MOSFET – Power, Single, N-Channel, DPAK/IPAK 30 V, 88 A

Features

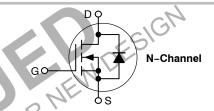
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

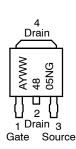
Param	Symbol	Value	Unit		
Drain-to-Source Voltag	е		V_{DSS}	30	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain Current (R _{θJA}) (Note 1)		$T_{A} = 25^{\circ}C$ $T_{A} = 85^{\circ}C$	lD	17.4 13.5	A
Power Dissipation (R _{θJA}) (Note 1)	C	$T_A = 25^{\circ}C$	PD.	2,65	W
Continuous Drain Current ($R_{\theta JA}$) (Note 2)	Steady	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$		12.7 9.8	А
Power Dissipation (R _{θJA}) (Note 2)	State	T _A = 25°C	Po	1.41	W
Continuous Drain Current (R ₀ JC) (Note 1)		$T_{C} = 25^{\circ}C$ $T_{C} = 85^{\circ}C$	I _D	95 73	Α
Power Dissipation (R _{θJC}) (Note 1)		T _C = 25°C	P _D	79	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	175	Α
Current Limited by Packa	age	T _A = 25°C	I _{DmaxPkg}	45	Α
Operating Junction and S	Storage Te	mperature	T _J , T _{stg}	-55 to 175	°C
Source Current (Body Di	Source Current (Body Diode)				
Source Current (Body Di	I _{SM}	175	Α		
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-S Energy (V_{DD} = 24 V, V_{GS} L = 1.0 mH, $I_{L(pk)}$ = 24 A	E _{AS}	288	mJ		
Lead Temperature for So (1/8" from case for 10 s)	ldering Pur	poses	TL	260	°C

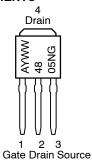

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
30 V	5.0 mΩ @ 10 V	88 A	
	7.4 mΩ @ 4.5 V	88 A	





DPAK
CASE 369AA
(Bent Lead)
STYLE 2

IPAK
CASE 369D
(Straight Lead DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location*

Y = Year
WW = Work Week
4805N = Device Code
G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

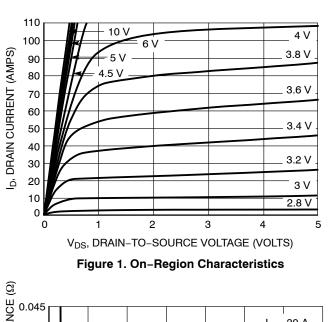
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ hetaJC}$	1.9	°C/W
Junction-to-TAB (Drain)	$R_{ heta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	56.6	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	106.6	

FI FCTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			27	7	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 24 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V		N	±100	nA
ON CHARACTERISTICS (Note 3)	•					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.5	4	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J		100	5.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ to}$ $I_D = 30 \text{ A}$	ns	4.3	5.0	mΩ
		11.5 V V _D = 15 A	OW	4.2		
		$V_{GS} = 4.5 \text{ V}$ $I_D = 30 \text{ A}$	10/	6.0	7.4	
		I _D = 15 A		5.8		
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 15 A		17		S
CHARGES AND CAPACITANCES	18	MICE				
Input Capacitance	C _{iss}	7/1/2		2865		pF
Output Capacitance	Coss	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 12 \text{ V}$		610		
Reverse Transfer Capacitance	C _{rss}	103 1		338		
Total Gate Charge	Q _{G(TOT)}			20.5	26	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V,		4.05		
Gate-to-Source Charge	Q_{GS}	I _D = 30 A		8.28		
Gate-to-Drain Charge	Q_{GD}			8.36		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_D = 30 \text{ A}$		48		nC
SWITCHING CHARACTERISTICS (Note 4)						
Turn-On Delay Time	t _{d(on)}			17.2		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,		20.3		
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$		20.8		
Fall Time	t _f			8.0		
Turn-On Delay Time	t _{d(on)}			10.8		ns
Rise Time	t _r	V _{GS} = 11.5 V, V _{DS} = 15 V,		20.5		
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$		30.8		
Fall Time	t _f			4.4		

Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTI	ERISTICS			•	•		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.87	1.2	V
		I _S = 30 A	T _J = 125°C		0.76		
Reverse Recovery Time	t _{RR}		•		25.7		ns
Charge Time	ta	V _{GS} = 0 V, dls/	/dt = 100 A/μs,		13.1		
Discharge Time	tb	I _S = 3			12.6		
Reverse Recovery Time	Q _{RR}	1			18		nC
PACKAGE PARASITIC VALUES	-						
Source Inductance	L _S				2.49		nΗ
Drain Inductance, DPAK	L _D	1			0.0164		
Drain Inductance, IPAK	L _D	$T_A = 3$	25°C		1.88		
Gate Inductance	L _G				3.46	a GA	
Gate Resistance	R_{G}	1			0.8	,5,	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

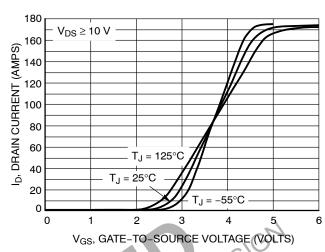


Figure 2. Transfer Characteristics

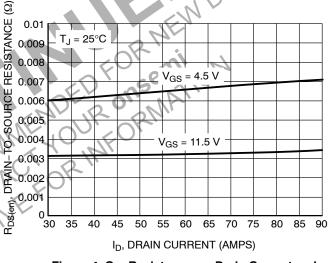
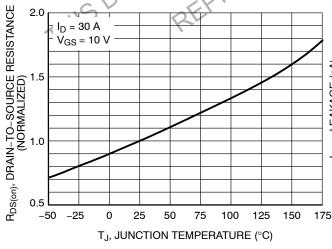



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

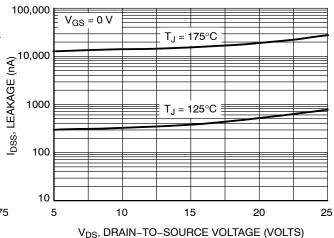
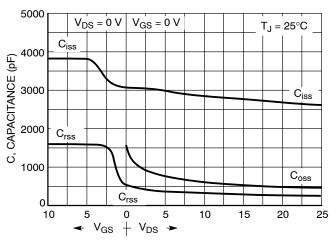



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

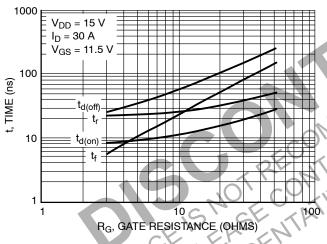


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

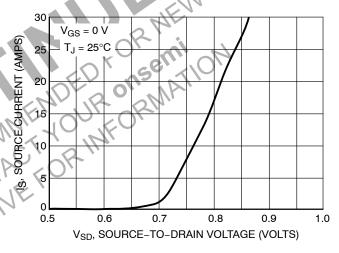


Figure 10. Diode Forward Voltage vs. Current

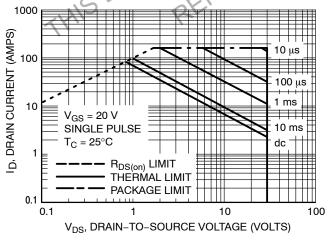


Figure 11. Maximum Rated Forward Biased Safe Operating Area

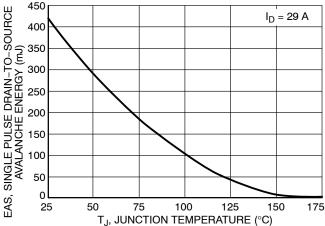


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

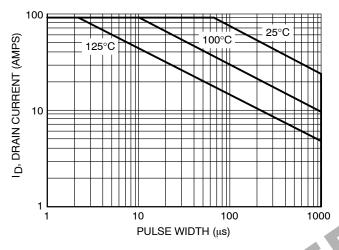
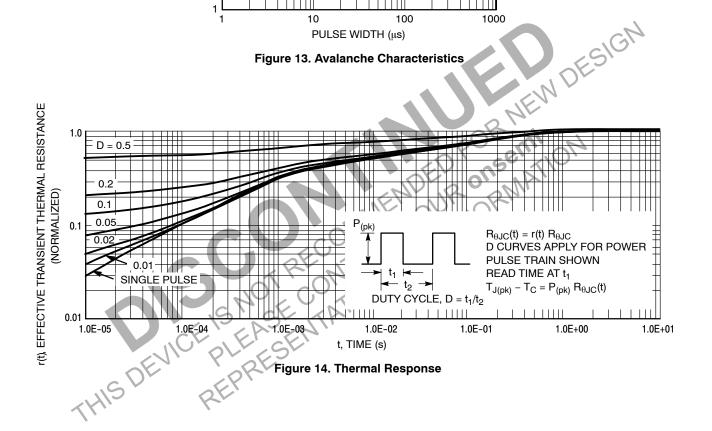



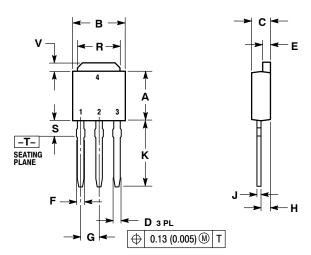
Figure 13. Avalanche Characteristics

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD4805NT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NTD4805N-1G	IPAK (Pb-Free)	75 Units / Rail
NVD4805NT4G*	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.



DPAK INSERTION MOUNT

CASE 369 ISSUE O

DATE 02 JAN 2000

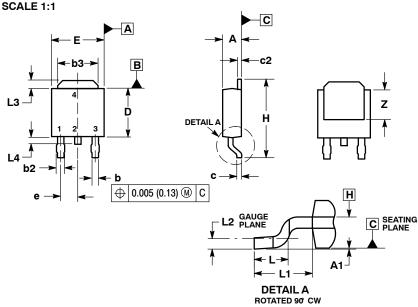
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
٧	0.030	0.050	0.77	1.27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DPAK (SINGLE GUAGE) CASE 369AA ISSUE B

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

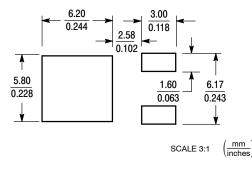
STYLE 1: PIN 1. BASE

2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 2: PIN 1. GATE

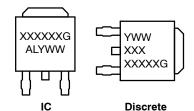
2. DRAIN 3. SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE


2. CATHODE 3. ANODE CATHODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE


STYLE 6: PIN 1. MT1 2. MT2 3. GATE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales