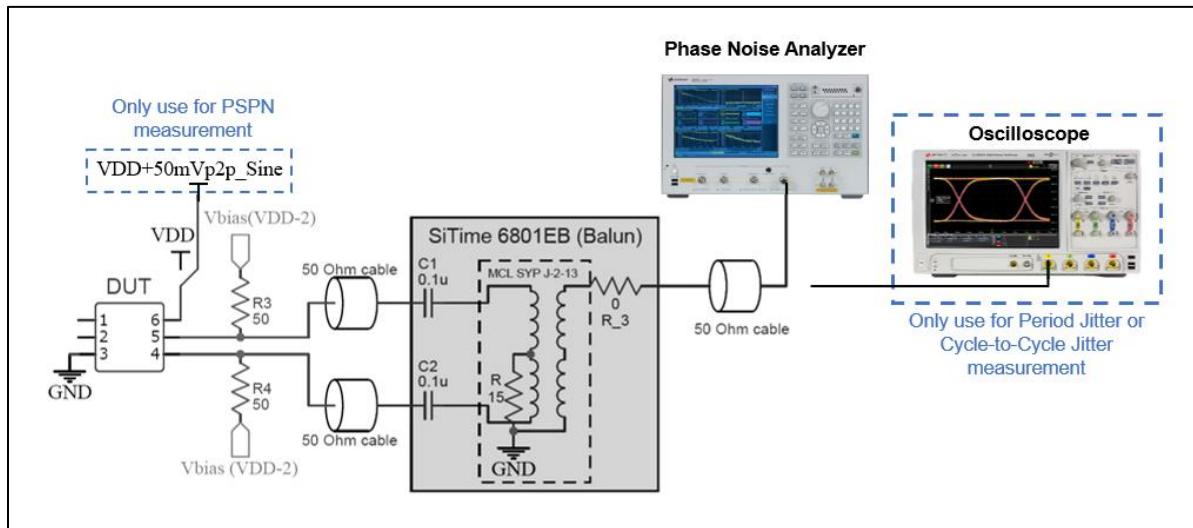
Supply Voltage	Available Colors
1.8V±5%	Not Supported
1.71V to 3.63V	Not Supported
2.5V±10%	Blue
3.3V±10%	Blue Red
2.25V to 3.63V	Blue
Note 12	Gray

Note:

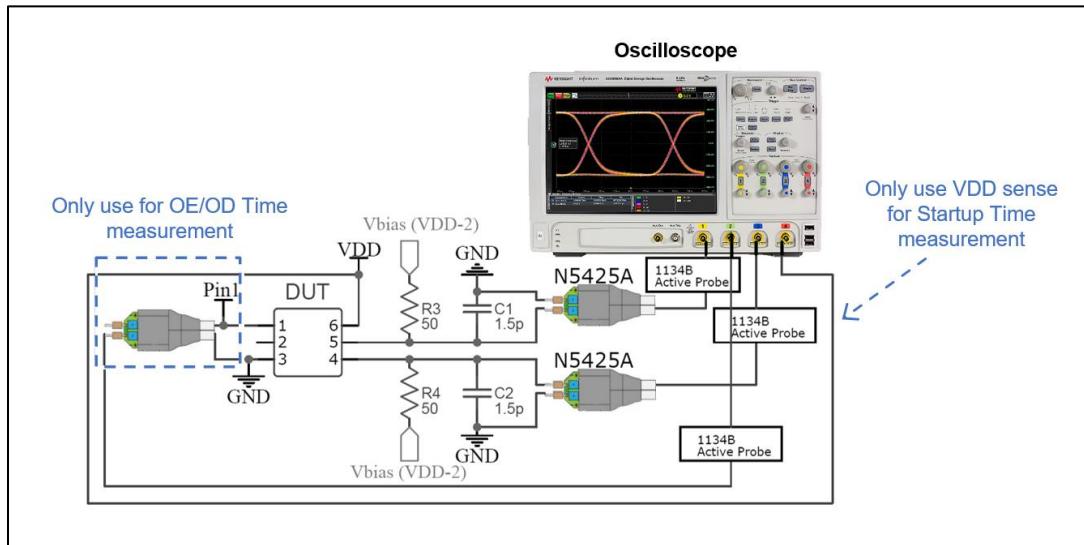
12. Please contact SiTime.

The above table identifies supported combinations of nominal VOH (i.e. VHn) and nominal VOL (i.e. VLn) in colored boxes. The two-character code in each box corresponds to the VHn and VLn codes specified in the 2nd column and 2nd row in the table, respectively. The number in each box indicates the nominal differential swing (i.e. VHn – VLn).

For example, order code "FS" selects VHn code "F" (i.e. Vdd-1.144 V) and VLn code "S" (i.e. Vdd-1.530 V) corresponding to a V_Swing of 0.845 V peak-peak, which may be used for supply voltages of 2.5 V ±10%, 3.3 V ±10% or (2.25 V to 3.63 V). Alternatively, an order code of "GS" corresponds to a VHn code "G" (i.e. Vdd-1.193 V) and a VLn order code "S" (e.g. Vdd-1.530 V) corresponding to a V_Swing of 0.760 V peak-peak, which may be used for a supply voltage of 3.3 V ±10%.


Table 18. FlexSwing 2-digit Order Codes specifying VHn and VLn referenced to voltage on GND pin

Order Code V_Swing (V)		Order Codes																							
		C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U	V	W	X	Y			
0.45V	0.49V	0.54V	0.59V	0.64V	0.69V	0.74V	0.79V	0.84V	0.89V	0.94V	0.99V	1.03V	1.08V	1.16V	1.23V	1.3V	1.38V	1.45V	1.53V	1.6V					
A																		AV	AW	AX	AY				
B																		BV	BW	BX	BY				
C																		CU	CV	CW	CX	CY			
D																		DT	DU	DV	DW	DX	DY		
E																		ET	EU	EV	EW	EX	EY		
F																		FS	FT	FU	FV	FW	FX	FY	
G																		GS	GT	GU	GV	GW	GX	GY	
H																		HS	HT	HU	HV	HW	HX	HY	
J																		JS	JT	JU	JV	JW	JX	JY	
K																		KS	KT	KU	KV	KW	KX	KY	
L																		LS	LT	LU	LV	LW	LX	LY	
M																		MR	MS	MT	MU	MV	MW	MX	
N																		NQ	NR	NS	NT	NU	NV	NW	
P																		NR	NS	NT	NU	NV	NW	NX	NY
Q																		PP	PQ	PR	PS	PT	PU	PV	
R																		QQ	QR	QS	QT	QU	QV	QW	QX
S																		RM	RN	RP	RQ	RR	RS	RT	
T																		SL	SM	SN	SP	SQ	SR	SS	
U																		TK	TL	TM	TN	TP	TQ	TR	
V																		UJ	UK	UL	UM	UN	UP	UR	
W																		VH	VJ	VL	VM	VN	VP	VR	
X																		WG	WH	WJ	WK	WL	WM	WN	
Y																		XH	XJ	XK	XL	XM	XN	XP	
Z																		XF	XG	XH	XJ	XK	XN	XQ	
1																		YE	YF	YG	YH	YJ	YL	YM	
2																		1C	1D	1E	1F	1G	1H	1I	
3																		1D	1E	1F	1G	1H	1I	1K	
																		1E	1F	1G	1H	1I	1K	1L	
																		1F	1G	1H	1I	1K	1L	1M	
																		1G	1H	1I	1K	1L	1M	1N	
																		1H	1I	1K	1L	1M	1N	1P	
																		1I	1K	1L	1M	1N	1P	1Q	
																		1K	1L	1M	1N	1P	1Q	1R	
																		1L	1M	1N	1P	1Q	1R	1S	
																		1M	1N	1P	1Q	1R	1S	1T	
																		1N	1P	1Q	1R	1S	1T	1U	
																		1P	1Q	1R	1S	1T	1U	1V	
																		1Q	1R	1S	1T	1U	1V	1W	
																		1R	1S	1T	1U	1V	1W	1X	
																		1S	1T	1U	1V	1W	1X	1Y	
																		1T	1U	1V	1W	1X	1Y	1Z	
																		1U	1V	1W	1X	1Y	1Z	1A	
																		1V	1W	1X	1Y	1Z	1A	1B	
																		1W	1X	1Y	1Z	1A	1B	1C	
																		1X	1Y	1Z	1A	1B	1C	1D	
																		1Y	1Z	1A	1B	1C	1D	1E	
																		1Z	1A	1B	1C	1D	1E	1F	
																		1A	1B	1C	1D	1E	1F	1G	
																		1B	1C	1D	1E	1F	1G	1H	
																		1C	1D	1E	1F	1G	1H	1I	
																		1D	1E	1F	1G	1H	1I	1J	
																		1E	1F	1G	1H	1I	1J	1K	
																		1F	1G	1H	1I	1J	1K	1L	
																		1G	1H	1I	1J	1K	1L	1M	
																		1H	1I	1J	1K	1L	1M	1N	
																		1I	1J	1K	1L	1M	1N	1O	
																		1J	1K	1L	1M	1N	1O	1P	
																		1K	1L	1M	1N	1O	1P	1Q	
																		1L	1M	1N	1O	1P	1Q	1R	
																		1M	1N	1O	1P	1Q	1R	1S	
																		1N	1O	1P	1Q	1R	1S	1T	
																		1O	1P	1Q	1R	1S	1T	1U	
																		1P	1Q	1R	1S	1T	1U	1V	
																		1Q	1R	1S	1T	1U	1V	1W	
																		1R	1S	1T	1U	1V	1W	1X	
																		1S	1T	1U	1V	1W	1X	1Y	
																		1T	1U	1V	1W	1X	1Y	1Z	
																		1U	1V	1W	1X	1Y	1Z	1A	
																		1V	1W	1X	1Y	1Z	1A	1B	
																		1W	1X	1Y	1Z	1A	1B	1C	
																		1X	1Y	1Z	1A	1B	1C	1D	
																		1Y	1Z	1A	1B	1C	1D	1E	
																		1Z	1A	1B	1C	1D	1E	1F	
																		1A	1B	1C	1D	1E	1F	1G	
																		1B	1C	1D	1E	1F	1G	1H	
																		1C	1D	1E	1F	1G	1H	1I	
																		1D	1E	1F	1G	1H	1I	1J	
																		1E	1F	1G	1H	1I	1J	1K	
																		1F	1G	1H	1I	1J	1K	1L	
																		1G	1H	1I	1J	1K	1L	1M	
																		1H	1I	1J	1K	1L	1M	1N	


Test Circuit Diagrams

A 1.5 pF capacitive load is used at each differential output. Because of the additive input capacitance of the active probe used with the oscilloscope, the output characteristics for all signal types are measured with a total of 2 pF capacitive load.

Test Setups for LVPECL Measurements

Figure 9. Test setup to measure LVPECL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) without filter added^[14]

Figure 10. Test setup to measure LVPECL Waveform Characteristics, Current Consumption (with Termination 2)^[15], Output Enable/Disable Time, and Startup Time

Notes:

14. See [Figure 11](#) for the test setup to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
15. See [Figure 12](#) for the test setup to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Circuit Diagrams (continued)

Test Setups for FlexSwing Measurements^[16]



Figure 11. Test setup to measure FlexSwing Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added^[17]

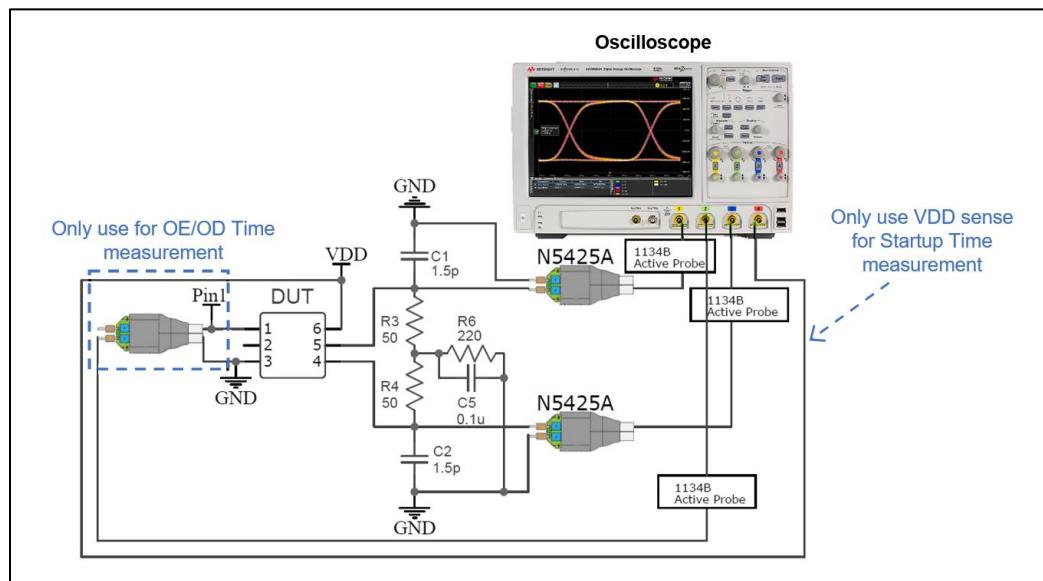


Figure 12. Test setup to measure FlexSwing Waveform Characteristics, Current Consumption^[18], Output Enable/Disable Time, and Startup Time

Note:

16. The same test circuits are used for FlexSwing referenced to VDD and FlexSwing referenced to GND.
17. Test setup is also used to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
18. Test setup is also used to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Circuit Diagrams (continued)

Test Setups for LVDS Measurements

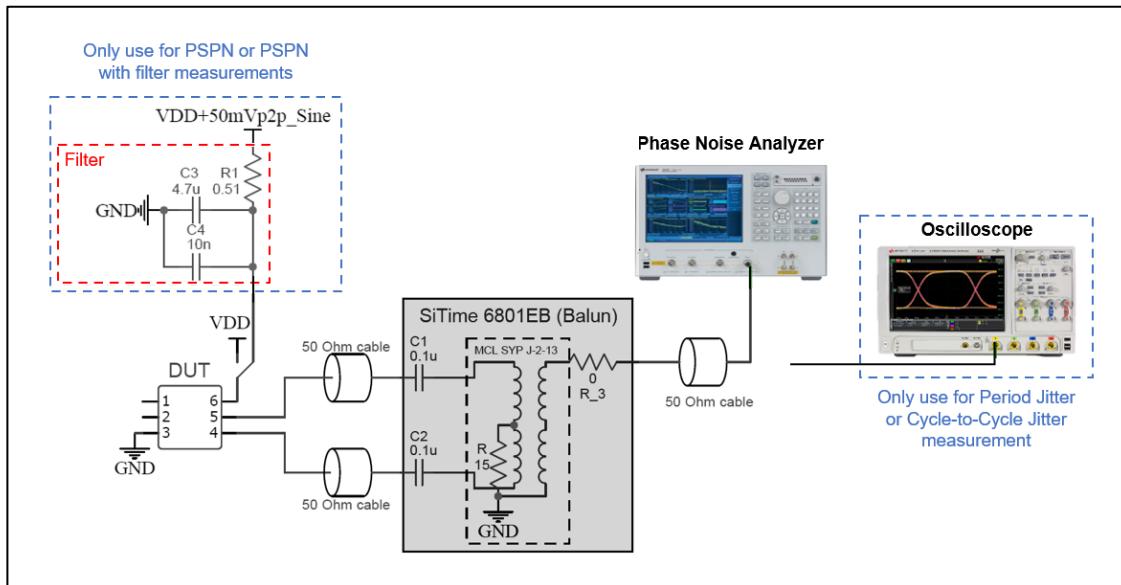


Figure 13. Test setup to measure LVDS Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

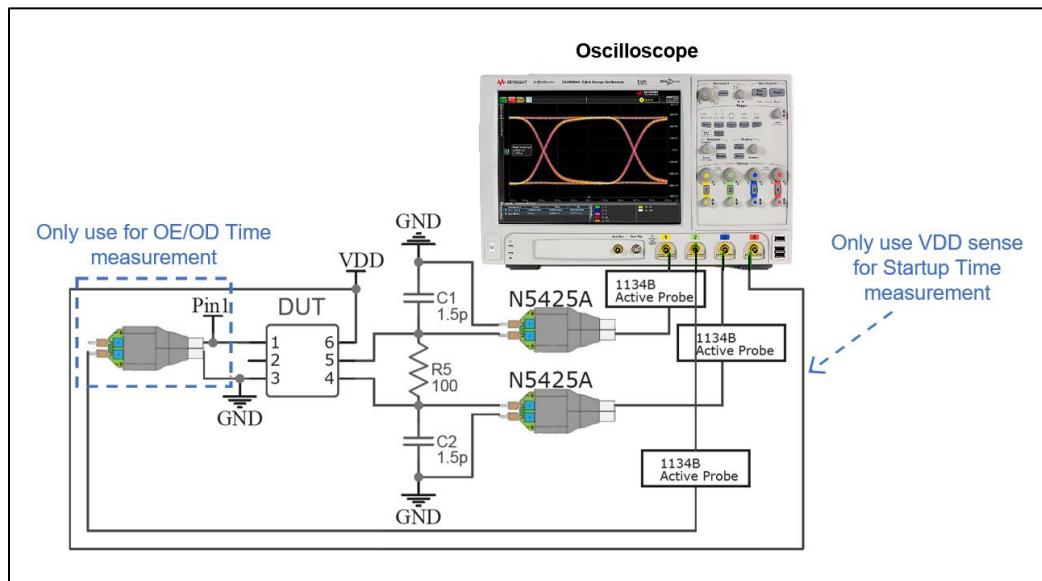
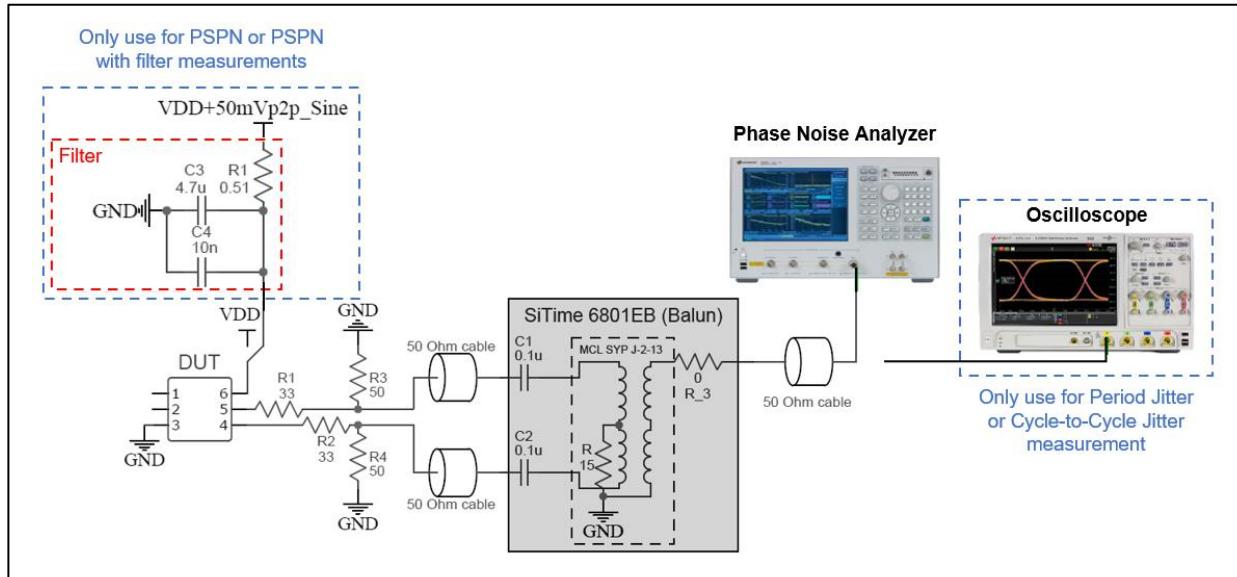



Figure 14. Test setup to measure LVDS Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Circuit Diagrams (continued)

Test Setups for HCSL Measurements

Figure 15. Test setup to measure HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

Figure 16. Test setup to measure HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Circuit Diagrams (continued)

Test Setups for Low-Power HCSL Measurements

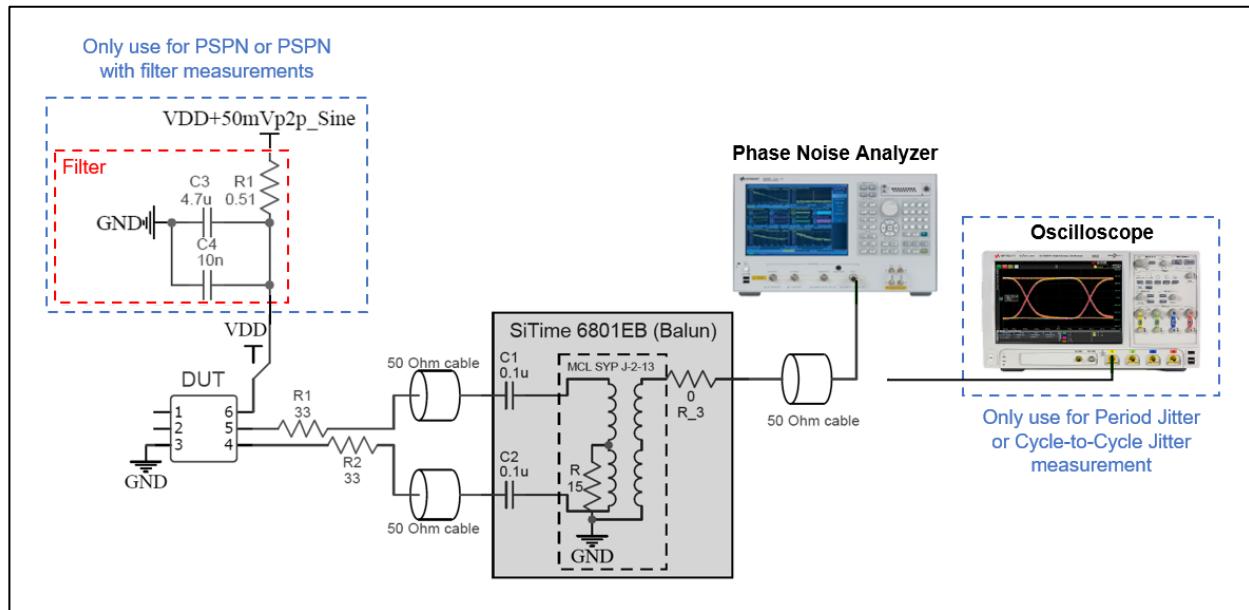


Figure 17. Test setup to measure Low-Power HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

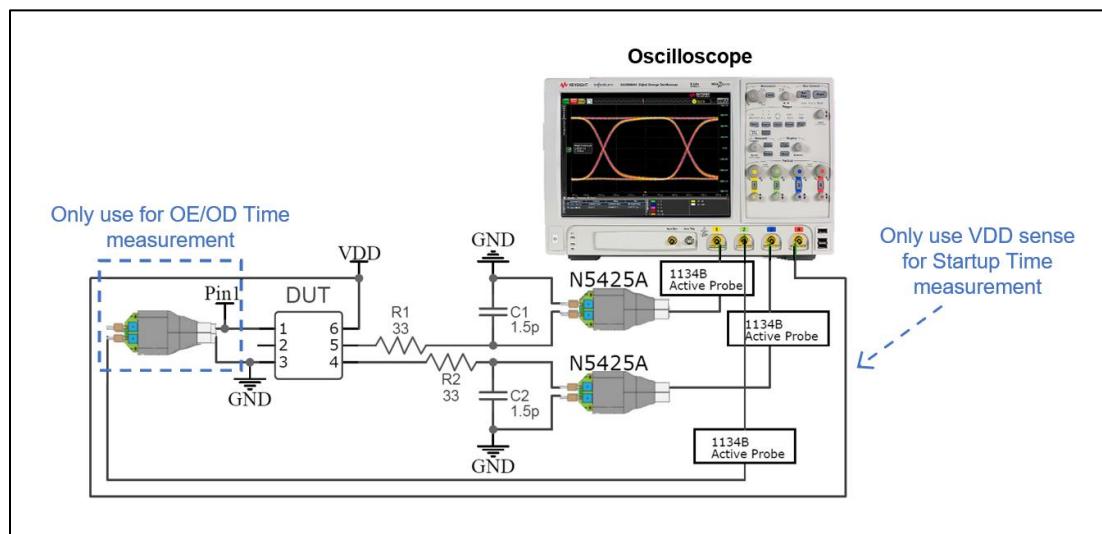


Figure 18. Test setup to measure Low-Power HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Waveform Diagrams

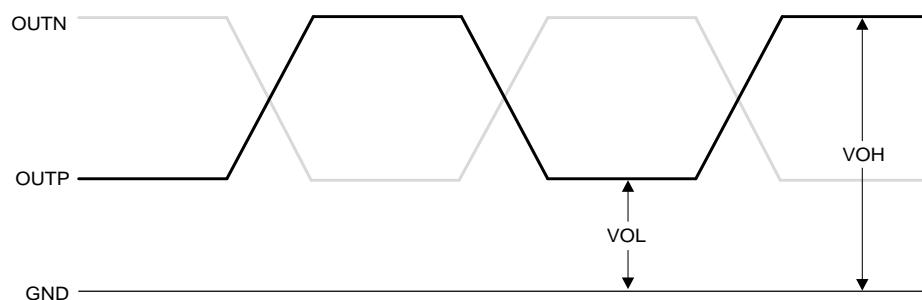


Figure 19. LVPECL, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels per Differential Pin

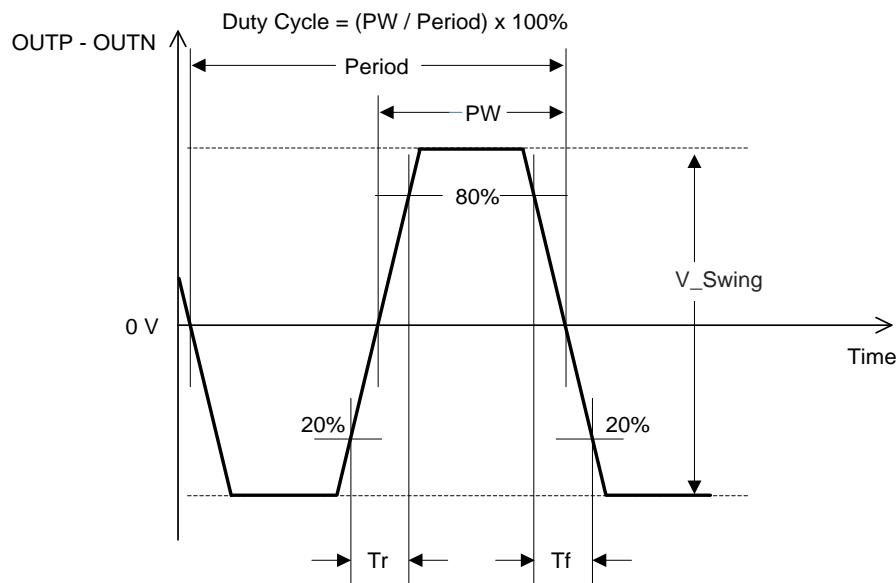
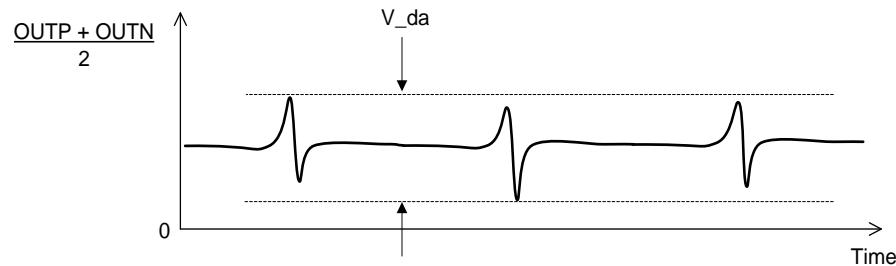
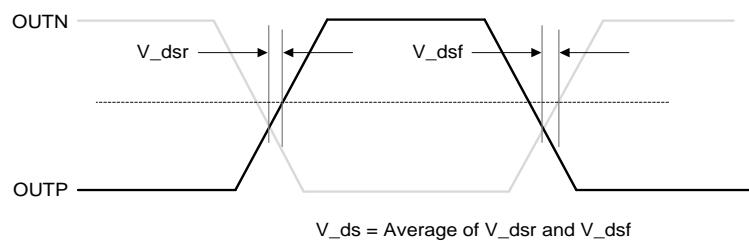
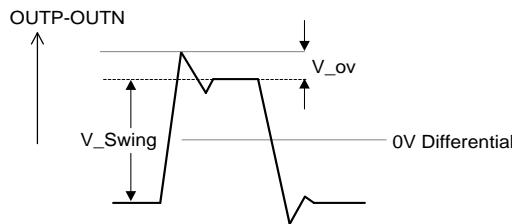
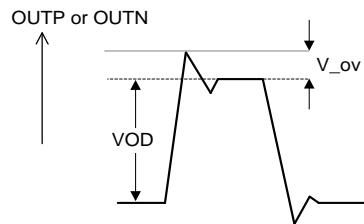
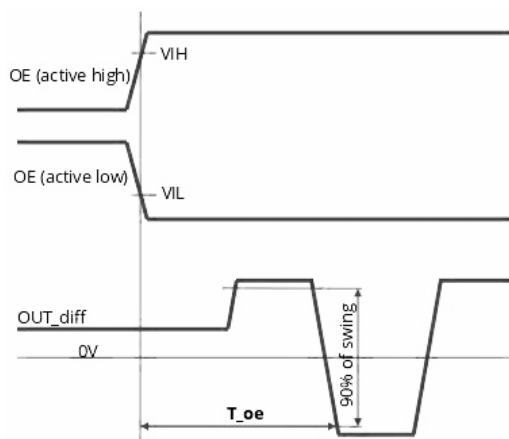
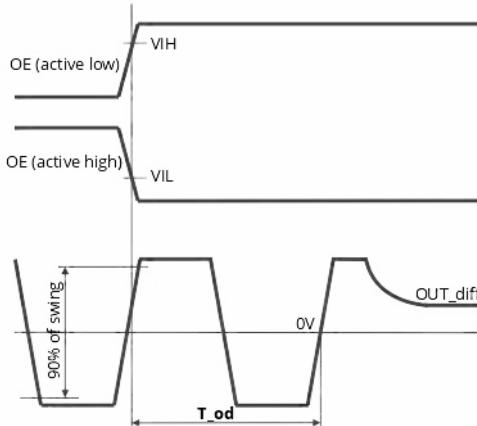








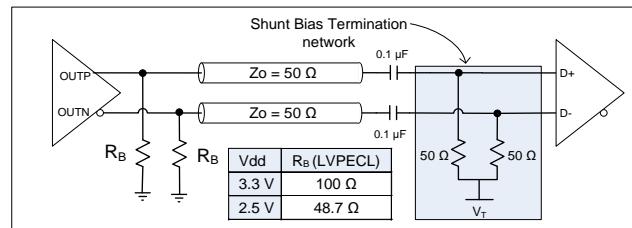
Figure 20. LVPECL, LVDS, HCSL, Low-Power HCSL, and FlexSwing Voltage Levels Across Differential Pair

Figure 21. LVDS Voltage Levels per Differential Pin

Waveform Diagrams (continued)

Figure 22. Differential Asymmetry (V_{da})Figure 23. Differential Skew (V_{ds}) is measured as the Time between the Average Voltage Level and Crossing VoltageFigure 24. Overshoot Voltage (V_{ov}) for LVPECL, FlexSwing, HCSL, Low-power HCSLFigure 25. Overshoot Voltage (V_{ov}) for LVDS OutputFigure 26. OE Pin Enable Timing (T_{oe})Figure 27. OE Pin Disable Timing (T_{od})

Termination Diagrams


LVPECL and FlexSwing Termination

The SiT9551 FlexSwing output drivers support low power without sacrificing signal integrity via simple terminations as shown in [Figure 29](#) and [Figure 31](#), compared to traditional LVPECL drivers. The FlexSwing and LVPECL outputs are

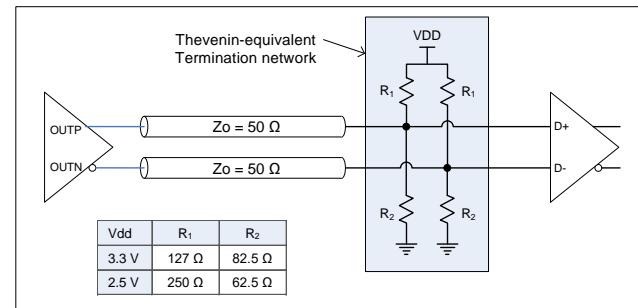
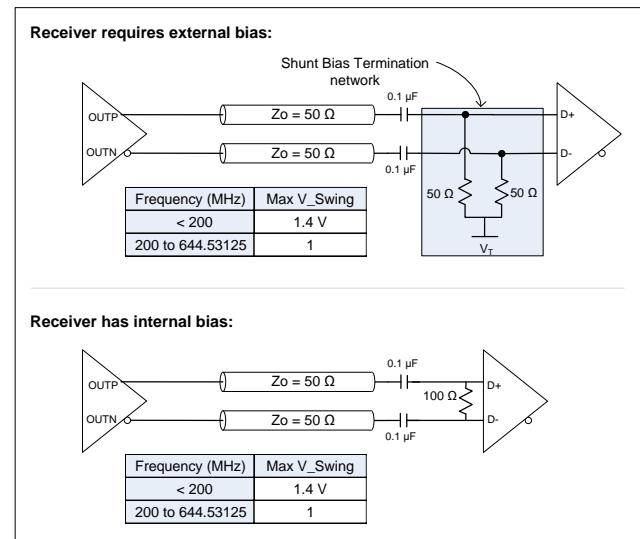
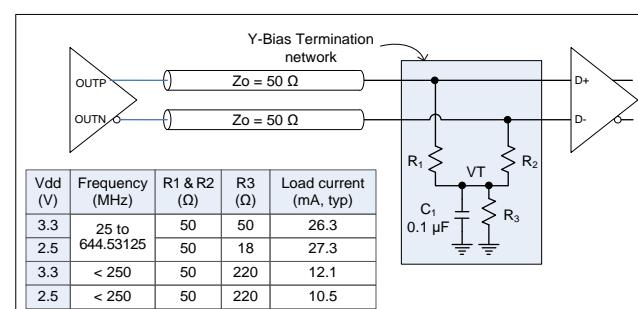

voltage-mode drivers. Use the table and figures below to select a termination circuit for the desired supply voltage. The table also provides LVPECL current consumption (I_{load}) into the load termination.

Table 19. Termination Options for LVPECL and FlexSwing Signaling


Signaling	Supply Voltage Order Codes	Termination Options						
		Figure 28	Figure 29	Figure 30	Figure 31	Figure 32	Figure 33	
LVPECL referenced to Vdd	"25", "33", "XX"	OK to use $I_{load} = 40$ mA with 100 Ω near-end bias resistor	Do Not Use	OK to use $I_{load} = 28$ mA	OK to use	OK to use $I_{load} = 28$ mA	Do Not Use	
FlexSwing referenced to Vdd		OK to use ^[19] (see Figure 29 for frequency ranges and voltage swings)	OK to use ^[20]	OK to use	OK to use	OK to use	Do Not Use	
FlexSwing referenced to Gnd	"25", "33", "XX", "YY" "18"		Do Not Use	OK to use	Do Not Use	Do Not Use	Do Not Use	
			Do Not Use	OK to use	Do Not Use	Do Not Use	OK to use	


Figure 28. Recommended LVPECL and FlexSwing^[19] Termination when AC-coupled

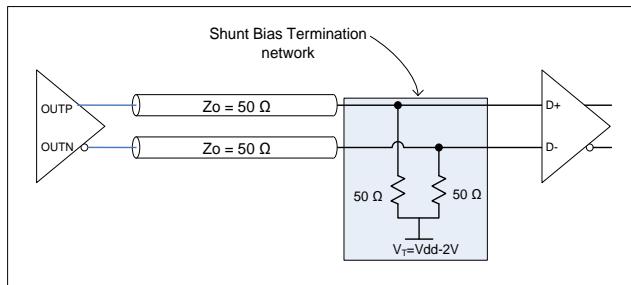
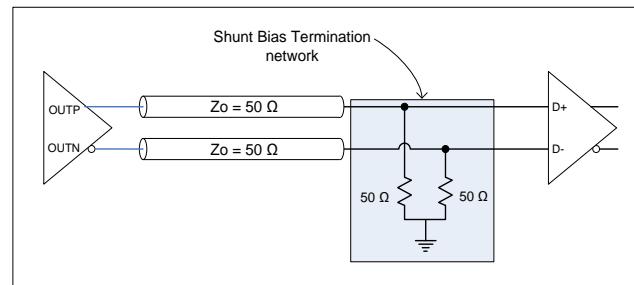
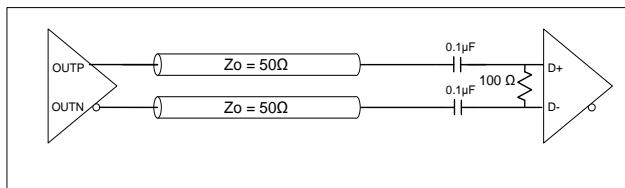
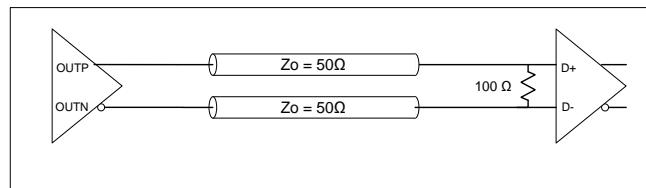
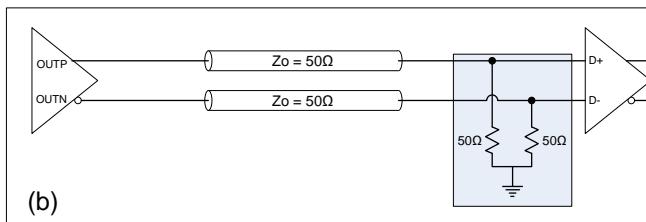
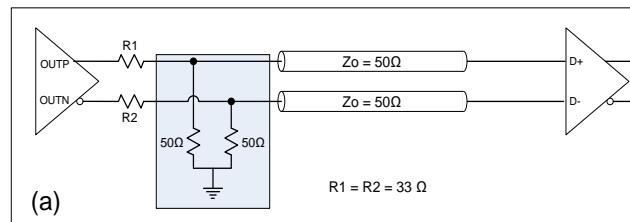
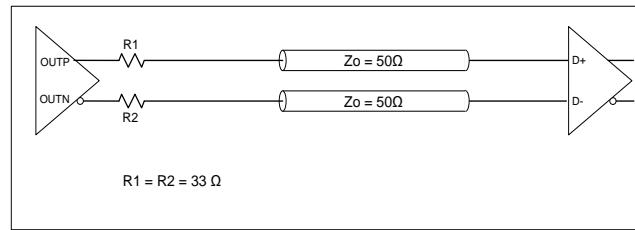







Figure 30. LVPECL and FlexSwing DC-coupled Load Termination with Thevenin Equivalent Network^[20]

Figure 29. Recommended FlexSwing Termination when AC-coupled

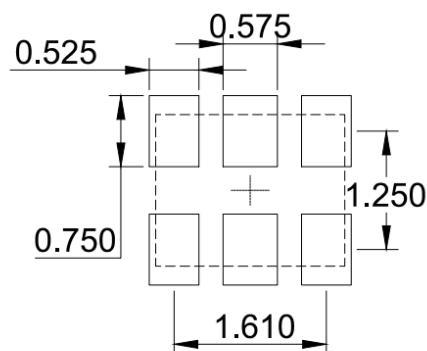
Figure 31. LVPECL and FlexSwing with Y-Bias Termination

Termination Diagrams (continued)**Figure 32. LVPECL and FlexSwing with DC-coupled Parallel Shunt Load Termination****Figure 33. FlexSwing Termination – Only for use with Supply Voltage Order Code ‘18’****LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V****Figure 34. LVDS AC Termination****Figure 35. LVDS DC Termination at the Load****HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V****Figure 36. (a) HCSL Source Termination and (b) HCSL Load Termination****Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V****Figure 37. Low-power HCSL Termination****Notes:**

19. Contact SiTime for optimum R_B values for FlexSwing options.
20. Contact SiTime for optimum $R1$ and $R2$ values for FlexSwing options.

Dimensions and Patterns — 2.0 x 1.6 mm x mm

Package Size – Dimensions (Unit: mm)^[21]


(TOP VIEW) (BOTTOM VIEW) (SIDE VIEW)

	SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	A	0.700	0.750	0.800
STAND OFF	A1	0.000	0.035	0.050
BODY SIZE	X	2.000 BSC		
	Y	1.600 BSC		
LEAD WIDTH	b	0.225	0.275	0.325
LEAD LENGTH	L	0.300	0.400	0.500
LEAD PITCH	e	0.730 BSC		
PACKAGE TOLERANCE	aaa	0.100		
MOLD FLATNESS	bbb	0.100		
COPLANARITY	ccc	0.080		
NOTE				
1. ALL DIMENSION IN MM				

SiTime

PKG INFO		DRAWING NO.	
6L PQFN		POD-077-PQFN-006-C02016	
2.000x1.600x0.750 mm		REV	SHEET
DATE	11-AUG-2024	B03	01

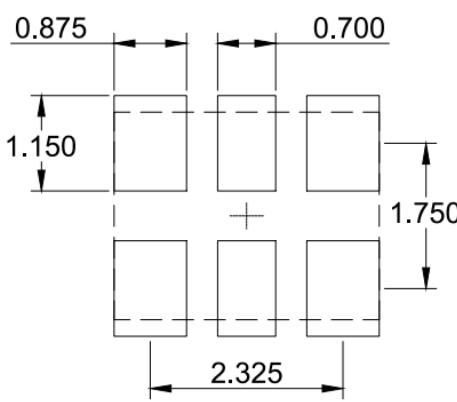
Recommended Land Pattern (Unit: mm)^[22]

Note : All units in mm.

SiTime	PKG INFO	SPL DRAWING NO.	
	6L QFN 2.000x1.600 mm	REV	SHEET
DATE	SPL-077-QFN-006-C02016		
2020/04/20		B00	01

Notes:-

- 21. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 22. A capacitor of value 0.1 μ F or higher between VDD and GND is required. An additional 10 μ F capacitor between VDD and GND is required for the best phase jitter performance.


Dimensions and Patterns — 2.5 x 2.0 mm x mm

Package Size – Dimensions (Unit: mm) ^[21]				
		SYMBOL	MIN	NOM
TOTAL THICKNESS	A	0.800	0.850	0.900
STAND OFF	A1	0.000	0.035	0.050
BODY SIZE	X	D	2.500 BSC	
	Y	E	2.000 BSC	
LEAD WIDTH	b	0.330	0.380	0.430
LEAD LENGTH	L	0.550	0.650	0.750
LEAD PITCH	e	0.900 BSC		
PACKAGE TOLERANCE	aaa		0.100	
MOLD FLATNESS	bbb		0.100	
COPLANARITY	ccc		0.080	
NOTE				
1. ALL DIMENSION IN MM				
SiTime				
PKG INFO		DRAWING NO.		
6L PQFN		POD-092-PQFN-006-C02520		
2.500x2.000x0.850 mm		REV	SHEET	
DATE	11-AUG-2024	A02	01	

Recommended Land Pattern (Unit: mm) ^[22]				
Note : All units in mm.				
SiTime	PKG INFO		SPL DRAWING NO.	
	6L PQFW		SPL-078-QFN-006-C02520	
	2.500x2.000 mm		REV	SHEET
	B00		01	

Dimensions and Patterns — 3.2 x 2.5 mm x mm

Package Size – Dimensions (Unit: mm) ^[21]							
		SYMBOL	MIN	NOM			
TOTAL THICKNESS	A	0.800	0.850	0.900			
STAND OFF	A1	0.000	0.035	0.050			
BODY SIZE	X	D	3.200	BSC			
	Y	E	2.500	BSC			
LEAD WIDTH	b	0.550	0.600	0.650			
LEAD LENGTH	L	0.650	0.700	0.750			
	L1	0.800 REF					
LEAD PITCH	e	1.100 BSC					
PACKAGE TOLERANCE	aaa	0.100					
MOLD FLATNESS	bbb	0.100					
COPLANARITY	ccc	0.080					
DIMPLE WIDTH	T	0.150 REF					
DIMPLE LENGTH	P	0.150 REF					
DIMPLE DEPTH	A2	0.100 REF					
NOTE							
1. ALL DIMENSION IN MM							
SiTime							
PKG INFO		DRAWING NO.					
6L PQFD		POD-076-PQFD-006-C03225					
3.200x2.500x0.850 mm		REV	SHEET				
DATE	11-AUG-2024	B02	01				

Recommended Land Pattern (Unit: mm) ^[22]				
Note : All units in mm.				
SiTime		PKG INFO	SPL DRAWING NO.	
DATE		6L QFN	SPL-076-QFN-006-C03225	
2020/04/20		3.200x2.500 mm	REV	SHEET
			B00	01

Additional Information

Table 20. Additional Information

Document	Description	Download Link
ECCN #: EAR99	Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.	—
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.	—
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/support/resource-library/manufacturing-notes-sitime-products
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes
Evaluation Boards	SiT6760EB	https://www.sitime.com/support/resource-library/user-manuals/sit6760eb-evaluation-board-user-manual

Revision History

Table 21. Revision History

Revision	Release Date	Change Summary
1.2	27-Aug-2024	Datasheet for production release

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2021-2024. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE THIS PRODUCT FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES, TO OPERATE NUCLEAR FACILITIES, OR IN OTHER APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.