

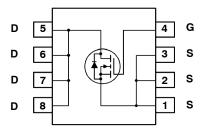
MOSFET – POWERTRENCH®, N-Channel Shielded Gate

80 V, 123 A, 4.3 m Ω

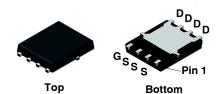
FDMS4D4N08C

Description

This N-Channel MV MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimise on-state resistance and yet maintain superior switching performance with best in class soft body diode.


Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 4.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 44 \text{ A}$
- Max $r_{DS(on)} = 10.4 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 22 \text{ A}$
- 50% Lower Qrr than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- RoHS Compliant


Typical Applications

- Primary DC-DC MOSFET
- Synchronous Rectifier in DC-DC and AC-DC
- Motor Drive
- Solar

ELECTRICAL CONNECTION

N-Channel MOSFET

Power 56 (PQFN8 5x6) CASE 483AE

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code FDMS4D4N08C = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, Unless otherwise specified)

Symbol	Parameter		Ratings	Unit
V _{DS}	Drain to Source Voltage		80	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current -Continuous T _C = 25°C	(Note 5)	123	Α
	-Continuous T _C = 100°C	(Note 5)	78	
	−Continuous T _A = 25°C	(Note 1a)	17	
	-Pulsed	(Note 4)	498	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	486	mJ
P _D	Power Dissipation T _C = 25°C		125	W
	Power Dissipation T _A = 25°C	(Note 1a)	2.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

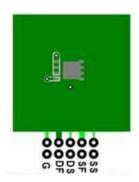
THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	

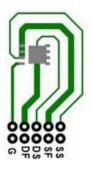
PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
FDMS4D4N08C	FDMS4D4N08C	PQFN8 5×6 (Pb-Free/Halogen Free)	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Cond	tions	Min.	Тур.	Max.	Units
OFF CHARAC	TERISTICS	•	<u>l</u>		•		•
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$		80			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C			63		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} =	0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS}	= 0 V			±100	nA
ON CHARACT	TERISTICS (Note NO TAG)						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 25$	60 μΑ	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C			-8.2		mV/°C
r _{DS(on)}	Static Drain to Source On	V _{GS} = 10 V, I _D = 44 A			3.7	4.3	mΩ
, ,	Resistance	V _{GS} = 6 V, I _D = 22	A		5.7	10.4	
		$V_{GS} = 10 \text{ V}, I_D = 44$ $T_J = 125^{\circ}\text{C}$	1 A,		5.9	7.2	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 44 A			98		S
DYNAMIC CH	ARACTERISTICS		•		•	•	•
C _{ISS}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz			2920	4090	pF
C _{OSS}	Output Capacitance				1045	1465	
C _{RSS}	Reverse Transfer Capacitance				35	50	
R _G	Gate Resistance			0.1	1.3	2.5	Ω
SWITCHING O	CHARACTERISTICS						
t _{d(on)}	Turn – On Delay Time	V _{DD} = 40 V, I _D = 44 A,			17	31	ns
t _r	Rise Time	V _{GS} = 10 V, R _{GEN} =	- 6 Ω		7	15	
t _{d(off)}	Turn – Off Delay Time	1			25	40	
t _f	Fall Time	1			5	10	
Q_g	Total Gate Charge	<u> </u>			40	56	nC
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V			25	35	
Q _{gs}	Gate to Source Charge	V _{GS} = 0 V to 6 V	V _{DD} = 40 V, I _D = 44 A		13		
Q_{gd}	Gate to Drain "Miller" Charge	1			8		
Q _{oss}	Output Charge	V _{DD} = 40 V, V _{GS} =	0 V		60		nC
Q _{sync}	Output Charge	V _{DS} = 0 V, I _D = 44 A			35		
DRAIN-SOUF	RCE DIODE CHARACTERISTICS						
V_{SD}	V _{SD} Source to Drain Diode Forward		A (Note 2)		0.7	1.2	V
	Voltage	$V_{GS} = 0 \text{ V}, I_S = 44$	A (Note 2)		0.8	1.3	
t _{rr}	Reverse Recovery Time	I _F = 22 A, di/dt = 3	00 <mark>A/μs</mark>		26	42	ns
Q _{rr}	Reverse Recovery Charge				44	71	nC
t _{rr}	Reverse Recovery Time	I _F = 22 A, di/dt = 1	000 A/μs		20	32	ns
Q _{rr}	Reverse Recovery Charge				106	169	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 486 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 18 A, V_{DD} = 80 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 51 A.
 Pulsed I_D please refer to Figure 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

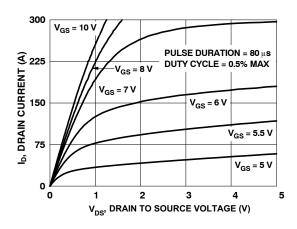


Figure 1. On Region Characteristics

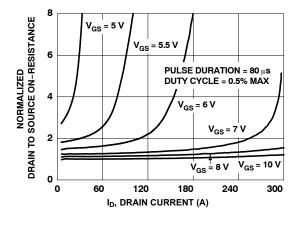


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

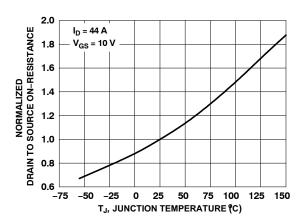


Figure 3. Normalized On Resistance vs. Junction Temperature

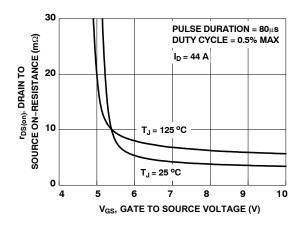


Figure 4. On-Resistance vs. Gate to Source Voltage

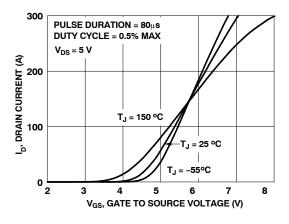


Figure 5. Transfer Characteristics

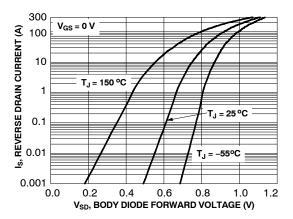


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

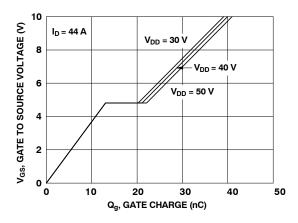


Figure 7. Gate Charge Characteristics



Figure 9. Unclamped Inductive Switching Capability

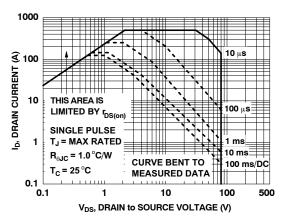


Figure 11. Forward Bias Safe Operating Area

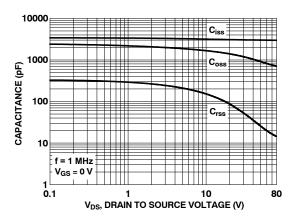


Figure 8. Capacitance vs. Drain to Source Voltage

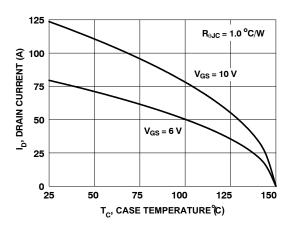


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

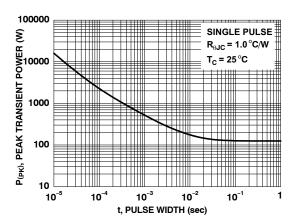


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

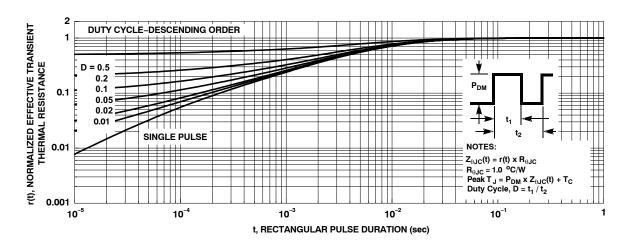


Figure 13. Junction-to-Case Transient Thermal Response Curve

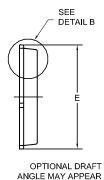
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DATE 21 JAN 2022

e1

(z) (4X)

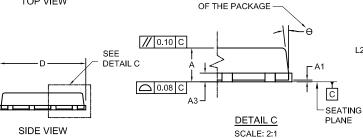
┌^(e2)

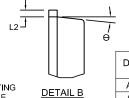

(F3)

(2X

L4 (4X) -

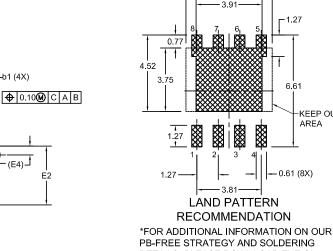
-b1 (4X)


(E4)



ON FOUR SIDES

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

SCALE: 2:1

KEEP OUT AREA

5.10

DIM	WILLIMETERS				
Diivi	MIN.	NOM.	MAX.		
Α	0.90	1.00	1.10		
A1	0.00	-	0.05		
b	0.21	0.31	0.41		
b1	0.31	0.41	0.51		
A3	0.15	0.25	0.35		
D	4.90	5.00	5.20		
D1	4.80	4.90	5.00		
D2	3.61	3.82	3.96		
Е	5.90	6.15	6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.78		
E3	0.30 REF				
E4	0.52 REF				
е	1.27 BSC				
e/2	0.635 BSC				
e1	3.81 BSC				
e2	0.50 REF				
L	0.51	0.66	0.76		
L2	0.05	0.18	0.30		
L4	0.34	0.44	0.54		
z	0.34 REF				
θ	0°	-	12°		

MILLIMETERS

D2	DETAILS, PLEASE DOWNLOAD THE ON
	SEMICONDUCTOR SOLDERING AND
BOTTOM VIEW	MOUNTING TECHNIQUES REFERENCE
	MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales