



The 0RCY-F0S10 is an isolated DC/DC converter that operate from a nominal 50 V/54 V source. This converter is intended to provide isolation and step down to generate a regulated intermediate bus for the purpose of powering non-isolated Point-of-Load (POL) converters.

This unit will provide up to 500~W of output power from a nominal 50~V/54~V input. The output of the converter has the droop function which allow the modules operating in parallel with high output current sharing precision.

These converters are provided in an industry standard 1/8th brick package.



# **Key Features & Benefits**

- 45 56 VDC Input
- 10.2 VDC @ 49 A Output
- 1/8th Brick Converter
- Isolated
- Fixed Frequency (300 kHz)
- High Efficiency
- High Power Density
- Input Under Voltage Lockout
- OCP/SCP
- Output Over-voltage Protection
- Over Temperature Protection
- Remote On/Off
- Parallel Operation
- Low Cost
- Approved to IEC/EN 62368-1
- Approved to UL/CSA 62368-1
- Class II, Category 2, Isolated DC/DC Converter (refer to IPC-9592B)



### **Applications**

- Networking
- Computers and Peripherals
- Telecommunications



belfuse.com/power-solutions

### 1. MODEL SELECTION

| MODEL<br>NUMBER | OUTPUT<br>VOLTAGE | INPUT<br>VOLTAGE | MAX. OUTPUT<br>CURRENT | MAX. OUTPUT<br>POWER | TYPICAL EFFICIENCY |
|-----------------|-------------------|------------------|------------------------|----------------------|--------------------|
| 0RCY-F0S10LG    | 10.2 VDC          | 45 – 56 VDC      | 49 A                   | 500 W                | 97%                |
| 0RCY-F0S10BG    | 10.2 VDC          | 45 – 50 VDC      | 49 A                   | 300 W                | 9170               |

### **PART NUMBER EXPLANATION**

| 0                  | R              | CY          | - F        | ) S         | 10                | х                                                                  | G            |
|--------------------|----------------|-------------|------------|-------------|-------------------|--------------------------------------------------------------------|--------------|
| Mounting Type      | RoHS<br>Status | Series Name | Out<br>Pov |             | Output<br>Voltage | Active Logic                                                       | Package Type |
| Through Hole Mount | RoHS           | 1/8th Brick | 500        | W 45 – 56 V | / 10.2 V          | L – Active Low,<br>Open Frame<br>B – Active Low,<br>with Baseplate | Tray Package |

# 2. ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                                 | DESCRIPTION                                                                                                       | MIN  | TYP | MAX  | UNITS |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|-----|------|-------|
| Continuous non-operating Input Voltage                    |                                                                                                                   | -0.3 | -   | 60   | V     |
| Remote On/Off                                             |                                                                                                                   | -0.3 | -   | 16   | V     |
| Ambient temperature, Long-Term Operating                  | The components on the Unit meet IPC-9592 derating guidelines                                                      | -5   | -   | 85   | °C    |
| Ambient temperature, Short-Term Operating (96 hours/year) | The component temperatures might exceed IPC-9592 derating guidelines but not exceed component temperature ratings | -20  | -   | 90   | °C    |
| Altitude                                                  |                                                                                                                   | -    | -   | 4000 | m     |
| Storage Temperature                                       |                                                                                                                   | -40  | -   | 100  | °C    |

**NOTE:** Ratings used beyond the maximum ratings may cause a reliability degradation of the converter or may permanently damage the device.



# 3. INPUT SPECIFICATIONS

All specifications are typical at 25°C unless otherwise stated.

| PARAMETER                                 | DESCRIPTION                                                                        | MIN  | TYP   | MAX  | UNIT   |
|-------------------------------------------|------------------------------------------------------------------------------------|------|-------|------|--------|
| Operating Input Voltage                   |                                                                                    | 45   | 50/54 | 56   | V      |
| Input Current (full load)                 |                                                                                    | -    | -     | 12   | Α      |
| Input Current (no load)                   |                                                                                    | -    | 100   | 120  | mA     |
| Remote Off Input Current                  |                                                                                    | -    | 20    | 30   | mA     |
| Input Reflected Ripple Current (rms)      | Vin = 45 – 56 V, Io = 100% load, With simulated source impedance of 10 µH, 5 Hz to | -    | 5     | 10   | mA     |
| Input Reflected Ripple Current (pk-pk)    | 20 MHz. Use a 470 μF/80 V electrolytic capacitor.                                  | -    | 18    | 30   | mA     |
| I <sup>2</sup> t Inrush Current Transient | Vin = 50 V, with a 100 µF/100 V input electrolytic capacitor                       | -    | -     | 1    | $A^2s$ |
| Turn-on Voltage Threshold                 |                                                                                    | 42.5 | 44    | 45.0 | V      |
| Turn-off Voltage Threshold                |                                                                                    | 39.0 | 41    | 42.5 | V      |
| Over-voltage Shutdown Threshold           | Output shuts down after 20 ms delay.                                               | 58   | -     | 61   | V      |
| Over-voltage Shutdown Threshold           | Output shuts down immediately.                                                     | 61   | -     | 64   | V      |

**CAUTION:** This converter is not internally fused. An input line fuse must be used in application. Recommend a fast-acting fuse with maximum rating of 15 A on system board. Refer to the fuse manufacture's datasheet for further information.

# 4. OUTPUT SPECIFICATIONS

All specifications are typical at nominal input, full load at 25°C unless otherwise stated.

| PARAMETER                                | DESCRIPTION                                                                          | MIN   | TYP      | MAX   | UNIT         |
|------------------------------------------|--------------------------------------------------------------------------------------|-------|----------|-------|--------------|
| Cutaut Valtage Cat Baint                 | Vin = 45 – 56 V, Pout = 250 W                                                        | 10.45 | 10.5     | 10.55 | V            |
| Output Voltage Set Point                 | Vin = 45 – 56 V                                                                      | 10.15 | -        | 10.88 | V            |
| Load Regulation                          | $Vin = 50 \text{ V}, Io = 0 \sim 100\% \text{ load}.$                                | -     | 0.60     | 0.73  | V            |
| Line Regulation                          | Vin = 45 ~ 56 V, lo = 100% load                                                      | -     | 25       | 40    | mV           |
| Regulation Over Temperature              |                                                                                      | -     | $\pm 30$ | ±60   | mV           |
| Ripple and Noise (pk-pk)                 | Vin = 50 V, Io = 100% load, 0 – 20 MHz BW,                                           | -     | 45       | 90    | mV           |
| Ripple and Noise (rms)                   | with 3 $^{\star}$ 22 $\mu F$ ceramic capacitor at output.                            | -     | 12       | 25    | mV           |
| Output Ripple and Noise under worst case | Over entire operating input voltage range,<br>load and ambient temperature condition | -     | -        | 150   | $mV_{pk-pk}$ |
| Output Current Range                     |                                                                                      | 0     | -        | 49    | Α            |
| Output DC Current Limit                  |                                                                                      | 55    | 61       | 68    | Α            |
| Current Share Accuracy                   | Vin = 50 V, Io = 20% -100% full load, two units paralleling operation                | -     | -        | ±5    | %            |
| Rise Time                                |                                                                                      | -     | -        | 15    | ms           |
| Turn on Time                             | Enable from Vin to 10% of Vout                                                       | 20    | -        | 30    | ms           |
| rum on time                              | Enable from ON/OFF to 10% of Vout                                                    | -     | -        | 5     | ms           |
| Overshoot at Turn on                     | Overshoot at turn on                                                                 | 0     | -        | 3     | %            |
| Output Capacitance                       | 50% ceramic + 50% Oscon                                                              | 0     | -        | 3125  | μF           |
| Transient Response                       |                                                                                      |       |          |       |              |
| △V 50%~75% of Max Load                   |                                                                                      | -     | 160      | 350   | mV           |
| Settling Time                            | di/dt = 1 A/μs, Vin = 50 VDC, with 8 * 22 μF                                         | -     | 100      | 200   | μs           |
| △V 75%~50% of Max Load                   | ceramic capacitor and 1940 µF AL. cap at output.                                     | -     | 160      | 350   | mV           |
| Settling Time                            |                                                                                      | -     | 100      | 200   | μs           |



**Asia-Pacific** +86 755 298 85888 **Europe, Middle East** +353 61 225 977

# 5. OUTPUT PLOT VS INPUT

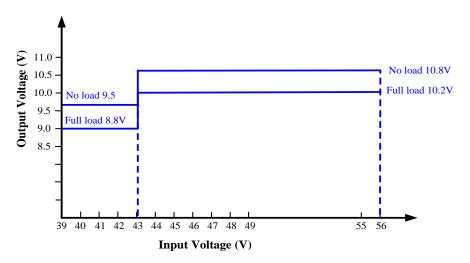



Figure 1. Output plot vs input

| PARAMETER                  | MIN  | TYP | MAX  | UNITS |
|----------------------------|------|-----|------|-------|
| Turn-on Voltage Threshold  | 42.5 | 44  | 45   | V     |
| Turn-off Voltage Threshold | 39   | 41  | 42.5 | V     |

# 6. GENERAL SPECIFICATIONS

| PARAMETER                      | DESCRIPTION                                                                     | MIN                            | TYP  | MAX | UNIT |
|--------------------------------|---------------------------------------------------------------------------------|--------------------------------|------|-----|------|
| Efficiency                     | Vin = 50 V, full load                                                           | 95                             | 97   | -   | %    |
| Switching Frequency            |                                                                                 | 280                            | 300  | 320 | kHz  |
| Over Temperature Protection    |                                                                                 | -                              | 130  | -   | °C   |
| Output Over Voltage Protection |                                                                                 | -                              | -    | 15  | V    |
| Mainh                          | 0RCY-F0S10L                                                                     | -                              | 41.7 | -   | g    |
| Weight                         | 0RCY-F0S10B                                                                     | -                              | 52.4 | -   | g    |
| MTBF                           | Calculated Per Telcordia SR-332, Issue 3<br>(Vin = 50 V, Po = 500 W, Ta = 25°C) | 2.0                            | -    | -   | Mhrs |
|                                | 0RCY-F0S10L                                                                     | $2.30 \times 0.90 \times 0.48$ |      |     | inch |
| Dimensions (L × W × H)         | 01101-1 0310E                                                                   | 58.42 x 22.86 x 12.20          |      |     | mm   |
| Billions (E × W × H)           | 0RCY-F0S10B                                                                     | 2.30 x 0.90 x 0.57             |      |     | inch |
|                                | 0101-100100                                                                     | 58.42 x 22.86 x 14.50          |      |     | mm   |
| Isolation Characteristics      |                                                                                 |                                |      |     |      |
| Input to Output                |                                                                                 | -                              | -    | 500 | V    |
| Input to Case                  |                                                                                 | -                              | -    | 500 | V    |
| Output to Case                 |                                                                                 | -                              | -    | 500 | V    |
| Isolation Resistance           |                                                                                 | 10M                            | -    | -   | Ohm  |
| Isolation Capacitance          |                                                                                 | -                              | 1000 | -   | pF   |



tech.support@psbel.com belfuse.com/power-solutions

# 7. EFFICIENCY DATA

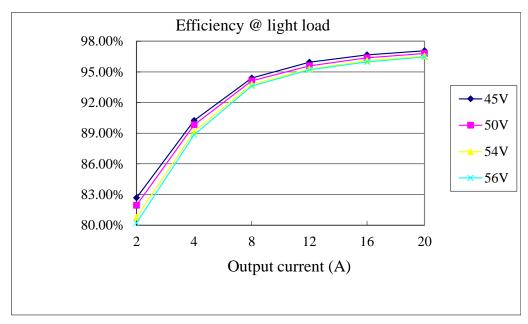



Figure 2. Efficiency data @light load

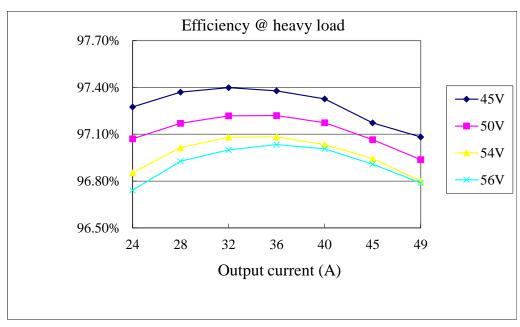



Figure 3. Efficiency data @heavy load



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977

# 8. REMOTE ON/OFF

| PARAMETER              |            | DESCRIPTION                                   | MIN  | TYP | MAX | UNIT |
|------------------------|------------|-----------------------------------------------|------|-----|-----|------|
| Signal Low (Unit On)   | Active Low | Demote On/Off hin is onen the module is off   | -0.3 | -   | 0.8 | V    |
| Signal High (Unit Off) | Active Low | Remote On/Off pin is open, the module is off. | 2.4  | -   | 16  | V    |
| Current (Out of pin)   |            | Module is on, Venable = -0.3 to 0.8 V         | -    | -   | 200 | μΑ   |
| Current (Out of pin)   |            | Module is off, Venable = 2.4 V                | 10   | -   | -   | μΑ   |
| Current (into nin)     |            | Remote on/off pin is pulled up to 10 V.       | -    | -   | 300 | μΑ   |
| Current (into pin)     |            | Remote on/off pin is pulled up to 15 V.       | -    | -   | 500 | μΑ   |
| Open Circuit Voltage   |            |                                               | -    | -   | 15  | V    |

# Recommended remote on/off circuit for active low

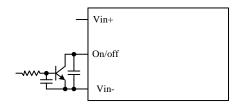



Figure 4. Control with open collector/drain circuit

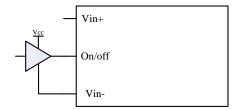



Figure 6. Control with logic circuit

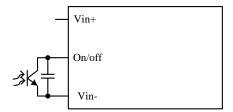



Figure 5. Control with photocoupler circuit

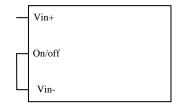



Figure 7. Permanently on



#### 9. INPUT REFLECTED RIPPLE CURRENT

Testing setup:

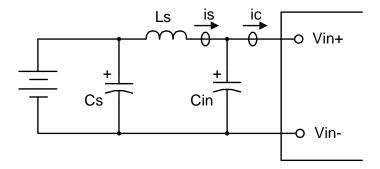



Figure 8. Test setup

Notes and values in testing.

is: Input Reflected Ripple Current

ic: Input Terminal Ripple Current

Ls: Simulated Source Impedance (10 µH)

Cs: NIL

Cin: Electrolytic capacitor, should be as closed as possible to the power module to damped ic ripple current and enhance stability.

Recommendation: 470  $\mu$ F, ESR < 0.045  $\Omega$  @100 kHz, 20°C

Below measured waveforms are based on above simulated and recommended inductance and capacitance.

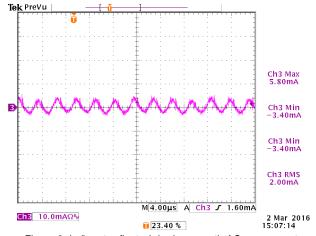



Figure 9. is (input reflected ripple current), AC component

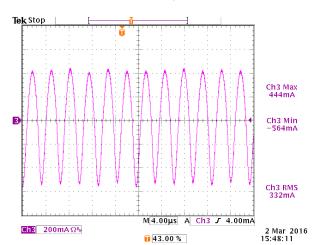



Figure 10. ic (input terminal ripple current), AC component

Test condition: 50 VDC input, 10.2 VDC / 49 A output and Ta = 25 °C, with 8 \* 22 µF ceramic capacitor & 1940 µF AL. cap at output.



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977

### 10. RIPPLE AND NOISE WAVEFORM

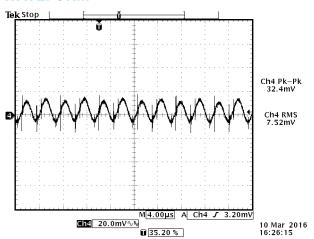



Figure 11.Ripple and noise, 54 VDC input, 500 W output, Ta = 25 °C, with Cout = 500 µF (50% ceramic, 50% 50%Oscon caps)

### 11. TRANSIENT RESPONSE WAVEFORMS

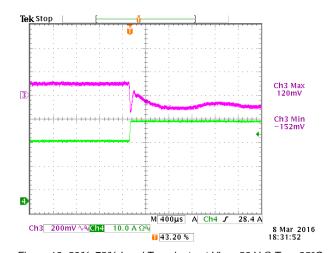



Figure 12. 50%-75% Load Transients at Vin = 50 V @ Ta = 25°C CH3: Vo CH4: Io

Figure 13. 75%-50% Load Transients at Vin = 50 V @ Ta = 25°C CH3: Vo CH4: Io

Note: Transient Response: di/dt=1 A/ $\mu$ s, with 8 \* 22  $\mu$ F ceramic capacitor and 1940  $\mu$ F AL. cap at output.



tech.support@psbel.com belfuse.com/power-solutions

### 12. POWER GOOD

#### Note:

1. The Power Good signal is a non-latching open-collector output that is Low during normal operation and is pulled High when any of the following conditions occur:

- Over-Temperature
- Over-Current
- Vout is outside of the DC Output Band while Vin is within the Vin Operating Range
- · In Parallel configuration, Vin is within operating range, no Vout due to one of the units not operational.
- · Vin is outside of the Vin Operating Range
- 2. The Power Good signal is referenced to Vout(-).

| PARAMETER                                                                                     | DESCRIPTION                                                                                                                   | MIN        | TYP                                | MAX      | UNIT   |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|----------|--------|
| Output Voltage Low (trigger limits)                                                           |                                                                                                                               | 8.2        | -                                  | 8.6      | V      |
| Output Voltage High (trigger limits)                                                          |                                                                                                                               | 12.6       | -                                  | 13.1     | V      |
| Input Voltage Low (trigger limits)<br>Rising<br>Input Voltage High (trigger limits)<br>Rising | PG signal indicates good when Vin is within operating range and indicates bad ~20 ms before unit is shut-down due to UV or OV | 42.5<br>58 | -                                  | 45<br>61 | V<br>V |
| Hysteresis                                                                                    |                                                                                                                               | -          | 1                                  | -        | V      |
| High State Voltage                                                                            |                                                                                                                               | 0          | -                                  | 5.5      | V      |
| High State Leakage Current (into Pin)                                                         |                                                                                                                               | 0          | -                                  | 10       | μΑ     |
| Low State Voltage                                                                             |                                                                                                                               | 0          | -                                  | 0.8      | V      |
| Low State Current (into Pin)                                                                  |                                                                                                                               | 0          | -                                  | 5        | mA     |
| Power Good Signal De-assert<br>Response Time                                                  | Duration between the fault occurring and the<br>Power-Good Signal de-asserting                                                | 0          | -                                  | 3        | ms     |
| Power Good Signal Assert Response<br>Time                                                     | Duration between unit powering up with no faults and the Power Good Signal asserting                                          | 0          | -                                  | 3        | ms     |
| Power Good Signal Duration                                                                    | Duration the Power-Good signal stays de-<br>asserted if a transient fault occurs                                              | 200        |                                    | 600      | ms     |
| Over Temperature Warning                                                                      | For OT Warning, the PG signal will toggle as an impulse wave.                                                                 |            | 10 °C<br>below<br>OTP<br>threshold |          | °C     |
| OT Warning PG Signal Frequency                                                                |                                                                                                                               | 90         | 100                                | 110      | kHz    |
| OT Warning PG Signal Duty Cycle                                                               |                                                                                                                               | 47.5       | 50                                 | 52.5     | %      |



**Asia-Pacific** +86 755 298 85888 **Europe, Middle East** +353 61 225 977

# 13. MECHANICAL DIMENSIONS 0RCY-F0S10L OUTLINE

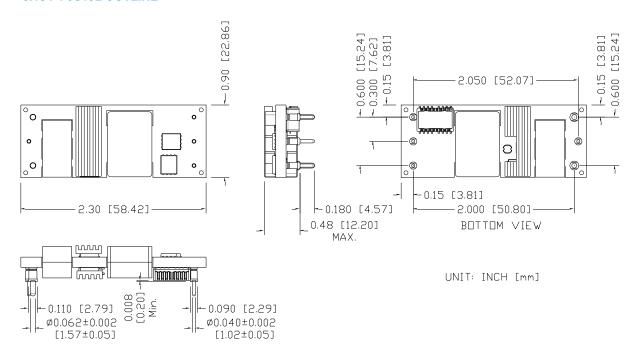



Figure 14. ORCY-F0S10L Outline

**Note:** This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

# NOTES:

- All Pins: Material Copper Alloy;
  Finish Tin plated
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm].



#### **ORCY-FOS10B OUTLINE**

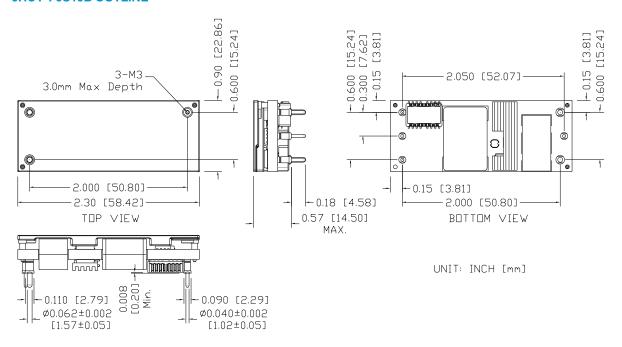
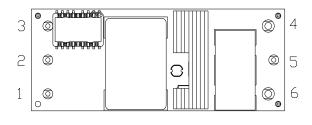



Figure 15. ORCY-F0S10B Outline

**Note:** This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.


#### NOTES:

- All Pins: Material Copper Alloy; Finish - Tin plated
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm].



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977

#### **PIN DEFINITIONS**



BOTTOM VIEW

Figure 16. Pins

| PIN | FUNCTION | PIN SIZE |
|-----|----------|----------|
| 1   | Vin (+)  | 0.04"    |
| 2   | ON/OFF   | 0.04"    |
| 3   | Vin (-)  | 0.04"    |
| 4   | Vout(-)  | 0.062"   |
| 5   | PG       | 0.04"    |
| 6   | Vout(+)  | 0.062"   |

### **RECOMMENDED PAD LAYOUT**

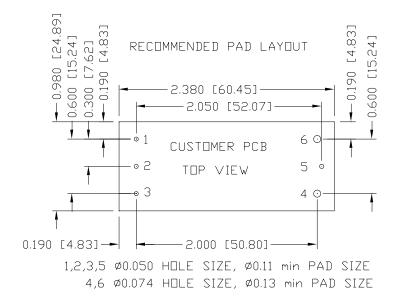



Figure 17. Recommended pad layout



tech.support@psbel.com belfuse.com/power-solutions

#### 14. REVISION HISTORY

| DATE       | REVISION | CHANGES DETAIL                                               | APPROVAL |
|------------|----------|--------------------------------------------------------------|----------|
| 2016-03-18 | PA       | First release                                                | J.Yan    |
| 2016-06-27 | PB       | Update TD curves using another thermal test fixture          | J.Yan    |
| 2016-08-30 | AC       | Update TD curves using thermal test fixture with black cover | J.Yan    |
| 2017-03-31 | AD       | Update Outline drawing                                       | J.Yan    |
| 2020-10-14 | AE       | Delete 0RCY-F0S10D. Add safety information.                  | XF.Jiang |
| 2021-05-07 | AF       | Add object ID.                                               | XF.Jiang |

# For more information on these products consult: tech.support@psbel.com

**NUCLEAR AND MEDICAL APPLICATIONS** - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. **TECHNICAL REVISIONS** - The appearance of products, including safety agency certifications pictured on labels, may change depending on

**TECHNICAL REVISIONS** - The appearance of products, including safety agency certifications pictured on labels, may change depending or the date manufactured. Specifications are subject to change without notice.



**Asia-Pacific** +86 755 298 85888

**Europe, Middle East** +353 61 225 977