Onsemi

CAN FD Transceiver, High Speed **NCV7357**

Description

The NCV7357 CAN FD transceiver is the interface between a controller area network (CAN) protocol controller and the physical bus. The transceiver provides differential transmit capability to the bus and differential receive capability to the CAN controller.

The NCV7357 is an addition to the CAN high-speed transceiver family complementing NCV7344 CAN stand-alone transceivers and previous generations such as AMIS42665, AMIS3066x, etc.

The NCV7357 guarantees additional timing parameters to ensure robust communication at data rates beyond 1 Mbps to cope with CAN flexible data rate requirements (CAN FD). These features make the NCV7357 an excellent choice for all types of HS-CAN networks, in nodes that require only a basic CAN capability. Features

- Compliant with ISO 11898–2:2016
- CAN FD Timing Specified up to 5 Mbps
- V_{IO} Pin on NCV7357-3 Version Allowing Direct Interfacing with 3 V to 5 V Microcontrollers
- Low Current, Listen Only Silent Mode
- Low Electromagnetic Emission (EME) and High Electromagnetic Immunity
- Very Low EME without Common-mode (CM) Choke
- No Disturbance of the Bus Lines with an Unpowered Node
- Transmit Data (TxD) Dominant Timeout Function
- Under All Supply Conditions the Chip Behaves Predictably
- Very High ESD Robustness of Bus Pins, >8 kV System ESD Pulses
- Thermal Protection
- Bus Pins Short Circuit Proof to Supply Voltage and Ground
- Bus Pins Protected Against Transients in an Automotive Environment
- These are Pb-free Devices
- Quality
- Wettable Flank Package for Enhanced Optical Inspection
- AEC-Q100 Grade 0 Qualified and PPAP Capable

Typical Applications

- Automotive
- Industrial Networks

DFNW8 **MW SUFFIX** CASE 507AB

1

Υ

W

- = Year
- = Work Week

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 11 of this data sheet.

Figure 1. NCV7357–0 Block Diagram

Figure 2. NCV7357–3 Block Diagram

Figure 4. Application Diagram NCV7357-3

Table 1. PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	TxD	Transmit data input; low input → dominant driver; internal pull-up current
2	GND	Ground
3	V _{CC}	Supply voltage
4	RxD	Receive data output; dominant transmitter → low output
5	NC	Not connected. On NCV7357-0 only
5	V _{IO}	Digital Input / Output pins supply voltage. On NCV7357-3 only
6	CANL	Low-level CAN bus line (low in dominant mode)
7	CANH	High-level CAN bus line (high in dominant mode)
8	S	Silent mode control input; internal pull-up current
	EP	Exposed Pad. Recommended to connect to GND or left floating in application (DFNW8 package only).

FUNCTIONAL DESCRIPTION

High speed CAN FD transceiver

NCV7357 implements high–speed physical layer CAN FD transceiver compatible with ISO11898–2, implementing following optional features or alternatives:

Extended bus load range

Operating Modes

NCV7357 provides two modes of operation as illustrated in Table 2. These modes are selectable through pin S.

Table 2. OPERATING M	ODES
----------------------	------

Pin S	Mode	Pin TxD	BUS	Pin RxD
Low	Normal	0	Dominant	0
Low	normai	1	Recessive	1
High	Silent	х	Dominant (1)	0
_		Х	Recessive	1

1. CAN BUS driven by another transceiver on the BUS

Power-off

This virtual mode is entered as soon as the V_{CC} or V_{IO} undervoltage condition is detected. The internal logic is reset and the transceiver is disabled. CAN bus pins are kept floating. As soon as both V_{CC} and V_{IO} voltages rise above corresponding undervoltage recovery thresholds, the device proceeds to Normal or Silent mode, depending on S pin state.

Normal Mode

In the normal mode, the transceiver is able to communicate via the bus lines. The signals are transmitted and received to the CAN controller via the pins TxD and RxD. The slopes on the bus lines outputs are optimized to give low EME.

Silent Mode

In the silent mode, the transmitter is disabled. The bus pins are in recessive state independent of TxD input. Transceiver listens to the bus and provides data to controller, but controller is prevented from sending any data to the bus.

- Transmit dominant timeout, long
- Support of bit rates up to 5 Mbps
- Normal Bus biasing

Overtemperature Detection

A thermal protection circuit protects the IC from damage by switching off the transmitter if the junction temperature exceeds $T_{J(sd)}$ value. Because the transmitter dissipates most of the power, the power dissipation and temperature of the IC is reduced. All other IC functions continue to operate. The transmitter off–state resets when the temperature decreases below the shutdown threshold and pin TxD goes high. The thermal protection circuit is particularly needed when a bus line short circuits.

TxD Dominant Timeout Function

A TxD dominant timeout timer circuit prevents the bus lines being driven to a permanent dominant state (blocking all network communication) if pin TxD is forced permanently low by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TxD. If the duration of the low–level on pin TxD exceeds the internal timer value $t_{dom(TxD)}$, the transmitter is disabled, driving the bus into a recessive state. The timer is reset by a positive edge on pin TxD.

This TxD dominant timeout time $t_{dom(TxD)}$ defines the minimum possible bit rate to 17 kbps.

Fail Safe Features

A current–limiting circuit protects the transmitter output stage from damage caused by accidental short circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

Detection of undervoltage on supply pin (V_{CC} or V_{IO}) causes switching off device. After supply voltage is recovered TxD pin must be first released to high to allow sending dominant bits again.

The pins CANH and CANL are protected from automotive electrical transients (according to ISO 7637; see

^{2. &#}x27;X' = don't care

Figure 7). Pins TxD and S are biased internally should the input become disconnected. Pins TxD, S and RxD will be floating, preventing reverse supply should the VCC supply be removed.

VIO Supply Pin

The V_{IO} pin (available only on NCV7357–3 version) should be connected to microcontroller supply pin. By using V_{IO} supply pin shared with microcontroller the I/O levels between microcontroller and transceiver are properly adjusted. See Figure 4.

ABSOLUTE MAXIMUM RATINGS

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{SUP}	Supply voltage V _{CC} , V _{IO}		-0.3	+6.0	V
V _{CANH}	DC voltage at pin CANH	$0 < V_{CC} < 5.5 V$; no time limit	-42	+42	V
V _{CANL}	DC voltage at pin CANL	$0 < V_{CC} < 5.5 V$; no time limit	-42	+42	V
V _{CANH -} CANL	DC voltage between CANH and CANL		-42	+42	V
V _{IN}	DC voltage at pin TxD, S		-0.3	+6.0	V
V _{OUT}	DC voltage at pin RxD		-0.3	V _{SUP} + 0.3	V
V _{esdHBM}	Electrostatic discharge voltage at all pins, Component HBM	(Note 3)	-6	+6	kV
V _{esdCDM}	Electrostatic discharge voltage at all pins, Component CDM	(Note 4)	-750	+750	V
V _{esdIEC}	Electrostatic discharge voltage at pins CANH and CANL, System HBM (Note 6)	(Note 5)	-8	+8	kV
V _{schaff}	Voltage transients, pins CANH, CANL.	test pulses 1	-100		V
	Test Pulses According to ISO7637–2, Class C (Note 6)	test pulses 2a		+75	V
		test pulses 3a	-150		V
		test pulses 3b		+100	V
Latch-up	Static latch-up at all pins	(Note 7)		150	mA
T _{stg}	Storage temperature		-55	+150	°C
TJ	Maximum junction temperature		-40	+170	°C
MSL _{SOIC}	Moisture sensitivity level for SOIC-8		2	2	-
MSLDFN	Moisture sensitivity level for DFNW8		1		-

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Standardized human body model electrostatic discharge (ESD) pulses in accordance to EIA–JESD22. Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor

4. Standardized charged device model ESD pulses when tested according to AEC-Q100-011

5. System human body model electrostatic discharge (ESD) pulses in accordance to IEC 61000-4-2. Equivalent to discharging a 150 pF capacitor through a 330 Ω resistor referenced to GND

6. Results were verified by external test house

7. Static latch-up immunity: Static latch-up protection level when tested according to EIA/JESD78

Table 4. THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal characteristics SOIC-8 (Note 8) Thermal Resistance Junction-to-Air, Free air, 1S0P PCB (Note 9) Thermal Resistance Junction-to-Air, Free air, 2S2P PCB (Note 10)	${\sf R}_{ heta {\sf J} {\sf A}} \ {\sf R}_{ heta {\sf J} {\sf A}}$	131 81	°C/W °C/W
Thermal characteristics DFNW8 (Note 8) Thermal Resistance Junction-to-Air, Free air, 1S0P PCB (Note 9) Thermal Resistance Junction-to-Air, Free air, 2S2P PCB (Note 10)	$R_{ heta JA} \ R_{ heta JA}$	125 58	°C/W °C/W

8. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters

Values based on test board according to EIA/JEDEC Standard JESD51–3, signal layer with 10% trace coverage
Values based on test board according to EIA/JEDEC Standard JESD51–7, signal layers with 10% trace coverage

Table 5. ELECTRICAL CHARACTERISTICS (V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V; for typical values T_A = 25°C, for min/max values T_J = -40 to +150°C; R_{LT} = 60 Ω , C_{RxD} = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2). Positive currents flow into the respective pin)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SUPPLY (Pin V _{CC})						
V _{CC}	Power supply voltage	(Note 11)	4.75	5.0	5.25	V
I _{CC}	Supply current in Normal mode	Dominant; V _{TxD} = Low	30	45	55	mA
		Recessive; V _{TxD} = High	2.0	5.0	10	mA
		Normal mode, Dominant; $V_{TxD} = 0$ V; one of bus wires shorted -3 V \leq (V _{CANH} , V _{CANL}) \leq +18 V	2.0	-	105	mA
Iccs	Supply current in silent mode NCV7357–3 version		0.1	-	1.3	mA
	Supply current in silent mode NCV7357–0 version		0.1	-	1.5	mA
VUVDVCC	Undervoltage detection on V_{CC} pin		3.5	4.0	4.3	V

VIO SUPPLY VOLTAGE (Pin VIO) Only for NCV7357-3 version

V _{IO}	Supply voltage on pin V _{IO}		2.8	-	5.5	V
I _{IOS}	Supply current on pin V_{IO} in silent mode	V _{TxD} = VIO	-	120	200	μA
	I _{IONM} Supply current on pin V _{IO} during normal mode	Dominant; V _{TxD} = Low	-	700	900	
IONM		Recessive; V _{TxD} = High	-	460	600	μA
V _{UVDVIO}	Undervoltage detection voltage on V _{IO} pin		2.0	2.3	2.6	V

TRANSMITTER DATA INPUT (Pin TxD)

V _{IH}	High-level input voltage	Output recessive	2.0	-	-	V
V _{IL}	Low-level input voltage	Output dominant	-0.3	-	0.8	V
I _{IH}	High-level input current	$V_{TxD} = V_{CC} / V_{IO}$	-5.0	0	5.0	μA
IIL	Low-level input current	V _{TxD} = 0 V	-300	-150	-75	μA
C _i	Input capacitance	(Note 12)	-	5	10	pF

TRANSMITTER DATA INPUT (Pin S)

V _{IH}	High-level input voltage	Silent mode	2.0	-	-	V
V _{IL}	Low-level input voltage	Normal mode	-0.3	-	0.8	V
I _{IH}	High-level input current	$V_{S} = V_{CC} / V_{IO}$	-1.0	0	1.0	μA
IIL	Low-level input current	V _S = 0 V	-15	-	-1.0	μA
Ci	Input capacitance	(Note 12)	-	5	10	pF

Table 5. ELECTRICAL CHARACTERISTICS (V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V; for typical values T_A = 25°C, for min/max values T_J = -40 to +150°C; R_{LT} = 60 Ω , C_{RxD} = 15 pF; unless otherwise noted. All voltages are referenced to GND (pin 2). Positive currents flow into the respective pin)

RECEIVER DATA OUTPUT (Pin RxD)

I _{OH}	High-level output current	Normal mode V _{RxD} = V _{CC} / V _{IO} – 0.4 V	-8.0	-3.0	-1.0	mA
I _{OL}	Low-level output current	V _{RxD} = 0.4 V	1.0	6.0	12	mA

CAN TRANSMITTER (PINS CANH AND CANL)

V _{o(dom)} (CANH)	Dominant output voltage at pin CANH	Normal mode; V_{TxD} = Low; t < t _{dom(TxD}); 50 Ω < R _{LT} < 65 Ω	2.75	3.5	4.5	V
V _{o(dom)} (CANL)	Dominant output voltage at pin CANL	Normal mode; V_{TxD} = Low; t < t _{dom(TxD)} ; 50 Ω < R _{LT} < 65 Ω	0.5	1.5	2.25	V
V _{o(rec)}	Recessive output voltage at pins CANH and CANL	Normal or Silent mode; V _{TxD} = High or V _{TxD} = Low and t > t _{dom(TxD)} ; no load	2.0	2.5	3.0	V
V _{o(dom)(diff)}	Differential dominant output voltage (V _{CANH} - V _{CANL})	Normal mode; V_{TxD} = Low; t < t _{dom(TxD)} ; 45 Ω < R _{LT} < 65 Ω	1.5	2.25	3.0	V
V _{o(dom)(diff)_} ARB		Normal mode; V _{TxD} = Low; t < t _{dom(TxD}); R _{LT} = 2 240 Ω (Note 12)	1.5	-	5.0	v
$V_{o(rec)(diff)}$	Differential recessive output voltage (V _{CANH} – V _{CANL})	Normal or Silent mode; V _{TxD} = High or V _{TxD} = Low and t > t _{dom(TxD)} ; no load	-50	0	+50	mV
V _{o(dom)} (sym)	Dominant output voltage driver symmetry V _o (dom)(sym) = V _o (CANH)(dom) + V _o (CANL)(dom)	TxD = square wave up to 1 MHz; $C_{ST} = 4.7 \text{ nF}$	0.9	1.0	1.1	V _{CC}
I _{o(sc)} (CANH)	Short circuit output current at pin CANH in dominant	Normal mode; TxD = Low, t < $t_{dom(TxD)}$; -3 V \leq V _{CANH} \leq +18 V	-100	-70	+1.0	mA
I _{o(sc)} (CANL)	Short circuit output current at pin CANL in dominant	Normal mode; TxD = Low, t < t _{dom(TxD}); -3 V \leq V _{CANL} \leq +36 V	-1.0	+70	+100	mA
I _{o(sc)(rec)}	Short circuit output current at pins CANH and CANL in recessive	Normal or Silent mode; TxD = High, –27 V < V _{CANH} , V _{CANL} < +32 V	-5.0	-	+5.0	mA

CAN RECEIVER (Pins CANH and CANL)

I _{LEAK(off)}	Input leakage current	$\begin{array}{l} 0 \ \Omega < \mathrm{R}(\mathrm{V_{CC}} \ \mathrm{to} \ \mathrm{GND}) < 1 \ \ \mathrm{M}\Omega \\ \mathrm{V_{CANH}} = \mathrm{V_{CANL}} = 5 \ \ \mathrm{V} \end{array}$	-5.0	0	+5.0	μA
		$V_{CC} = V_{IO} = 0 V$ $V_{CANH} = V_{CANL} = 5 V$	-5.0	0	+5.0	μA
V _{i(rec)(diff)_NM}	Differential input voltage range recessive state	Normal or Silent mode; −12 V ≤ V _{CANH} , V _{CANL} ≤ +12 V; no load	-3.0	_	0.5	V
Vi(dom)(diff)_NM	Differential input voltage range dominant state	Normal or Silent mode; -12 V \leq V _{CANH} , V _{CANL} \leq +12 V; no load	0.9	-	8.0	V
V _{i(th)(diff)_NM}	Differential receiver threshold voltage voltage	Normal or Silent mode; -12 V \leq V _{CANH} , V _{CANL} \leq +12 V; no load	0.5	-	0.9	V
$V_{i(th)(diff)_NM_E}$		Normal or Silent mode; extended, -30 V \leq V _{CANH} , V _{CANL} \leq +35 V; no load	0.4	_	1.0	V
R _{i(cm)}	Common-mode input resistance at pins CANH and CANL	$-2 \text{ V} \le \text{V}_{CANH}, \text{ V}_{CANL} \le +7 \text{ V}$	15	25	37	kΩ

Table 5. ELECTRICAL CHARACTERISTICS (V _{CC} = 4.75 V to 5.25 V; V _{IO} = 2.8 V to 5.5 V; for typical values T _A = 25°C, for
min/max values $T_J = -40$ to +150°C; $R_{LT} = 60 \Omega$, $C_{RxD} = 15 \text{ pF}$; unless otherwise noted. All voltages are referenced to GND (pin 2).
Positive currents flow into the respective pin)

R _{i(cm)(m)}	Matching between pin CANH and pin CANL common mode input resistance	V _{CANH} = V _{CANL} = + 5 V	-1	0	+1	%
R _{i(diff)}	Differential input resistance	$\begin{array}{l} R_{i(diff)} = R_{i(cm)(CANH)} + \\ R_{i(cm)(CANL)} \\ -2 \ V \leq V_{CANH}, \ V_{CANL} \leq +7 \ V \end{array}$	25	50	75	kΩ
C _i	Input capacitance at pins CANH and CANL	V _{TxD} = High; (Note 12)	-	7.5	20	pF
C _{i(diff)}	Differential input capacitance	V _{TxD} = High; (Note 12)	_	3.75	10	pF

TIMING CHARACTERISTICS (see Figure 5, Figure 6 and Figure 8)

d(TxD-BUSon)	Propagation delay TxD to bus active	Normal mode (Note 13)	-	75	-	ns
d(TxD-BUSoff)	Propagation delay TxD to bus inactive	Normal mode (Note 13)	-	85	-	ns
d(BUSon-RxD)	Propagation delay bus active to RxD	Normal or Silent mode (Note 13)	-	24	-	ns
d(BUSoff–RxD)	Propagation delay bus inactive to RxD	Normal or Silent mode (Note 13)	-	32	-	ns
t _{pd_dr}	Propagation delay TxD to RxD dominant to recessive transition	Normal mode (Note 13)	50	100	210	ns
t _{pd_rd}	Propagation delay TxD to RxD recessive to dominant transition	Normal mode (Note 13)	50	120	210	ns
t _{d(s-nm)}	Operating mode change delay	Silent mode to Normal mode	5.0	11	50	μs
t _{dom(TxD)}	TxD dominant timeout	Normal mode; V _{TxD} = Low	1.0	-	10	ms
t _{bit(RxD)}	Bit time on RxD pin	t _{bit(TxD)} = 500 ns (Note 13)	400	-	550	ns
		t _{bit(TxD)} = 200 ns (Note 13)	120	-	220	ns
t _{bit(Vi(diff))}	Bit time on bus (CANH – CANL pin)	t _{bit(TxD)} = 500 ns (Note 13)	435	-	530	ns
		t _{bit(TxD)} = 200 ns (Note 13)	155	-	210	ns
Δt_{rec}	Receiver timing symmetry Δt _{rec =} t _{bit} (RxD) ⁻ t _{bit} (Vi(diff))	t _{bit(TxD)} = 500 ns (Note 13)	-65	-	40	ns
-160	$-1ec = -bit(\pi x D) - bit(VI(dill))$	t _{bit(TxD)} = 200 ns (Note 13)	-45	-	15	ns

THERMAL SHUTDOWN

T _{J(sd)} Shutdown junction temperature	Junction temperature rising	160	180	200	°C
--	-----------------------------	-----	-----	-----	----

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. In the range between VUVDVCC and 4.75 V and from 5.25 V to 6 V the chip is fully functional; some parameters may be outside of the specification 12. Values based on design and characterization, not tested in production 13. $C_{LT} = 100 \text{ pF}$, C_{ST} not present, $C_{RxD} = 15 \text{ pF}$

MEASUREMENTS SETUPS AND DEFINITIONS

Edge length below 10 ns

*On NCV7357–0 version V_{IO} is replaced by V_{CC}

Figure 5. Transceiver Timing Diagram – Propagation Delays

Figure 6. Transceiver Timing Diagram – Loop Delay and Recessive Bit Time

Figure 7. Test Circuit for Automotive Transients

Figure 8. Test Circuit for Timing Characteristics

Table 6. ISO 11898-2:2016 Parameter Cross-Reference Table

ISO 11898-2:2016 Specification		NCV7357 Datasheet
Parameter	Notation	Symbol
DOMINANT OUTPUT CHARACTERISTICS		
Single ended voltage on CAN_H	V _{CAN_H}	V _{o(dom)(CANH)}
Single ended voltage on CAN_L	V _{CAN_L}	V _{o(dom)(CANL)}
Differential voltage on normal bus load	V _{Diff}	V _{o(dom)(diff)}
Differential voltage on effective resistance during arbitration	V _{Diff}	V _{o(dom)(diff)_ARB}
Differential voltage on extended bus load range (optional)	V _{Diff}	V _{o(dom)(diff)}
DRIVER SYMMETRY		
Driver symmetry	V _{SYM}	V _{o(dom)(sym)}
DRIVER OUTPUT CURRENT		
Absolute current on CAN_H	I _{CAN H}	I _{o(SC)(CANH)}
Absolute current on CAN_L	I _{CAN L}	I _{o(SC)(CANL)}
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE		
Single ended output voltage on CAN_H	V _{CAN H}	V _{o(rec)}
Single ended output voltage on CAN_L	V _{CAN_L}	V _{o(rec)}
Differential output voltage	V _{Diff}	V _{o(rec)(diff)}
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING INACTIVE		
Single ended output voltage on CAN_H	V _{CAN_H}	NA
Single ended output voltage on CAN_L	V _{CAN L}	NA
Differential output voltage	V _{Diff}	NA
OPTIONAL TRANSMIT DOMINANT TIMEOUT		
Transmit dominant timeout, long	t _{dom}	t _{dom(TxD)}
Transmit dominant timeout, short	t _{dom}	NA
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING ACTIVE/	INACTIVE	
Recessive state differential input voltage range	V _{Diff}	V _{i(rec)(diff)_NM}
Dominant state differential input voltage range	V _{Diff}	V _{i(dom)(diff)_NM}
RECEIVER INPUT RESISTANCE	F F	
Differential internal resistance	R _{Diff}	R _{i(diff)}
Single ended internal resistance	R _{CAN H}	R _{i(cm)} R _{i(cm)}
	R _{CAN_L}	R _{i(cm)}
RECEIVER INPUT RESISTANCE MATCHING		
Matching a of internal resistance	m _R	R _{i(cm)(m)}
IMPLEMENTATION LOOP DELAY REQUIREMENT		
Loop delay	t _{Loop}	t _{pd_rd} tpd_dr
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS TO 2 MBIT/S	FOR USE WITH BIT RATES	SABOVE 1 MBIT/S AND UP
Transmitted recessive bit width @ 2 Mbit/s	t _{Bit(Bus)}	t _{bit(Vi(diff))}
Received recessive bit width @ 2 Mbit/s	t _{Bit(RXD)}	t _{bit(RxD)}
Receiver timing symmetry @ 2 Mbit/s	Δt_{Rec}	$\Delta t_{\sf rec}$
OPTIONAL IMPLEMENTATION DATA SIGNAL TIMING REQUIREMENTS TO 5 MBIT/S	FOR USE WITH BIT RATES	S ABOVE 2 MBIT/S AND UP
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(Bus)}	t _{bit(Vi(diff))}
Transmitted recessive bit width @ 5 Mbit / s	t _{Bit(RXD)}	t _{bit(RxD)}

Received recessive bit width @ 5 Mbit / s	Δt_{Rec}	$\Delta t_{\sf rec}$
MAXIMUM RATINGS OF V _{CAN_H} , V _{CAN_L} AND V _{DIFF}		
Maximum rating V _{Diff}	V _{Diff}	V _{CANH - CANL}
General maximum rating V_{CAN_H} and V_{CAN_L}	V _{CAN_H} V _{CAN_L}	V _{CANH} V _{CANL}
Optional: Extended maximum rating V_{CAN_H} and V_{CAN_L}	V _{CAN_H} V _{CAN_L}	NA
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED		
Leakage current on CAN_H, CAN_L	I _{CAN_H} , I _{CAN_L}	ILEAK(off)
BUS BIASING CONTROL TIMINGS		
CAN activity filter time, long	t _{Filter}	NA
CAN activity filter time, short	t _{Filter}	NA
Wake-up timeout, short	t _{Wake}	NA
Wake-up timeout, long	t _{Wake}	NA
Timeout for bus inactivity (Required for selective wake-up implementation only)	t _{Silence}	NA
Bus Bias reaction time (Required for selective wake-up implementation only)	t _{Bias}	NA

Table 7. ORDERING INFORMATION

Part Number	Description	Temperature Range	Package	Shipping
NCV7357D10R2G	High Speed CAN FD Transceiver		SOIC 150 8 GREEN (Matte Sn, JEDEC	3000 / Tape & Reel
NCV7357D13R2G	High Speed CAN FD Transceiver with V _{IO} pin	−40°C to +150°C	MS-012) (Pb-Free)	3000 / Tape & Reel
NCV7357MW0R2G	High Speed CAN FD Transceiver	-40°C to +150°C	DFNW8 Wettable Flank	3000 / Tape & Reel
NCV7357MW3R2G	High Speed CAN FD Transceiver with V _{IO} pin	-40°C t0 +150°C	(Pb-Free)	3000 / Tape & Reel

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: SOIC-8 NB PAGE 1 OF 2					
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular		

SOIC-8 NB CASE 751-07 **ISSUE AK**

ŝ

ę

ŝ

S

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5. 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

2. 3. 4. 5. 6. 7.	DRAIN, DIE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 GATE, #2 GATE, #2 GATE, #1 SOURCE, #1
2. 3 4. (5. 6. (7.)	NPUT EXTERNAL BYPASS THIRD STAGE SOURCE GROUND DRAIN SATE 3 SECOND STAGE Vd FIRST STAGE Vd
2. (3. 5 4. (5. 1 6. 1 7. 1	Source 1 Gate 1 Source 2 Gate 2 Drain 2 Drain 2 Drain 1 Drain 1
2. / 3. / 4. / 5. () 6. () 7. ()	NODE 1 NODE 1 NODE 1 NODE 1 SATHODE, COMMON SATHODE, COMMON SATHODE, COMMON
2. 3. 4. 5. 6. 7. 8.	SOURCE 1 GATE 1 SOURCE 2 GATE 2 DRAIN 2 MIRROR 2 DRAIN 1 MIRROR 1
2. 3. 4. 5. 6. 7.	: Line 1 in Common Anode/Gnd Common Anode/Gnd Line 2 in Line 2 out Common Anode/Gnd Common Anode/Gnd Line 1 out
STYLE 2 PIN 1. 2. 3. 4. 5. 6. 7. 8.	7: ILIMIT OVLO UVLO IIPUT+ SOURCE SOURCE SOURCE DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2			
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves						

SOURCE 1/DRAIN 2

7.

8 GATE 1

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

6.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>