

BeStar Technologies Inc.

Address: 761 N. 17th Street Unit 4, St. Charles, IL 60174
Tel: 847-261-2850 E-mail: sales@bestartech.com Web: www.bestartech.com

Document Number: 1302-46

Revision : A2 **Total Pages** : 6

Prepare by : Loki, Lo

Date : 16 October, 2018

SENER Brand Power Product

www.jlsener.com

Document Type : Specification

Product Type : Lithium/Manganese Dioxide (LiMnO2) Coin Cell

Ordering Code : SCR1632 Cell Part Number : CR1632 Cell UL Number : MH20926

A1 - New issue created by Loki, Lo on 19 Feb., 2013	
A2 - Updated section 3 and 4 by Loki, Lo on 16 Oct., 2018	

This material is the property of BeStar Technologies Inc. Unauthorized copying or use of this material is prohibited. **SCR1632** Page 2 of 6

1. Purpose and Scope

This document contains both general requirements, qualification requirements, and those specific electrical, mechanical requirements for this part.

2. Description

Ø16mm Lithium/Manganese Dioxide (LiMnO2) coin cell with pins, RoHS compliant.

3. Application

Computers and Peripherals, Portable Equipment, etc.

4. Component Requirement

4.1. General Requirement

4.1.1. Operating Temperature Range : -20°C to +70°C

4.1.2. Storage Temperature Range : 0°C to +30°C

4.1.3. Storage Humidity : 40 ~ 75%

4.1.4. Weight : Approx. 2g

4.1.5. Materials of Positive Terminal : SUS stainless

4.1.6. Materials of Negative Terminal : SUS stainless

4.2. Electrical Requirement

4.2.1. Nominal Voltage : 3V

4.2.2. Nominal Capacity : 120mAh

(under Load 15K Ω Load and 2.0V End-voltage)

4.2.3. Load Resistance : $15K\Omega$

4.2.4. Standard Discharge Current : 0.1mA

SCR1632 Page 3 of 6

4.3. Standard Characteristics

4.3.1. Discharge Characteristics

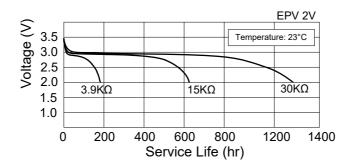


Figure 1. Discharge Characteristics

4.3.2. Load-Capacity

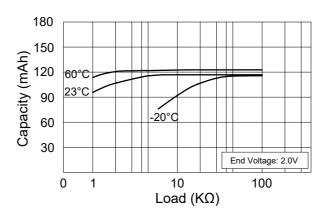


Figure 2. Load-Capacity

4.3.3. Pulse Discharge Characteristics (Discharge depth 40%, pulse load for 15 sec)

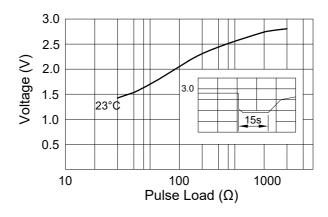
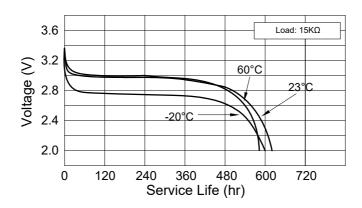



Figure 3. Pules Discharge Characteristics

4.3.4. Temperature Characteristics

Figure 4. Temperature Characteristics

4.3.5. Load-Operating voltage (Discharge depth 40%)

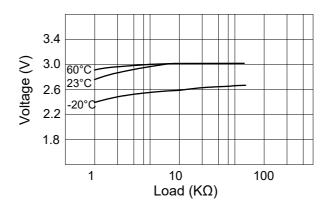


Figure 5. Load-Operating voltage

4.3.6. Storage Characteristics

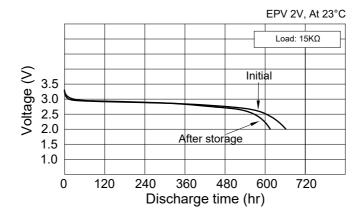


Figure 6. Storage Characteristics

5. Testing

- **5.1. Open-circuit Voltage**: Subject samples to $+20 \pm 2$ °C and 0 ± 2 °C for 8 hours or longer. Then measure the voltage between both terminals at the same ambient temperature with voltmeter.
- **5.2. Closed-circuit Voltage**: Subject samples to $+20 \pm 2$ °C and 0 ± 2 °C for 8 hours or longer. Then measure the voltage between both terminals with voltmeter while the $15k\Omega$ is connected between both terminals at the same ambient temperature. Measured value shall be based on meter reading taken 8 seconds after the circuit is closed.
- **5.3. Service Life** : Subject samples to 20 ± 2 °C and 0 ± 2 °C for 8 hours or longer. Then continuously discharge at the same ambient temperature and through $15k\Omega$. Discharge until terminal voltage of the test specimens falls below the discharge end-point voltage of 2.0V, and the time during which the terminal voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- 5.4. Service Life after high temperature storage: Store samples at $+60 \pm 2$ °C for 20 days. Then subject samples to $+20 \pm 2$ °C and ordinary humidity 65% ± 20 % for 12 hours or longer and continuously discharge through $15k\Omega$. Discharge until the voltage falls below the dicharge end-point voltage of 2.0V, and the time during which the voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- **5.5. Electrolyte Leakage Test**: Samples shall be examined for electrolyte leakage while they are kept at ordinary temperature and humidity after being stored at 45 ± 2 °C and 75% relative humidity for 30 days.
- **5.6. Self-discharge**: Store samples for 12 months at $+20 \pm 2$ °C and $65\% \pm 5\%$ relative humidity and tested for service life in accordance with the method specified in 5.3. Self-discharge shall be determined as follows:

Self-discharge rate (%) = $(Y1-Y2)/Y1 \times 100\%$

Y1: Average initial discharge life of batteries of the same lot

Y2 : Average discharge life after storage

SCR1632 Page 6 of 6

6. Mechanical Layout

Unit: mm

Tolerance : Linear $XX.X = \pm 0.3$

 $XX.XX = \pm 0.05$

Angular = $\pm 0.25^{\circ}$

(unless otherwise specified)

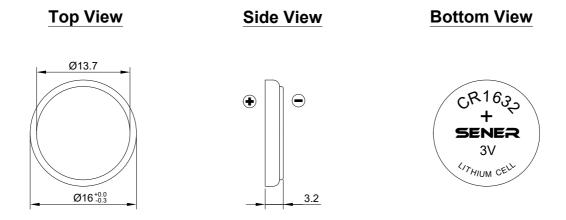


Figure 7. SCR1632 Mechanical Layout