
LTR									F	REVISI	ONS										
	DESCRIPTION				DA	ATE (Y	R-MO-I	DA)		APPF	ROVED	ı									
А			-	o group		-	•				-		rp		08-1	10-20			R. H	EBER	
В	Make Dose devid	e correct Rate se ce bein	ction Sens g EL	to foot sitivity (DRS fro due to	note ELDF ee up	1/ un RS) p p to 3	nder 1.2 aragra 300 kra	2.4. Ch ph and ds(Si).	nanges I footno Chanç	made ote <u>5</u> / u ges ma	to Enhander 1.	anced L 5 due t ootnote	ow o s <u>1</u> /	10-04-06			C. SAFFLE				
С				o the "L ate para						3535 re	quirem	ents	ro		10-1	11-30			C. SAFFLE		
D	Dele	footnot te RHA I ro	e to Lleve	input vo	oltage m the	je ran e first	ge limi sente	t as spence of t	ecified footnot	under p e <u>1</u> / as	paragra specifi	ph 1.3 ed und	er		12-0	09-18			C. S	AFFLE	
REV																					
REV SHEET																					
	D	D		D		D															
SHEET	D 15	D 16	D 17			D 19															
SHEET REV	15		₩-	7 18				D	D	D	D	D	D	D	D	D	D	D	D	D	D
SHEET REV SHEET	15		₩-	7 18	3	19		D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 10	D 11	D 12	D 13	D 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	15	16 RD	₩-	7 18 R S PF F	EV HEET REPARAJE:	19 TARED	PITHAD	1 DIA	<u> </u>				6	7 DLA I	8 LAND	9 ANE	10 MAF O 432	11 RITIM 218-3	12 E	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR.	NDAF OCIRC AWIN NG IS A JSE BY ARTMEN NCIES (RD CUIT G	BLE	7 18 R Si PF F F AF F	EV HEE REPA RAJE HECK AJE COBE	TARED ISSH POVED	BY PITHAC BY BY M. HEE	1 DIA	2		MIC AM	5 SROC	CIRCUER,	7 DLA I DLUM ///www	8 LAND IBUS w.lan	9 ANE, OHIO	D MAF O 432 marit	RITIM 218-3: ime.d	12 E 990	13	14

DSCC FORM 2233 APR 97

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

<u>Device type</u>	Generic number	Circuit function
01	RHF43B	Radiation hardened, single, precision, operational amplifier

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class

Device requirements documentation

Q or V

Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Χ	See figure 1	8	Flat pack 1/

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V.

 $\underline{1}/\ \ \text{Al}_2\text{O}_3$ ceramic header and pullback of 0.01 x 0.02 inches.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET

1.3 Absolute maximum ratings. 2/

Supply voltage (V_{CC}):

Differential input voltage (V_{ID}) ±1.2 V 4/

Storage temperature range-65°C to +150°C

Operating temperature range-55°C to +150°C

Lead temperature (soldering, 10 seconds) +260°C $\underline{5}$ /

Maximum junction temperature (T_J) +150°C

1.4 Recommended operating conditions.

Common mode input voltage range (V_{ICM}) V_{DD} to V_{CC}

Ambient operating temperature range (T_A) -55°C to +125°C

1.5 Radiation features. 6/

Maximum total dose available (dose rate = 50 - 300 rads(Si)/s):

Device type 01 ≥ 300 krads(Si)

The manufacturer supplying RHA parts on this drawing has performed a characterization test at 300 krads(Si) to demonstrate that the parts do not exhibit enhanced low dose rate sensitivity (ELDRS) according to MIL-STD-883 method 1019, paragraph 3.13.1.1. Therefore, this part may be considered ELDRS free to the tested total dose of 300 krads(Si) at the low dose rate of 10 mrads(Si)/s. This part is tested to a total dose of 300 krads(Si) at the high dose rate of 50 – 300 rads(Si)/s.

STANDARD MICROCIRCUIT DRAWING

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-06237
	REVISION LEVEL D	SHEET 3

^{2/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

^{3/} The magnitude of the input and output terminals must never exceed $V_{CC} + 0.3 \text{ V}$.

^{4/} Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

^{5/} Distance of not less than 1.5 mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

^{6/} For device type 01, this part has been tested and does not demonstrate low dose rate sensitivity at 300 krads(Si). For low dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD- 883, method 1019, condition D. For high dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method 1019, condition A.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 3.1.1 Microcircuit die. For the requirements of microcircuit die, see appendix A to this document.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V.
 - 3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein and figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Block diagram. The block diagram shall be as specified on figure 3.
- 3.2.4 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	-55°C ≤ .	ons $\frac{1}{2}$ / $\frac{2}{3}$ / $T_A \le +125^{\circ}C$ erwise specified	Group A subgroups	Device type	Lin	nits	Unit
						Min	Max	
Offset voltage	V _{IO}	$V_{CC} = +1.5 \text{ V},$	V _{ICM} = 0 V	1	01	-300	+300	μV
		$V_{DD} = -1.5 V$	V _{ICM} = V _{CC}			-300	+300	
			$V_{ICM} = V_{DD}$			-300	+300	
			V _{ICM} = 0 V	2,3		-500	+500	
			V _{ICM} = V _{CC}			-500	+500	
			$V_{ICM} = V_{DD}$			-500	+500	
		V _{CC} = +8 V,	V _{ICM} = 0 V	1		-300	+300	
		$V_{DD} = -8 V$	V _{ICM} = V _{CC}			-300	+300	
			$V_{ICM} = V_{DD}$			-300	+300	
			V _{ICM} = 0 V	2,3		-500	+500	
			$V_{ICM} = V_{CC}$			-500	+500	
			$V_{ICM} = V_{DD}$			-500	+500	
Supply current	Icc	$V_{CC} = +1.5 V,$	V _{ICM} = 0 V	1,2,3	01		2.6	mA
		V _{DD} = -1.5 V	V _{ICM} = V _{CC}				2.6	
			V _{ICM} = V _{DD}				2.6	
		V _{CC} = +8 V,	V _{ICM} = 0 V				2.9	
		V _{DD} = -8 V	V _{ICM} = V _{CC}				2.9	
			$V_{ICM} = V_{DD}$				2.9	
Input bias current	+I _{IB}	V _{CC} = +2 V,	V _{ICM} = 0 V	1	01	-60	60	nA
		V _{DD} = -2 V		2,3		-100	100	
	-I _{IB}	V _{CC} = +2 V,	V _{ICM} = 0 V	1		-60	60	
		V _{DD} = -2 V		2,3		-100	100	
	+l _{IB}	V _{CC} = +8 V,	V _{ICM} = 0 V	1		-60	60	
		V _{DD} = -8 V		2,3		-100	100	
	-I _{IB}	V _{CC} = +8 V,	V _{ICM} = 0 V	1		-60	60	
		V _{DD} = -8 V		2,3		-100	100	
Input offset current	I _{IO}	V _{CC} = +2 V,	V _{ICM} = 0 V	1	01	-15	15	nA
		V _{DD} = -2 V		2,3		-35	35	
		V _{CC} = +8 V,	V _{ICM} = 0 V	1		-15	15	
		V _{DD} = -8 V		2,3		-35	35	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	5

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} - Continued.$

Test	Symbol	Conditions $\underline{1}/\underline{2}/\underline{3}/$ -55°C \leq T _A \leq +125°C unless otherwise specified	Group A subgroups	Device type	Liı	mits	Unit
					Min	Max	
0 1 : " "	O) (D		4	0.4	90		dB
Supply rejection ratio	SVR	$+3 \text{ V} < \text{V}_{CC} < +16 \text{ V}, \text{ V}_{ICM} = 0 \text{ V}$	5,6	01	80		
Common mode rejection ratio	CMRR	V _{DD} < V _{ICM} < V _{CC} , V _{CC} = +1.5 V, V _{DD} = -1.5 V	4,5,6	01	72		dB
		$V_{DD} < V_{ICM} < V_{CC},$ $V_{CC} = +8 \text{ V}, V_{DD} = -8 \text{ V}$	4,5,6	01	72		
Large signal voltage gain	A _{VD}	$V_{ICM} = 0 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega,$ $V_{DD} + 0.5 \text{ V} < V_{OUT} < V_{CC} - 0.5 \text{ V}$	4	01	74		dB
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	5,6		60		
		$V_{ICM} = 0 \text{ V}, R_L = 1 \text{ k}\Omega,$	4		74		
		V _{DD} + 0.5 V < V _{OUT} < V _{CC} - 0.5 V V _{CC} = +8 V, V _{DD} = -8 V	5,6		60		
Output sink current	I _{SINK}	$V_{ID} = -1 \text{ V}, V_{OUT} = +1.5 \text{ V},$	1	01	20		mA
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3		15		
		$V_{ID} = -1 \text{ V}, V_{OUT} = +8 \text{ V},$	1		20		
		V _{CC} = +8 V, V _{DD} = -8 V	2,3		15		
Output source current	ISOURCE	$V_{ID} = +1 \text{ V}, V_{OUT} = -1.5 \text{ V},$	1	01	15		mA
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3		10		
		$V_{ID} = +1 V, V_{OUT} = -8 V,$	1		15		
		V _{CC} = +8 V, V _{DD} = -8 V	2,3		10		
Low level output voltage	V _{OL}	V_{ID} = -1 V, V_{ICM} = 0 V, R_L = 1 k Ω connected to V_{ICM} ,	1	01		-1.4	V
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3			-1.3	
		V_{ID} = -1 V, V_{ICM} = 0 V R_L = 10 k Ω connected to V_{ICM} ,	1			-1.44	
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3			-1.4	
		V_{ID} =-1 V, V_{ICM} = 0 V, R_L = 1 k Ω connected to V_{ICM} ,	1			-7.8	
		V _{CC} = +8 V, V _{DD} = -8 V	2,3			-7.7	
		V_{ID} =-1 V, V_{ICM} = 0 V, R_L = 10 k Ω connected to V_{ICM} ,	1			-7.94	
		V _{CC} = +8 V, V _{DD} = -8 V	2,3			-7.9	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions $\underline{1}/\underline{2}/\underline{3}/$ Symbol $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ unless otherwise specified		Device type	Limits		Unit
		·			Min	Max	
High level output voltage	Voн	V_{ID} =+1 V, V_{ICM} = 0 V, R_L = 1 kΩ connected to V_{ICM} ,	1	01	1.4		V
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3		1.3		
		V_{ID} =+1 V, V_{ICM} = 0 V, R_L = 10 kΩ connected to V_{ICM} ,	1		1.44		
		V _{CC} = +1.5 V, V _{DD} = -1.5 V	2,3		1.4		
		V_{ID} = +1 V, V_{ICM} = 0 V R_L = 1 kΩ connected to V_{ICM} ,	1		7.7		
		V _{CC} = +8 V, V _{DD} = -8 V	2,3		7.6		
		V_{ID} =+1 V, V_{ICM} = 0 V R_L = 10 kΩ connected to V_{ICM} ,	1		7.9		
		V _{CC} = +8 V, V _{DD} = -8 V	2,3		7.8		
Slew rate positive	SR(+)	$A_V = 5$, $R_L = 1$ $k\Omega$, $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	9	01	2		V/µs
		$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	10,11		1.7		
		$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +8$ V, $V_{DD} = -8$ V	9		2		
		$A_V = 5$, $R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{CC} = +8 \text{ V}$, $V_{DD} = -8 \text{ V}$	10,11		1.7		
Slew rate negative	SR(-)	$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	9	01	2		V/µs
		$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	10,11		1.7		
		$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +8$ V, $V_{DD} = -8$ V	9		2		
		$A_V = 5$, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +8$ V, $V_{DD} = -8$ V	10,11		1.7		

See footnotes at end of table.

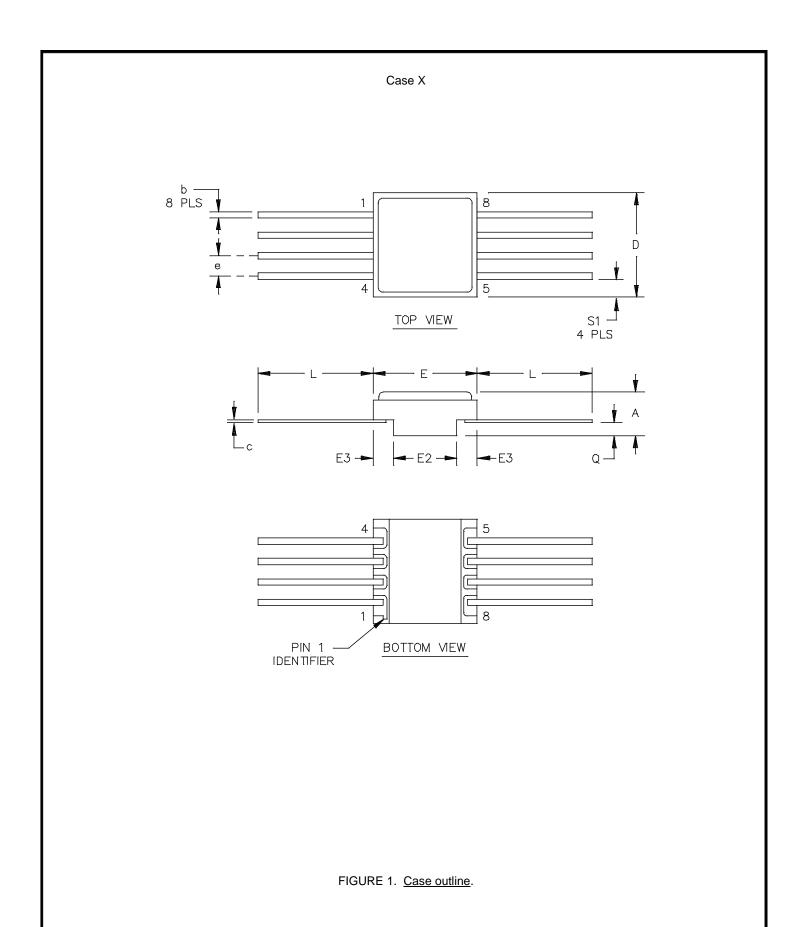

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 7

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $\underline{1}/\underline{2}/\underline{3}/$ -55°C \leq T _A \leq +125°C unless otherwise specified	Group A subgroups	Device type	Limits		Unit
					Min	Max	
Gain bandwidth product	GBP	$A_V = 5$, $f = 100$ kHz, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	4	01	6		MHz
		$A_V = 5$, $f = 100$ kHz, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +1.5$ V, $V_{DD} = -1.5$ V	5,6	01	3.5		
		$A_V = 5$, $f = 100$ kHz, $R_L = 1$ k Ω , $C_L = 100$ pF, $V_{CC} = +8$ V, $V_{DD} = -8$ V	4	01	6		
		$A_V = 5, f = 100 \text{ kHz},$ $R_L = 1 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{CC} = +8 \text{ V}, V_{DD} = -8 \text{ V}$	5,6	01	3.5		

- $\underline{1}$ / RHA devices supplied to this drawing have been characterized through all levels D, P, L, R, and F of irradiation. However, device type 01 is only tested at the "F" level for high and low dose rates. Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, $T_A = +25$ °C.
- 2/ These parts have been characterization tested at low dose rate, see 1.5.
- 3/ For device type 01, this part has been tested and does not demonstrate low dose rate sensitivity at 300 krads(Si). For low dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method 1019, condition D. For high dose rate, the radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, method 1019, condition A.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 8

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	9

Case X - continued.

Symbol		Inches		N	fillimeters		
	Min	Normal	Max	Min	Normal	Max	Notes
А	.088	.096	.104	2.24	2.44	2.64	
b	.015	.017	.019	0.38	0.43	0.48	
С	.004	.005	.006	0.10	0.13	0.16	
D	.250	.255	.260	6.35	6.48	6.61	
Е	.250	.255	.260	6.35	6.48	6.61	
E2	.170	.175	.180	4.32	4.45	4.58	
E3	.035	.040	.045	0.88	1.01	1.14	
е		.050 BSC		1	1.27 BSC		
L	.256		.290	6.51		7.38	
Q	.026	.031	.036	0.66	0.79	0.92	
S1	.036	.044	.052	0.92	1.12	1.32	
N		8			8		

Note:

- 1. N is the maximum number of terminal positions.
- 2. The U.S. government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

FIGURE 1. Case outline - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	10

Device type	01
Case outline	Х
Terminal number	Terminal symbol
1	NC
2	-IN
3	+IN
4	V_{DD}
5	NC
6	OUT
7	Vcc
8	NC

NC = No connect

FIGURE 2. Terminal connections.

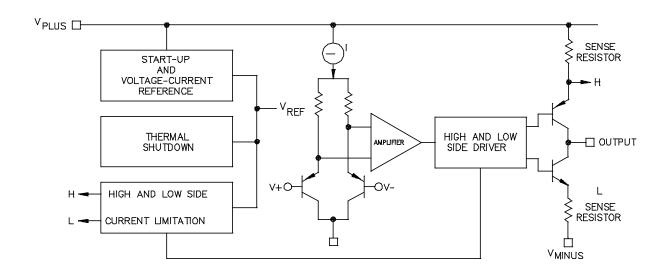


FIGURE 3. Block diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	11

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.
 - 4.2.1 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.
- 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein.
 - 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	12

TABLE IIA. Electrical test requirements.

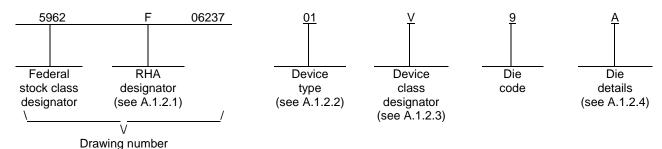
Test requirements	Subgroups (in accordance with MIL-PRF-38535, table III)	
	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1	1
Final electrical parameters (see 4.2)	1,2,3,4,5, <u>1</u> / 6,9,10,11	1,2,3, <u>1</u> / <u>2</u> / 4,5,6,9,10,11
Group A test requirements (see 4.4)	1,2,3,4,5,6, 9,10,11	1,2,3,4,5,6, 9,10,11
Group C end-point electrical parameters (see 4.4)	1,2,3,4,5,6, 9,10,11	1,2,3,4,5, <u>2</u> / 6,9,10,11
Group D end-point electrical parameters (see 4.4)	1,2,3,4,5,6, 9,10,11	1,2,3,4,5,6, 9,10,11
Group E end-point electrical parameters (see 4.4)	1	1

TABLE IIB. <u>Burn-in and operating life test. Delta parameters (+25°C).</u>

Parameters	Symbol	Test Condit	tions	Delta Limits
Change in input	ΔVΙΟ	V _{CC} = +1.5 V	V _{ICM} = 0 V	±110 μV
offset voltage		V _{DD} = -1.5 V	V _{ICM} = V _{CC}	
			V _{ICM} = V _{DD}	
		VCC = +8 V	V _{ICM} = 0 V	±110 μV
		V _{DD} = -8 V	V _{ICM} = V _{CC}	
			V _{ICM} = V _{DD}	
Change in	Δlcc	V _{CC} = +1.5 V	V _{ICM} = 0 V	±150 μA
supply current		V _{DD} = -1.5 V	V _{ICM} = V _{CC}	
			V _{ICM} = V _{DD}	
		V _{CC} = +8 V	V _{ICM} = 0 V	±150 μA
		V _{DD} = -8 V	V _{ICM} = V _{CC}	
			V _{ICM} = V _{DD}	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	13

^{1/} PDA applies to subgroup 1.2/ Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be computed with reference to the zero hour electrical parameters.


- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).
 - a. End-point electrical parameters shall be as specified in table IIA herein.
 - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table IIA herein.
- 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 condition A, and as specified herein.
 - 5. PACKAGING
- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V.
 - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-0544.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	14

A.1 SCOPE

A.1.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device class V) are reflected in the Part or Identification Number (PIN). When available, a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN.

A.1.2 PIN. The PIN is as shown in the following example:

A.1.2.1 RHA designator. Device classes Q and V RHA identified die meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

A.1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	RHF43B	Radiation hardened, precision,
		bipolar, single operational amplifier

A.1.2.3 Device class designator.

<u>Device class</u> <u>Device requirements documentation</u>

Q or V <u>Certification and qualification to the die requirements of MIL-PRF-38535</u>

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 15

A.1.2.4 <u>Die details</u>. The die details designation is a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

A.1.2.4.1 Die physical dimensions.

<u>Die type</u> <u>Figure number</u>

01 A-1

A.1.2.4.2 Die bonding pad locations and electrical functions.

<u>Die type</u> <u>Figure number</u>

01 A-1

A.1.2.4.3 Interface materials.

<u>Die type</u> <u>Figure number</u>

01 A-1

A.1.2.4.4 Assembly related information.

<u>Die type</u> <u>Figure number</u>

01 A-1

A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details.

A.1.4 Recommended operating conditions. See paragraph 1.4 herein for details.

STANDARD
MICROCIRCUIT DRAWING

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-06237
	REVISION LEVEL D	SHEET 16

A.2 APPLICABLE DOCUMENTS.

A.2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARD

MIL-STD-883 - Test Method Standard Microcircuits.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

A.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

A.3 REQUIREMENTS

- A.3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- A.3.2 <u>Design, construction and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein and the manufacturer's QM plan for device classes Q and V.
 - A.3.2.1 Die physical dimensions. The die physical dimensions shall be as specified in A.1.2.4.1 and on figure A-1.
- A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figure A-1.
 - A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figure A-1.
 - A.3.2.4 Assembly related information. The assembly related information shall be as specified in A.1.2.4.4 and on figure A-1.
 - A.3.2.5 Radiation exposure circuit. The radiation exposure circuit shall be as defined in paragraph 3.2.4 herein.
- A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document.
- A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.
- A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	17

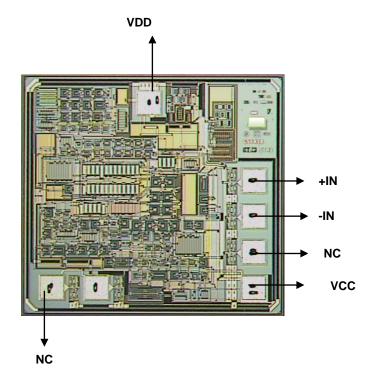
- A.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
- A.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

A.4 VERIFICATION

- A.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not affect the form, fit, or function as described herein.
- A.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum, it shall consist of:
 - a. Wafer lot acceptance for class V product using the criteria defined in MIL-STD-883, method 5007.
 - b. 100% wafer probe (see paragraph A.3.4 herein).
 - c. 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883, method 2010 or the alternate procedures allowed in MIL-STD-883, method 5004.

A.4.3 Conformance inspection.

A.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified in paragraphs 4.4.4 and 4.4.4.1 herein.


A.5 DIE CARRIER

A.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

A.6 NOTES

- A.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications, and logistics purposes.
- A.6.2 <u>Comments</u>. Comments on this appendix should be directed to DLA Land and Maritime -VA, Columbus, Ohio, 43218-3990 or telephone (614)-692-0540.
- A.6.3 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
- A.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	18

Die bonding pad locations and electrical functions

Die physical dimensions. Die size: 78 mils x 84 mils

Die thickness: 375 $\mu m \pm 25~\mu m$ (14.8 mils \pm 1 mil)

Pad size: $184 \mu m \times 184 \mu m$

Interface materials.

Top metallization: Metal 1 Al/Si/Cu = 0.6 μ m (\pm 0.05 μ m) Metal 2 Al/Si/Cu = 1.05 μ m (\pm 0.05 μ m)

Backside metallization: bare silicon

Glassivation.

Type: P. Vapox (SiO₂) = 0.5 μ m OxydeNiride (SiOnN) = 0.6 μ m

Substrate: Silicon

Assembly related information:

Substrate potential:

Special assembly instructions: None

FIGURE A-1. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-06237
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	19

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 12-09-18

Approved sources of supply for SMD 5962-06237 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962F0623701VXC	F8859	RHF43BK-01V
5962F0623701VXA	F8859	RHF43BK-02V
5962F0623701QXC	F8859	RHF43BK-01Q
5962F0623701QXA	F8859	RHF43BK-02Q
5962F0623701V9A	F8859	RHF43BDIE2V

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGEVendor namenumberand address

F8859 STMicroelectronics

3, Rue de Suisse CS 60816

35208 Rennes Cedex 2 - France

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.