swissbit®

Product Data Sheet

Industrial USB Flash Drive Module

U-450 SeriesUSB 2.0 High-Speed, SLC

Commercial and Industrial Temperature Grade

Date: January 25, 2023 Revision: 1.02

Contents

1.	PRODUCT SUMMARY	3
2.	PRODUCT FEATURES	4
3.	ORDERING INFORMATION	
4.	PRODUCT DESCRIPTION	
	4.1 PERFORMANCE SPECIFICATIONS 4.2 CURRENT CONSUMPTION 4.3 ENVIRONMENTAL SPECIFICATIONS 4.4 REGULATORY COMPLIANCE 4.5 MECHANICAL SPECIFICATIONS	8 9
	4.6 RELIABILITY AND ENDURANCE	
5.	ELECTRICAL INTERFACE	11
6.	ELECTRICAL SPECIFICATION	12
7.	PACKAGE MECHANICAL	13
8.	ATA PASS-THROUGH COMMANDS (IDENTIFY DEVICE AND S.M.A.R.T.)	14
	8.1 ATA Pass-Through commands	14
9.	PART NUMBER DECODER	18
10.	MARKING SPECIFICATION	20
	10.1 Top View	
11.	REVISION HISTORY	21

U-450 Series - Industrial USB Flash Drive Module (eUSB) 1 GByte up to 16 GBytes

1. Product Summary

- Capacities: 1 GByte, 2 GBytes, 4 GBytes, 8 GBytes, 16 GBytes
- Form Factor:
 - USB 2.0 solid state flash drive for internal 10-pin USB connector terminal (26.65mm x 36.8mm)
 - o 2.54mm or 2.00mm connector with keyed ping
- Compliance: USB 2.0 High-Speed specification compatible (backward compliance with USB 1.1)
- Performance:
 - o Read Performance: Sequential Read up to 36 MBytes/s, Random Read IOPS up to 1,900
 - o Write Performance: Sequential Write up to 26 MBytes/s, Random Write IOPS up to 1,400
- Operating Temperature Range:
 - Commercial: o °C to 70 °C
 - o Industrial: -40 °C to 85 °C
- Storage Temperature Range: -40 °C to 85 °C
- Operating Voltage: 3.3V ±5% or 5V ± 10%
- Data Retention: 10 Years @ Life Begin; 1 Year @ Life End
- Endurance in TeraBytes Written (TBW):
 - o Enterprise Workload: up to 101
- **Shock/Vibration:** 1,500 *g l* 50 *g*
- High-Performance 32-Bit Processor with Integrated, Parallel Flash Interface Engine:
 - Single-Level Cell (SLC) NAND Flash
 - Hardware BCH Code ECC (up to 6obit correction per 1024 Bytes)
- · High Reliability:
 - Mean Time Between Failure (MTBF): > 3,000,000 hours @ 25°C
 - o Data Reliability: < 1 non-recoverable error per 10¹⁷ bits read

2. Product Features

- Subpage based Flash management for increased endurance & random performance
- Optimized FW algorithms especially for high read access and long data retention applications
 - o Proven power fail management for highest reliability
 - Near Miss ECC technology Minimize the risk of uncorrectable bit failure over the product life time. Each read command analyzes the ECC margin level and refreshes data if necessary.
 - o Read Disturb Management The read commands are monitored and the content is refreshed when critical levels have occurred.
 - Wear Leveling technology Equal wear leveling of static and dynamic data. The wear leveling assures that dynamic data as well as static data is balanced evenly across the memory. This guarantees the maximum write endurance of the device.
 - Data Care Management The interruptible background process controls the user data for read disturb effects or high temperature related retention degradation and refreshes data if necessary.
- Detailed S.M.A.R.T. support and extended vendor information
- LED for operation indication
- In-field firmware update
- Swissbit Life Time Monitoring (SBLTM) tool and SDK for SBLTM (on request)
- Controlled BOM & PCN process
- Customized options like registers, removable device, connector options, write protect switch, grounded mounting hole, densities, uploads, label, etc.

3. Ordering Information

Table 1: Standard Product List

	Temperature		
Capacity	Commercial	Industrial	
	Part Number	Part Number	
1 GByte SFUI1024cxAB1TO-C-MS-2y1-STD		SFUI1024cxAB1T0-I-MS-2y1-STD	
2 GBytes	SFUI2048cxAB2T0-C-MS-2y1-STD	SFUI2048cxAB2T0-I-MS-2y1-STD	
4 GBytes	SFUI4096cxAB1T0-C-MS-2y1-STD	SFUI4096cxAB1T0-I-MS-2y1-STD	
8 GBytes	SFUI008GcxAB2T0-C-MS-2y1-STD	SFUI008GcxAB2T0-I-MS-2y1-STD	
16 GBytes	SFUI016GcxAB1T0-C-QT-2y1-STD	SFUI016GcxAB1T0-I-QT-2y1-STD	

c = connector, x = product generation, y = firmware revision

Table 2: Available Part Numbers

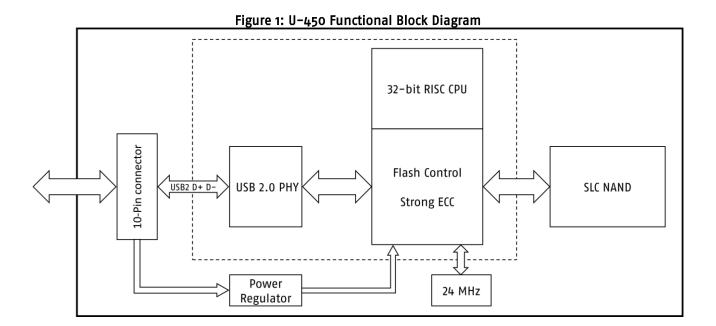
Industrial Temperature					
Capacity	Capacity Part Number Connector				
1 GByte	SFUI1024J2AB1TO-I-MS-2A1-STD	2.54mm pitch			
1 GByte	SFUI1024J2AB1TO-I-MS-2B1-STD	2.54mm pitch			
2 GBytes	SFUI2048J2AB2T0-I-MS-2A1-STD	2.54mm pitch			
2 GBytes	SFUI2048K2AB2T0-I-MS-2A1-STD	2.00mm pitch			
2 GBytes	SFUI2048J2AB2TO-I-MS-2B1-STD	2.54mm pitch			
2 GBytes	SFUI2048K2AB2TO-I-MS-2B1-STD	2.00mm pitch			
4 GBytes	SFUI4096J2AB1TO-I-MS-2A1-STD	2.54mm pitch			
4 GBytes	SFUI4096K2AB1T0-I-MS-2A1-STD	2.00mm pitch			
4 GBytes	SFUI4096J2AB1TO-I-MS-2B1-STD	2.54mm pitch			
4 GBytes	SFUI4096K2AB1TO-I-MS-2B1-STD	2.00mm pitch			
8 GBytes	SFUI008GJ2AB2T0-I-MS-2A1-STD	2.54mm pitch			
8 GBytes	SFUI008GK2AB2T0-I-MS-2A1-STD	2.00mm pitch			
8 GBytes	SFUI008GJ2AB2TO-I-MS-2B1-STD	2.54mm pitch			
16 GBytes	SFUI016GJ2AB1TO-I-QT-2A1-STD	2.54mm pitch			
16 GBytes	SFUI016GK2AB1T0-I-QT-2A1-STD	2.00mm pitch			
16 GBytes	SFUI016GJ2AB1T0-I-QT-2B1-STD	2.54mm pitch			

	Commercial Temperature			
Capacity	Part Number	Connector		
1 GByte	SFUI1024J2AB1TO-C-MS-2A1-STD	2.54mm pitch		
1 GByte	SFUI1024J2AB1TO-C-MS-2B1-STD	2.54mm pitch		
2 GBytes	SFUI2048J2AB2TO-C-MS-2A1-STD	2.54mm pitch		
2 GBytes	SFUI2048J2AB2TO-C-MS-2B1-STD	2.54mm pitch		
4 GBytes	SFUI4096J2AB1TO-C-MS-2A1-STD	2.54mm pitch		
4 GBytes	SFUI4096J2AB1TO-C-MS-2B1-STD	2.54mm pitch		
8 GBytes	SFUI008GJ2AB2TO-C-MS-2A1-STD	2.54mm pitch		
16 GBytes	SFUI016GJ2AB1TO-C-QT-2A1-STD	2.54mm pitch		

4. Product Description

The Swissbit U-450 USB 2.0 embedded USB flash drive provides a robust, high performance, and reliable storage product with industry compatible interface and small form factor. The U-450 SLC technology both enables high NAND flash operation and excellent endurance. The use of page based Flash management and a global wear leveling extends the endurance to unprecedented values for USB products.

The 10-pin connector makes easy integration into existing or newly designed system boards possible. The U-450 is compatible with standard on-board USB connectors. The embedded USB module serves applications which utilize USB products as acceleration cache for HDDs or as a boot media, for example networking and telecommunication systems.


For outdoor use or in poorly ventilated systems the U-450 is available in industrial temperature grade from -40°C to +85°C. Each individual industrial temperature grade drive is tested at these corners to verify the temperature resistance.

The U-450 firmware includes data care management features which refresh storage areas that are not or only infrequently read. At high temperature operation these areas are prone to retention loss. The firmware monitors the state of the NAND blocks and refreshes those that show a high level of degradation, thus preventing uncorrectable errors. This is an important feature for USB flash drives that are used as read only boot media.

The U-450 consists of a high performance 32bit RISC USB controller, the 10pin connector, power circuitry and different numbers of NAND dies.

The U-450 can flexibly operate at 3.3V \pm 5% or 5V \pm 10%.

It supports USB 2.0 High-Speed and is fully backwards compatible to USB 1.1 Full Speed.

4.1 Performance Specifications

The U-450 read/write sequential and random CDM performance benchmarks are detailed in the following Table 3.

Table 3: Read/Write Performance in High-Speed mode¹

Capacity	Sequential Read (MBPS)	Sequential Write (MBPS)	Random Read 4K (IOPS)	Random Write 4K (IOPS)
1 GByte	30	18	1,750	1,400
2 GBytes	30	19	1,550	1,100
4 GBytes	36	26	1,900	1,350
8 GBytes	36	26	1,900	1,400
16 GBytes	36	26	1,900	1,400

4.2 Current Consumption

The drive-level current consumption as a function of operating mode is shown in the following Table 4.

Table 4: Current Consumption²

Capacity	Sequential Read	Sequential Write	Random Read 4K	Random Write 4K	Idle	Unit
1 GByte	59	63	44	49	28	
2 GBytes	60	66	43	48	28	
4 GBytes	68	66	49	50	30	mA
8 GBytes	70	68	50	51	30	
16 GBytes	75	72	51	53	30	

4.3 Environmental Specifications

4.3.1 Recommended Operating Conditions

The recommended operating conditions for the U-450 USB flash drives are provided in the following Table 5.

Table 5: Recommended Operating Conditions

Parameter	Value
Commercial Operating Temperature	o °C to 70 °C
Industrial Operating Temperature	-40 °C to 85 °C
Power Supply V _{CC} Voltage	3.3 V ± 5% or 5.0 V ± 10%

4.3.2 Recommended Storage Conditions

The recommended storage conditions are listed in the following Table 6.

Table 6: Recommended Storage Conditions

Parameter	Value
Commercial Storage Temperature	-40 °C to 85 °C³
Industrial Storage Temperature	−40 °C to 85 °C³

Swissbit AG

Switzerland

Industriestrasse 4

CH-9552 Bronschhofen

¹ The values are measured using CrystalDiskMark 6.o.2 x64 (CDM) with Seq Q32T1 and 4KiB Q8T8. Performance depends on flash type and number, file/cluster size, and burst speed.

All values are the typical recorded at 25 °C, with 5V supply voltage at fastest CrystalDiskMark 6.0.2 x64 (CDM) in High-Speed mode.

³ The retention at high temperature is reduced. The acceleration factor at 85°C compared with 40°C is 170.

4.3.3 Shock, Vibration and Humidity

The maximum shock, vibration and humidity test conditions are listed in the following Table 7.

Table 7: Shock, Vibration and Humidity

Parameter	Value
Shock	1,500 g, 0.5 ms pulse duration, half-sine wave (IEC 60068-2-27, JESD22-B110)
Vibration	50 <i>g</i> , 20Hz – 2000Hz, 3 axes (IEC 60068-2-6, MIL-STD-883 H M2007.3)
Humidity (Non-Condensing)	85% RH 85 °C, 1000 hrs, max. supply voltage (JESD22-A101)

4.4 Regulatory Compliance

The U-450 devices comply with the regulations / standards listed in the following Table 8.

Table 8: Regulatory Compliance

Abbreviation	Regulation/ Standard
ЕМС	CE - 2014/30/EU FCC - 47 CFR Part 15 UKCA - S.I. 2016 No. 1091 and S.I. 2012 No. 3032
RoHS	2011/65/EU with 2015/863/EU and 2017/2102/EU
REACh	1907/2006/EU and 207/2011/EU
WEEE	2012/19/EU

4.5 Mechanical Specifications

Physical dimensions are detailed in the following Table 9. Figure 3 on page 13 illustrates the U-450 dimensions.

Table 9: Measured Physical Dimensions

Physical Dimensions		
Length	36.8±0.15	
Width	26.65±0.15	mm
Thickness (Max)	9.7±0.25 (standard connector) 5.8±0.25 (low profile connector)	
Weight (Max Capacity)	5	g

4.6 Reliability and Endurance

The Mean Time Between Failure (MTBF) is specified to exceed the value listed in the following Table 10. Data reliability with effective error tolerance and data retention at the beginning and end of life is also provided.

Table 10: Reliability

Parameter	Value	
MTBF (at 25 °C)	> 3,000,000 hours	
Data Reliability	< 1 Non-Recoverable Error per 10 ¹⁷ Bits Read	
Data Retention (up to 40°C)	10 Years at Start (JESD47), 1 Year at EOL	

Endurance represented as both TeraBytes Written (TBW) and full Drive Writes Per Day (DWPD) is provided in the following Table 11.

Table 11: Endurance4,5

Consider	Enterprise Workload				
Capacity	TBW	DWPD ⁶			
1 GByte	7.7	4.2			
2 GBytes	15	4.2			
4 GBytes	31	4.2			
8 GBytes	60	4.1			
16 GBytes	101	3.4			

4.7 Drive Geometry Specification

Table 12: Drive Geometry

Daw Canadity	Heer Conneits	Total LBA	User Addressable Bytes		
Raw Capacity	User Capacity	Decimal	(Unformatted)		
1 GByte	1 GByte	1,960,704	1,003,880,448		
2 GBytes	2 GBytes	3,921,664	2,007,891,968		
4 GBytes	4 GBytes	7,843,328	4,015,783,936		
8 GBytes	8 GBytes	15,663,104	8,019,509,248		
16 GBytes	16 GBytes	31,719,424	16,240,345,088		

Swissbit AG

Switzerland

Industriestrasse 4

CH-9552 Bronschhofen

⁴ Enterprise workload follows the JEDEC JESD219 standard. Enterprise workload values are measured based on 168 hours of runtime. 1 TByte = 10^{12} bytes

⁵ The specified TBW is valid if the amount is spread evenly over at least 18 months. Higher average daily data volume reduces the specified TBW. Swissbit recommends to calculate the service life based on target system mission profile.

⁶ DWPD values are based on a service life of 5 years

5. Electrical Interface

- USB connector 10pin (2mm or 2.54mm pitch)
- USB 2.0 High-Speed interface, USB 1.1 Full Speed compatible
- STD variation

Table 13: Electrical pinout

Pin	Signal	Standard type	Optional on request
1	V_Bus	Operating voltage	
2	NC	Not Connected	V_Bus
3	D-	Data signal pair	
4	NC	Not Connected	
5	D+	Data signal pair	
6	NC	Not Connected	
7	GND	Ground	
8	NC	Not Connected	GND
9	NC	Keyed at connector	not keyed NC or V_Bus
10	Shield	Ground (shield)	NC, LED out

Figure 2: Module view (connector side)

□ □ □ □ □ 2 ■ □ □ □ □ □ 1

See also chapter 7 Package Mechanical

6. Electrical Specification

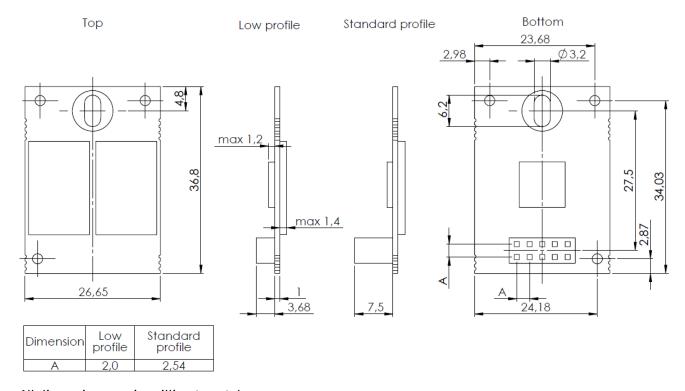
Table 14: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Power Supply Voltage	V_Bus	-0.5	6.0	V
Voltage at D+ and D-	V_Data	-0.5	5.0	V
Commercial Operating Temperature	т л	0	70	٥٢
Industrial Operating Temperature	T_A	-40	85	30

Table 15: DC characteristics for High-Speed operation (T=25°C, V_Bus=5V)

Parameter	Symbol	Density	Min	Тур	Max	Unit
Supply Voltage	V_Bus	all	3.1	3.3 or 5.0	5.50	V
		1 GByte		63	75	
		2 GBytes		66	75	
Write current	I_WR	4 GBytes		66	75	
		8 GBytes		68	75	
		16 GBytes		72	75	
		1 GByte		59	75	mA
	I_RD	2 GBytes		61	75	IIIA
Read current		4 GBytes		68	75	
		8 GBytes		70	75	
		16 GBytes		75	75	
Idle current	I_IDL	all		28 ⁷	40	
Suspend current	I_CCS	all		1.9	2.5	
High Speed Idle Level	V_HS0I	all	-10		10	
High Speed Data Signaling LOW	V_HSOL	all	-10		10	
High Speed Data Signaling HIGH	V_HSOH	all	360		440	mV
Chirp J Level (differential)	V_CHIRPJ	all	360		440	
Chirp K Level (differential)	V_CHIRPK	all	-440		-360	

Switzerland


⁷ For every 10th power-on cycle, typically 5 minutes after power-on, the device performs background data care management that requires up to 70mA.

7. Package Mechanical

- Standard form factor of PCBs 36.8mm x 26.65mm
- Oval hole for mechanical fixture (optional grounded)
- 3 additional holes
- LED for operation indication (optional without LED)
- 2 connector types
 - o 2.54mm pitch, 7.5mm long standard
 - o 2.00mm pitch, 3.68mm long low profile
- Component heights max. 1.2mm on connector side max. 1.4mm on flash side

Figure 3: Mechanical Dimensions for U-450 drive

All dimensions are in millimeters, tolerance: ±0.15

8. ATA Pass-Through commands (Identify Device and S.M.A.R.T.)

8.1 ATA Pass-Through commands

Additional to the standard SCSI commands the device also supports the ATA Pass-Through commands.

Table 16: ATA PASS-TRHOUGH(x) commands

SCSI command OpCode		Description
ATA PASS-THROUGH(12)	A1h	Write and read ATA registers to send semmands and read information
ATA PASS-THROUGH(16)	85h	Write and read ATA registers to send commands and read information

http://www.t1o.org/ftp/t1o/document.04/04-262r8.pdf

Table 17: ATA register addressing

Offset address	Input	0utput	Type	Identify device	e.g. SMART commands
0	Da	ita	Word		
1	Feature	Error	Byte	XX	yyh*
2	Sector	count	Byte	XX	01h
3	LBA_	Low	Byte	XX	XX
4	LBA_	_Mid	Byte	XX	4Fh
5	LBA_	High	Byte	XX	C2h
6	Drive/head		Byte	Eoh	Eoh
7	Command	Status	Byte	ECh	Boh

^{*} see below

8.2 Identify Device

The Identify Device returns a identify sector compatible to ATA and SATA devices. Here an example of the interpretation of this sector.

Table 18: Identify Device Information

Word(s)	Default Value		Total Bytes	Data Field Type Information
0	0040h		2	Standard Configuration Fixed (optional 848Ah for removable)
•••	•••	•••	•••	
10-19	aaaa*		20	Serial number in ASCII (right-justified)
•••		•••	•••	
23-26	XXXX*		8	Firmware revision in ASCII (big-endian byte order in Word)
27-46	XXXX*		40	Model number in ASCII (right-justified)
•••				
60-61	XXXXh		4	Total number of sectors addressable in LBA mode
		•••		
82	0101h 7701h* 4063h*		2	Command set: SMART feature set, service interrupt
•••	•••		•••	
85	000Xh 0701h* 4063h*	_	2	Command set enabled: SMART feature set enabled/disabled
•••	•••	•••	•••	
255	XXA5h		2	Integrity Word

^{*} Values depend on device configuration.

8.3 S.M.A.R.T. commands

The intent of the SMART command feature set is to protect user data and minimize the likelihood of unscheduled system downtime that may be caused by predictable degradation and/or fault of the device. By monitoring and storing critical performance and calibration parameters, SMART feature set devices attempt to predict the likelihood of a near-term degradation or fault condition. Providing the host system the knowledge of a negative reliability condition allows the host system to warn the user of the impending risk of a data loss and advise the user of the appropriate action.

All S.M.A.R.T. commands have the command code Boh. The different commands are selected by the Feature register.

Table 19: S.M.A.R.T. Features Supported

Operation	Feature	Sect Count	LBA low	LBA mid	LBA high	DRV head	Com- mand
S.M.A.R.T. Read Data	Doh	01h	xx	4Fh	C2h	Eoh	Boh
S.M.A.R.T. Read Attribute Thresholds	D1h	01h	xx	4Fh	C2h	Eoh	Boh
S.M.A.R.T. Enable Operations	D8h	XX	xx	4Fh	C2h	Eoh	Boh
S.M.A.R.T. Disable Operations	D9h	XX	xx	4Fh	C2h	Eoh	Boh
S.M.A.R.T. Return Status	DAh	XX	xx	4Fh	C2h	Eoh	Boh

All commands are aborted, if the LBA signature is invalid.

8.3.1 S.M.A.R.T. Read Data (Doh)

When the drive receives the S.M.A.R.T. Read Data subcommand, it returns one sector (512 bytes) of data. See the following table for the data structure of this sector.

Table 20: S.M.A.R.T. Data Structure

Byte(s)	Value	Description
0-1	oo10h	S.M.A.R.T. structure version
2-361	XXh	Attribute entries 1 to 30 (see Table 21)
362	ooh	Off-line data collection status (no off-line data collection started)
363	ooh	Self-test execution status byte (self-test completed)
364-365	ooooh	Total time, in seconds, to complete off-line data collection
366	ooh	Vendor specific
367	ooh	Off-line data collection capability (no off-line data collection)
368-369	0003h	S.M.A.R.T. capabilities
370	ooh	No Error logging capability
371	ooh	Vendor specific
372	ooh	Short self-test routine recommended polling time, in minutes
373	ooh	Extended self-test routine recommended polling time, in minutes
374-385	ooh	Reserved
386-387	0004h	SMART Version
388-510	XXh	Vendor specific
511	XXh	Data structure checksum

8.3.2 S.M.A.R.T. Attribute Entry Structure

Each attribute entry (Bytes 2-361) consists of 12 bytes. See the following table for the data structure of each entry.

Table 21: Attribute Entry

Offset Byte(s)	Value	Description
0	XXh	Attribute ID (see Table 22)
1-2	XXXXh	Flags (little-endian) Bito: Advisory (o) or Prefailure (1) Bit1: Not used (o) or updated during normal operation (1)
3	XXh	Current value as a percentage 64h = 100%
4	XXh	Worst value as a percentage 64h = 100%
5-10	XXXXh	Raw value (little-endian)
11	ooh	Reserved

8.3.3 S.M.A.R.T. Attributes

The drives support the S.M.A.R.T. attributes listed in the following table.

The Threshold values can be read out with the S.M.A.R.T. Read Attribute Thresholds command (D1h)

The first attributes (196, 213, 229) are "Pre-Fail" type, while all other are Advisory (Old Age).

Table 22: S.M.A.R.T. Attributes

ID dec	ID hex	Value	Worst	Thres- hold	Attribute	Description	RAW values Offset 5–10
196	C4h	Х%	Х%	25	Spare Block Count	Number of total available NAND spare blocks	Initial (offset 5-7) and current (offset 8-10) number of spare blocks
213	D5h	Х%	Х%	25	Spare Block Count worst channel	Spare block count for the NAND with the lowest number of remaining spare blocks	Initial (offset 5-7) and current (offset 8-10) number of spare blocks of the channel with the lowest current number of spare blocks
229	E5h	Х%	Х%	2	Total Erase Count	Estimated number of total NAND block erases	Estimated number of total NAND block erases
203	CBh	100	100	0	Total ECC Errors	All recorded ECC errors	Total number of ECC errors (correctable and uncorrectable) (offset 5–8)
204	CCh	100	100	0	Correctable ECC Errors	Total recorded ECC errors that were corrected during the life of the drive	Total number of correctable ECC errors (offset 5–8)
199	C7h	100	100	0	UDMA CRC Errors	Dummy attribute, included for legacy reasons	This value is fixed at o.
232	E8h	100	100	0	Total Number of Reads	Total number of NAND READ commands	Total number of NAND READ commands
12	oCh	100	100	0	Power-0n Count	Count of power-on events	Number of power cycles (offset 5-8)
241	F1h	100	100	0	Total LBAs Written	Total amount of data written to the drive	Total number of LBAs written to the disk, divided by 65536
242	F2h	100	100	0	Total LBAs Read	Total amount of data read from the drive	Total number of LBAs read from the disk, divided by 65536
214	D6h	100	100	0	Management Block status	Total number of times the management block has been updated	Management block write count (offset 5-8)
215	D7h	Х%	Х%	0	Trim Status	Amount of device content that is currently in the trimmed state	This value is fixed at o.

8.3.4 S.M.A.R.T. Read Attribute Thresholds (D1h)

When the drive receives the S.M.A.R.T. Read Attribute Thresholds subcommand, it returns one sector (512 bytes) of data similar as S.M.A.R.T. Read data sector, but with the threshold value in offset 1 of each attribute (see Table 22).

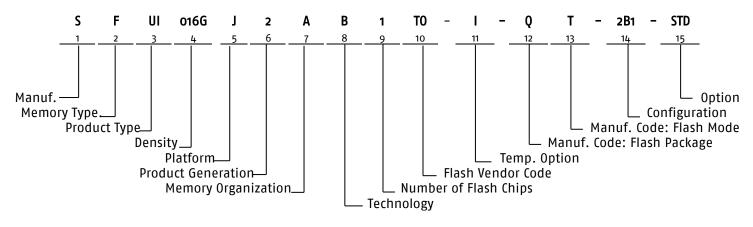
8.3.5 S.M.A.R.T. Enable Operations (D8h)

This command enables access to the S.M.A.R.T. capabilities of the drive. The state of SMART (enabled or disabled) is preserved across power cycles.

8.3.6 S.M.A.R.T. Disable Operations (D9h)

This command disables access to the S.M.A.R.T. capabilities of the drive. The state of SMART (enabled or disabled) is preserved across power cycles.

8.3.7 S.M.A.R.T. Return Status (DAh)


Table 23: S.M.A.R.T. Return Status

Operation	Feature	Sect Count	LBA low	LBA mid	LBA high	DRV head	Com- mand
Command S.M.A.R.T. Return Status	DAh	xx	xx	4Fh	C2h	Eoh	Boh
Response							
S.M.A.R.T. Return Status OK	xx	xx	xx	4Fh	C2h	xx	xx
S.M.A.R.T. Return Status Pre-FAIL*	хх	xx	xx	F4h	2Ch	xx	xx

^{*} If a threshold exceeded condition exists for either the Spare Block Count Worst Channel attribute or the Erase Count attribute, the device will set the Cylinder Low register to F4h and the Cylinder High register to 2Ch. In this case the drive should be replaced soon.

9. Part Number Decoder

9.1 Manufacturer

Swissbit code S	
-----------------	--

9.2 Memory Type

Flash

9.3 Product Type

U-xxx USB Flash Drive Module (Internal)	UI
---	----

9.4 Density

1 GByte	1024
2 GBytes	2048
4 GBytes	4096
8 GBytes	008G
16 GBytes	016G

9.5 Platform

U-xxx - 2.54mm plug	J
U-xxx - 2.00mm plug	K

9.6 Product Generation

First generation	1
Second generation	2

9.7 Memory Organization

x8 A	
------	--

9.8 Technology

U-4xx platform	ı UFD	В
- , , , , , , ,		

9.9 Number of Flash Chips

1 Flas	1	1
2 Flas	h	2

9.10 Flash Code

Toshiba / Kioxia	T0
------------------	----

9.11 Temperature Option

Commercial Temperature Range: o °C to 70 °C	С
Industrial Temperature Range: -40 °C to 85 °C	1

9.12 Die Classification

SLC MONO (single die package)	М
SLC DDP (dual die package)	D
SLC QDP (quad die package)	Q

9.13 Pin Mode

	TSOP
Single nCE and Single R/nB	S
Dual nCE and Dual R/nB	T

9.14 Configuration XYZ

X = Configuration

A - Configuration		
Configuration		Х
Removable Drive		1
Fixed Drive		2

Y = Firmware Revision

FW Revision	Υ
Revision 1	Α
Revision 2	В

Z = Features

Features	Z
Default (SLC or MLC)	1
pSLC (pseudo SLC)	Р

9.15 Option

Swissbit / Standard	STD
Customized version	XXX

10. Marking Specification

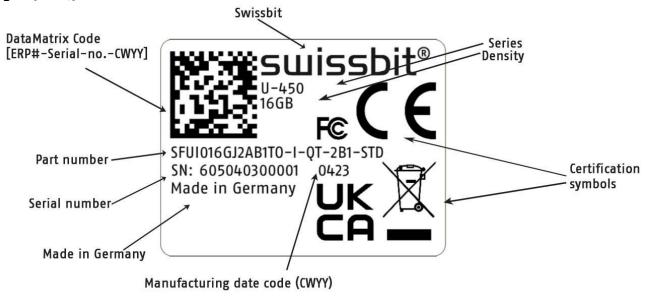

10.1 Top View

Figure 4: U-450 top view (example)

10.2 Label content

Figure 5: U-450 label details

11. Revision History

Table 24: Document Revision History

Date	Revision	Description	Revision Details
15-May-2020	0.90	Preliminary release	Doc. req. no. 3693
31-Aug-2020	1.00	Initial release	Doc. req. no. 4007
13-Jan-2021	1.01	Added 1 GByte product variant, additional commercial temperature partnumbers and updated feature icons	Doc. req. no. 4306
25-Jan-2023	1.02	Added new FW revision products	Doc. req. no. 6014

Disclaimer:

No part of this document may be copied or reproduced in any form or by any means, or transferred to any third party, without the prior written consent of an authorized representative of Swissbit AG ("SWISSBIT"). The information in this document is subject to change without notice. SWISSBIT assumes no responsibility for any errors or omissions that may appear in this document and disclaims responsibility for any consequences resulting from the use of the information set forth herein. SWISSBIT makes no commitments to update or to keep current information contained in this document. The products listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. Moreover, SWISSBIT does not recommend or approve the use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If a customer wishes to use SWISSBIT products in applications not intended by SWISSBIT, said customer must contact an authorized SWISSBIT representative to determine SWISSBIT willingness to support a given application. The information set forth in this document does not convey any license under the copyrights, patent rights, trademarks or other intellectual property rights claimed and owned by SWISSBIT. The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by SWISSBIT.

ALL PRODUCTS SOLD BY SWISSBIT ARE COVERED BY THE PROVISIONS APPEARING IN SWISSBIT'S TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATIONS OF LIABILITY, WARRANTY AND INFRINGEMENT PROVISIONS. SWISSBIT MAKES NO WARRANTIES OF ANY KIND, EXPRESS, STATUTORY, IMPLIED OR OTHERWISE, REGARDING INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED PRODUCTS FROM INTELLECTUAL PROPERTY INFRINGEMENT AND EXPRESSLY DISCLAIMS ANY SUCH WARRANTIES INCLUDING WITHOUT LIMITATION ANY EXPRESS, STATUTORY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

© 2023 SWISSBIT AG All rights reserved.

Page 21 of 21

Switzerland