| | REVISIONS | | | | | | | | |-----|--|-----------------|------------------|--|--|--|--|--| | LTR | DESCRIPTION | DATE (YR-MO-DA) | APPROVED | | | | | | | А | Change to section 1.6. Added RAMP2s parameter to Table IA. ksr | 09-05-07 | Joseph Rodenbeck | | | | | | | В | Updated drawing to meet current MIL-PRF-38535 requirements. Removed class M references. Updated Figure 4 to reflect vendor's current modeling and testing methods. Table IA changes to t_{AXQX} , t_{SHQZ} , t_{GHQX} , t_{GHQZ} , t_{WHQX} , t_{WHQX} , t_{OIN} , and t_{OUT} . Update Table IB in accordance with current vendor testing methods glg | 14-03-06 | Charles Saffle | | | | | | | С | Section 1.6, corrections to dose rate induced upset and survivability parameters. Table IA, corrections to twww and tphwh parameters glg | 15-07-14 | Charles Saffle | | | | | | | REV |--|--------|-------|-----|------|-------|-------|---------|-------|----|--|----|---|-----|---|---|----|----|----|----|----| | SHEET | REV | С | С | С | С | С | С | С | С | С | С | С | | | | | | | | | | | SHEET | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | | | | | | | | | | REV STATUS | 3 | | | RE\ | / | | С | С | С | С | С | С | С | С | С | С | С | С | С | С | | OF SHEETS | | | | SHE | EET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | PMIC N/A | | | | – | PARE | | | | | DLA LAND AND MARITIME | | | | | | | | | | | | STAI
MICRO
DRA | | CUIT | - | 0 | CKED | | | | | COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil | | | | | | | | | | | | THIS DRAWIN
FOR USE BY A
AND AGEN
DEPARTMEN | II DEP | ARTME | NTS | Rayı | ROVE | Monni | | L DAT | | MICROCIRCUIT, MEMORY, DIGITAL,
CMOS/SOI, RADIATION-HARDENED,
512K x 8-BIT, LOW VOLTAGE SRAM, | | | | , | | | | | | | | | | | - | | | 06-0 | - | | _ | MONOLITHIC SILICON | | | | , | | | | | | | | AM: | SC N/A | | | REV | ISION | | EL
C | | | SIZE CAGE CODE 67268 5962-062 | | | 203 | 1 | | | | | | | | | | | | | | SHE | ET | | 1 | OF | 25 | | | | | | | | | | DSCC FORM 2233 APR 97 5962-E410-15 ## 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN shall be as shown in the following example: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. - 1.2.2 <u>Device types</u>. The device types shall identify the circuit function as follows: | Device type | Generic number | Circuit function | Access time | Sleep Mode | |-------------|----------------|--|-------------|------------| | 01 | HX6408X_FN25 | 512K X 8-bit rad-hard CMOS/SOI SRAM 300 KRAD | 25 ns | Non-Sleep | | 02 | HX6408X_FN20 | 512K X 8-bit rad-hard CMOS/SOI SRAM 300 KRAD | 20 ns | Non-Sleep | | 03 | HX6408X_FM25 | 512K X 8-bit rad-hard CMOS/SOI SRAM 300 KRAD | 25 ns | Sleep | | 04 | HX6408X_FM20 | 512K X 8-bit rad-hard CMOS/SOI SRAM 300 KRAD | 20 ns | Sleep | | 05 | HX6408X_HN25 | 512K X 8-bit rad-hard CMOS/SOI SRAM 1 MRAD | 25 ns | Non-Sleep | 1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows: Device class Device requirements documentation Q, V Certification and qualification to MIL-PRF-38535 1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | <u>Lid</u> | |----------------|------------------------|------------------|---------------|-------------------| | Х | See figure 1 | 36 | Flat pack | gold/nickel metal | 1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38535 for classes Q and V. | STANDARD | | | | | | | |---------------------------|--|--|--|--|--|--| | MICROCIRCUIT DRAWING | | | | | | | | DLA LAND AND MARITIME | | | | | | | | COLUMBUS, OHIO 43218-3990 | | | | | | | | SIZE
A | | 5962-06203 | |------------------|---------------------|------------| | | REVISION LEVEL
C | SHEET 2 | | 1.3 | 3 Absolute maximum ratings. 1/2/ | | | | |------------|--|---------------|------------------------------------|--------------------| | | Supply voltage range (V _{DD}) | | 0.5 V dc to +4.6 V dc | | | | DC input voltage range (V _{IN}) | | | √ dc | | | DC output voltage range (V _{OUT}) | | | | | | DC or average output current (I _{OUT}) | | | | | | Storage temperature | | | | | | Lead temperature (soldering 5 seconds) | | | | | | | | | | | | Thermal resistance, junction to case (Θ _{JC}) | | | / -l- | | | Output voltage applied to high Z-state | | | ac | | | Maximum power dissipation | | | | | | Operating free-air temperature, (T _A) | | | | | | Maximum junction temperature (T _J) | | 175 C | | | 1.4 | 4 Recommended operating conditions. 3/ | | | | | | Supply voltage range (V _{DD}) | | 3.0 V dc to 3.6 V dc | | | | Supply voltage reference (V _{SS}) | | 0.0 V dc | | | | High level input voltage range (V _{IH}) | | 0.7 x V_{DD} to V_{DD} + 0.3 | V dc | | | Low level input voltage range (V _{IL}) | | 0.3 V dc to 0.3 x V _{DD} | | | | Voltage on any pin (V _{IN}) | | 0.3 V dc to V_{DD} + 0.3 | | | | Supply voltage ramp time (V _{DD} Ramp Time) | | | | | | Operating free-air temperature, (T _A) | | | | | 1.5 | 5 Digital logic testing for device classes Q and V. | | | | | | Fault coverage measurement of manufacturing logic tests (MIL-STD-883, test method 5012) | | 100 percent | | | 1.0 | Radiation features 4/ | | | | | | Maximum total dose available (dose rate = 50-300 rad/s) | | | | | | Devices 01-04 | | 300 KRads(Si) | | | | Device 05 | | ` , | | | | Single event phenomenon (SEP). | | , | | | | No SEL occurs at effective LET (see 4.4.4.4) | | ≤ 120 MeV-cm²/ma | | | | Heavy Ion Single event upset (SEU) rate | | | av 5/ | | | Proton Single event upset (SEU) rate | | | | | | Neutron irradiation | | | | | | Dose rate data upset | | | - | | | Dose rate survivability | | 1 x 10 ¹² Pod(Si)/soo f | or < 20 nooo | | | Loteb up | | IX IU Rad(SI)/Sec I | or < 20 risec | | | Latch-up | | Infinitine by SOI techi | lology | | | Stresses above the absolute maximum rating may cause pe maximum levels may degrade performance and affect reliab | | to the device. Extended op- | eration at the | | | All voltages are referenced to Vss. | • | | | | | • | | | | | | Maximum applied voltage shall not exceed 4.6 V. | | | | | | For details on these RHA parameters and test results, conta | | | | | | Projected performance based on CREME96 results for a geo | | | | | | behind 100mil Aluminum shield using Weibull parameters de | | | | | | available from the vendor to calculate upset rates for other o | | s (such as Adams 90% wor | st case) and using | | | different upset rate calculating programs (such as Space Ra | diation 5.0). | | | | <u>6</u> / | Guaranteed but not production tested. | | | | | | | | | | | | | | , | | | | STANDARD | SIZE | | | | | MICROCIRCUIT DRAWING | A | | 5962-06203 | | | | | | | | | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | | COLUMBUS, OHIO 43218-3990 | | C | 3 | ### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. ### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. #### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents are the issues of the documents cited in the solicitation. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM Standard F1192 - Standard Guide for the Measurement of Single Event Phenomena from Heavy Ion Irradiation of Semiconductor Devices. (Applications for copies of ASTM publications should be addressed to: ASTM International, PO Box C700, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; http://www.astm.org.) # JEDEC SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC) JESD 78 - IC Latch-Up Test. (Copies of this document are available on line at http://www.jedec.org or from JEDEC - Solid State
Technology Association, 3103 North 10th Street, Suite 247, Arlington, VA 22201) (Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents also may be available in or through libraries or other informational services.) 2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - 3.1.1 Microcircuit die. For the requirements of microcircuit die, see Appendix B to this document. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 4 | - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V. - 3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein and Figure 1. - 3.2.2 Terminal connections. The terminal connections shall be as specified on Figure 2. - 3.2.3 <u>Truth table</u>. The truth table shall be as specified on Figure 3. - 3.2.4 Output load circuit. The output load circuit for functional tests shall be as specified on Figure 4. - 3.2.5 <u>Tester timing characteristics and timing waveforms</u>. The tester AC timing characteristics and timing waveforms shall be as specified on Figure 5 and applies to capacitance, read cycle, and write cycle measurements unless otherwise specified. - 3.2.6 <u>Radiation exposure circuit</u>. The radiation test circuit shall be maintained under document revision level control by the manufacturer and shall be made available to the preparing or acquiring activity upon request. - 3.2.7 <u>Functional tests</u>. Various functional tests used to test this device are contained in the appendix A (herein). If the test patterns cannot be implemented due to test equipment limitations, alternate test patterns to accomplish the same results shall be allowed. For device classes Q and V, alternate test patterns shall be under the control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the preparing or acquiring activity upon request. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuits delivered to this drawing. STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-06203 REVISION LEVEL C 5 | | TAB | LE IA. Electrical perfor | mance characteris | stics. <u>1</u> / <u>2</u> / | | | | | |---|-------------------------|--|--|------------------------------|------------|-------------|---------|-----| | Test | Symbol | Condi
-55°C ≤ $T_{\rm C}$
3.0 V ≤ $V_{\rm D}$
unless otherw | Group A subgroups | Device
types | Lir
Min | nits
Max | Unit | | | Standby Current – deselected, enabled | I _{DDSB2} | F=0 MHz, NCS, CE,
NWE = V _{DD} | F=0 MHz, NCS, CE, NOE, | | | | 5.0 | mA | | Standby Current – selected, enabled | I _{DDSB} | | F=0MHz, NCS=V _{SS} , CE=V _{DD} | | | | 5.0 | mA | | Operating Supply Current
Deselected & Enabled,
address bus at max
frequency 3/ | I _{DDOP3} | F=40MHz, NCS, CE,
NWE = V _{DD} | 1, 2, 3 | All | | 10.0
24 | mA | | | Operating Supply Current Deselected, write mode 3/ | I _{DDOP1} | F = 1MHz, NCS, NOI
NWE vector controlle | | 1, 2, 3 | All | | 1.5 | mA | | Operating Supply Current
Sleep Mode | I _{DDOP2} | F = 1MHz, NSL=V _{SS} , controlled | NWE vector | 1, 2, 3 | 03, 04 | | 200 | μΑ | | Operating Supply Current
Selected, write mode low
frequency 3/ | I _{DDOPW1} | F=1MHz, NCS=V _{SS} , vector controlled | NOE=V _{DD} , NWE | 1, 2, 3 | All | | 9 | mA | | Operating Supply Current Selected, write mode high frequency 3/ | I _{DDOPW40} | F=40MHz, NCS=V _{SS} , vector controlled | 1, 2, 3 | All | | 260 | mA | | | Operating Supply Current
Selected, read mode low
frequency <u>3</u> / | I _{DDOPR1} | F=1MHz, NCS=V _{SS} ,
NWE =V _{DD} | 1, 2, 3 | All | | 4.4 | mA | | | Operating Supply Current Selected, read mode high frequency 3/ | I _{DDOPR40} | F=40MHz, NCS=V _{SS} , NOE,
NWE =V _{DD} | | 1, 2, 3 | All | | 160 | mA | | Data Retention Current | I _{DR} | V _{DD} = 2.0 V | | 1, 2, 3 | All | | 3 | mA | | Low level output voltage | V _{OL} | $V_{DD} = 3.0 \text{ V}, I_{OL} = 10 \text{m}$
V_{DD} | $A, V_{IL} = V_{SS}, V_{IH} =$ | 1, 2, 3 | All | | 0.4 | V | | High level output voltage | V _{OH} | $V_{DD} = 3.0 \text{ V}, I_{OH} = -5 \text{m}.$ $V_{IL} = V_{SS}, V_{IH} = V_{DD}$ | Α, | 1, 2, 3 | All | 2.7 | | V | | Input leakage current | I _{ILK} | V _{IN} = 3.6 V, V _{DD} = 3.6 0.0 V | V, all other pins a | at 1, 2, 3 | All | | 5 | μΑ | | Output leakage current | I _{OLK} | $V_{OUT} = 3.6V, V_{DD} = 3.6V$ at 0.0 V | 6 V, all other pins | 1, 2, 3 | All | | 10 | μΑ | | V _{DD} Ramp rate functionality | RAMP50MS | Write and read March
functionality after ram
to 3.3 V in 50 ms with | nping V _{DD} from 0 V | 1, 2, 3 | All | | | | | V _{DD} Ramp rate functionality | RAMP2S | Write and read March functionality after ram to 3.3 V in 2 s with 50 | 1, 2, 3 | All | | | | | | See footnotes at end of tab | olle. | | | | | | | | | | ANDARD
RCUIT DRA\ | WING | SIZE
A | | | 59 | 062-062 | 203 | | DLA LAND
COLUMBUS | AND MARI
, OHIO 4321 | | | REVISION LEVE
C | ĒL | SHEE | Т 6 | | | Test | Symbol | Conditions $-55^{\circ}C \le T_C \le +125^{\circ}C$ $3.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}$ unless otherwise specified | Group A subgroups | Device
types | Limits | | Unit | |--|--------------------|---|-------------------|-----------------|------------|-----|------| | | | uniess otherwise specified | | | Min | Max | | | Input capacitance 4/ | C _{IN} | $V_{IN} = V_{DD}$ or V_{SS} , $f = 1$ MHz | 4 | All | | 11 | pF | | Output capacitance 4/ | C _{OUT} | See 4.4.1e | 4 | All | | 9 | pF | | Functional tests | | See 3.2.7 and 4.4.1.c | 7, 8 | All | | | | | Data retention voltage | V_{DR} | V _{DD} = 2.0 V | 7, 8 | All | <u>5</u> / | | | | Read cycle time | t _{AVAVR} | See figures 4 and 5; V _{IH} =V _{DD} , | 9, 10, 11 | 01,03,05 | 25 | | ns | | | | V _{IL} =V _{SS} | | 02, 04 | 20 | | | | Address access time | t _{AVQV} | | 9, 10, 11 | 01,03,05 | | 25 | ns | | | | | | 02, 04 | | 20 | | | Address change output invalid time | t _{AXQX} | | 9, 10, 11 | All | 5 | | ns | | Chip select access time | t _{SLQV} | | 9, 10, 11 | 01,03,05 | | 25 | ns | | | | | | 02, 04 | | 20 | | | Chip select to output enable time | t _{SLQX} | | 9, 10, 11 | All | 4 | | ns | | Chip select to output disable time | t _{SHQZ} | | 9, 10, 11 | All | | 4 | ns | | Output enable access time | t _{GLQV} | | 9, 10, 11 | All | | 5 | ns | | Output enable to output active time | t _{GLQX} | | 9, 10, 11 | All | 0.4 | | ns | | Output enable to output disable time | t _{GHQZ} | | 9, 10, 11 | All | | 3 | ns | | Write cycle time | t _{AVAVW} | | 9, 10, 11 | 01,03,05 | 25 | | ns | | | | | | 02, 04 | 20 | | | | Minimum write enable pulse | t _{WLWH} | | 9, 10, 11 | 01,03,05 | 25 | | ns | | width | | | | 02, 04 | 15 | | | | Chip select to end of write | t _{SLWH} | | 9, 10, 11 | 01,03,05 | 20 | | ns | | time | | | | 02, 04 | 16 | | | | Data valid to end of write | t _{DVWH} | |
9, 10, 11 | 01,03,05 | 15 | | ns | | time | | | | 02, 04 | 12 | | | | Address valid to end of | t _{AVWH} | | 9, 10, 11 | 01,03,05 | 25 | | ns | | write time | | | | 02, 04 | 20 | 1 | | | Data hold time after end of write time | t _{WHDX} | | 9, 10, 11 | All | 0 | | ns | SIZE Α **REVISION LEVEL** 5962-06203 7 SHEET DSCC FORM 2234 APR 97 STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 ## TABLE IA. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/ <u>2</u>/ | Test | Symbol | Conditions
$-55^{\circ}C \le T_C \le +125^{\circ}C$
$3.0 \ V \le V_{DD} \le 3.6 \ V$ | Group A
subgroups | Device
types | Lir | Unit | | |--|-------------------|---|----------------------|-----------------|-----|------|----| | | | unless otherwise specified | Subgroups | турсз | Min | Max | | | Address valid setup to start of write time | t _{AVWL} | See figures 4 and 5;
V _{IH} =V _{DD} , V _{IL} =V _{SS} | 9, 10, 11 | All | 0 | | ns | | Address valid hold after end of write time | t _{WHAX} | | 9, 10, 11 | All | 0 | | ns | | Write enable to output disable time | t _{WLQZ} | | 9, 10, 11 | All | | 6 | ns | | Write disable to output enable time | t _{WHQX} | | 9, 10, 11 | All | 6 | | ns | | Write disable write enable pulse width | t _{WHWL} | | 9, 10, 11 | All | 5 | | ns | | Sleep disable output enable time | t _{PHQX} | | 9, 10, 11 | 03, 04 | 5 | | ns | | Sleep disable access time | t _{PHQV} | | 9, 10, 11 | 03 | | 25 | ns | | | | | | 04 | | 20 | | | Sleep enable output disable time | t _{PLQZ} | | 9, 10, 11 | 03, 04 | | 10 | ns | | Sleep disable to write high | t _{PHWH} | | 9, 10, 11 | 03 | 25 | | ns | | time | | | | 04 | 25 | | | - 1/ Pre-irradiation values for RHA marked devices shall also be the post-irradiation values unless otherwise specified. - 2/ When performing post-irradiation electrical measurements for any RHA level $T_A = +25$ °C. Limits shown are guaranteed at $T_A = +25$ °C \pm 5°C. - 3/ This dynamic operating mode current measurement (IDDOPx) excludes standby mode current (IDDSB). - 4/ Tested initially and after any design or process changes which may affect that parameter, and therefore shall be guaranteed to the limits specified in table I. - 5/ As verified by functional tests. # TABLE IB. SEP Test Limits 1/2/ | Device Type | Memory pattern | $V_{DD} = 3.0 \text{ V}$ SEU rate $\underline{4}$ / Adam 90% environment | Bias V_{DD} =3.6 V for latch-up (SEL)test
No SEL occurs at effective LET = $\underline{5}$ / | |-------------|----------------|--|---| | All | <u>3</u> / | 1 x 10 ⁻¹⁰ upsets/bit-day | LET ≤ 120 MeV-cm ² /mg | - 1/ For SEP test conditions, see 4.4.4.4 herein. - 2/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity. - 3/ Testing shall be performed using checkerboard and checkerboard bar test patterns. - Based on CREME96 results for a geosynchronous orbit during solar minimum non-flare conditions behind 100mil Aluminum shield using Weibull parameters derived from actual test data (see 4.4.4.4). Weibull parameters are available from the vendor to calculate projected upset rates for other orbits/environments (such as Adams 90% worst case) and using different upset rate calculating programs (such as Space Radiation 5.0). - 5/ Worst case temperature $T_A = +125^{\circ}C + 10^{\circ}C$ for SEL test. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 8 | ### 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. - 4.2.1 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table IIA and IIB herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. - 4.4.1 Group A inspection. - a. Tests shall be as specified in table IIA herein. - b. Subgroups 5 and 6 of table I of method 5005 of MIL-STD-883 shall be omitted. - c. For device classes Q and V, subgroups 7, 8A, and 8B shall include verifying the functionality of the device. - d. O/V (Latch up) tests shall be measured only for the initial qualification and after any process or design changes which may affect the performance of the device. For device classes Q and V, the procedures and circuit shall be under the control of the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the preparing or acquiring activity upon request. Testing shall be on all pins, on five devices with zero failures. Latch-up test shall be considered destructive. Information contained in JESD78 may be used for reference. - e. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured only for initial qualification and after any process or design changes which may affect input or output capacitance. Capacitance shall be measured between the designated terminal and GND at a frequency of 1 MHz. Sample size is 5 devices with no failures, and all input and output terminals tested. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein. - 4.4.2.1 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-PRF-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 9 | - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. - a. End-point electrical parameters shall be as specified in table IIA herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 condition A, and as specified herein. The total dose requirements shall be as defined within paragraph 1.6 herein. - 4.4.4.1.1 <u>Accelerated annealing test</u>. Accelerated annealing tests shall be performed in accordance with MIL-STD-883 method 1019 condition A and as specified herein. The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at 25°C <u>+</u>5°C. - 4.4.4.2 <u>Dose rate induced latchup testing</u>. When specified in the purchase order or contract, dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein. Test shall be performed on devices, SEC, or approved test structures at technology qualification and after
any design or process changes which may affect the RHA capability of the process. - 4.4.4.3 <u>Dose rate upset testing</u>. When specified in the purchase order or contract, dose rate upset testing shall be performed in accordance with method 1021 of MIL-STD-883 and herein. - a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may affect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified. - b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535. - 4.4.4.4 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be required on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latch-up characteristics. Test four devices with zero failures. ASTM standard F1192 may be used as a guideline when performing SEP testing. The test conditions for SEP are as follows: - a. The ion beam angle of incidence shall be normal to the die surface and 60 degrees to the normal, inclusive (i.e., $0^{\circ} \le$ angled ≤ 60 degrees). No shadowing of the ion beam due to fixturing or package related effects are allowed. - b. The fluence shall be greater than 100 errors or $\ge 10^7$ ions/cm₂. - c. The flux shall be between 10² and 10⁵ ion/cm²/s. The cross section shall be verified to be flux independent by measuring the cross section at two flux rates which differ by at least an order of magnitude. - d. The particle range shall be \geq 20 microns in silicon. - The test temperature shall be +25°C and the maximum rated operating temperature +125°C. - f. Bias conditions shall be V_{DD}= 3.0 V dc for the upset measurements and V_{DD}= 3.6 V dc for the latchup measurements. - g. Test four devices with zero failures. - h. For SEP test limits see table IB herein. - 4.4.4.5 Neutron testing. When required by the customer, neutron testing shall be performed in accordance with method 1017 of MIL-STD-883 and herein. All device classes must meet the post irradiation end-point electrical parameter limits as defined in table IA, for the subgroups specified in table IIA herein at $T_A = +25$ °C after an exposure of 2 x 10¹⁴ neutrons/cm². - 4.5 <u>Delta measurements for device class V.</u> Delta measurements, as specified in table IIA, shall be made and recorded before and after the required burn-in screens and steady-state life tests to determine delta compliance. The electrical parameters to be measured, with associated delta limits are listed in table IIB. The device manufacturer may, at his option, either perform delta measurements or within 24 hours after burn-in perform final electrical parameter tests, subgroups 1, 7, and 9. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 10 | # Case outline X | | | Millimeters | i | | Inches | | |--------|--------|-------------|--------|------|--------|------| | Symbol | Min | Nom. | Max | Min | Nom. | Max | | Α | 2.591 | 2.870 | 3.175 | .102 | .113 | .125 | | A1 | 2.159 | 2.413 | 2.667 | .085 | .095 | .105 | | b | .406 | .457 | .508 | .016 | .018 | .020 | | С | .102 | .152 | .203 | .004 | .006 | .008 | | D | 23.11 | 23.37 | 23.62 | .910 | .920 | .930 | | е | 1.14 | 1.27 | 1.397 | .045 | .050 | .055 | | E | 21.133 | 21.336 | 21.539 | .832 | .840 | .848 | | Ĺ | | 11.43 | | | .450 | | | Q | | 2.642 | | | .104 | | # NOTES: - 1. The U.S. Government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch-pound units, the inchpound units shall take precedence. 2. All exposed metalized areas are gold plated over electroplated nickel. - 3. Package lid is electrically connected to V_{SS} for package X. FIGURE 1. Case outline. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 11 | | Device types | All | | |-----------------|-----------------|--| | Case outlines | Х | | | Terminal number | Terminal symbol | | | 1 | A0(CA2) | | | 2 | A1(CA0) | | | 3 | A2(CA3) | | | 4 | A3(CA5) | | | 5 | A4(CA7) | | | 6 | NCS | | | 7 | D0 | | | 8 | D1 | | | 9 | V_{DD} | | | 10 | V_{SS} | | | 11 | D2 | | | 12 | D3 | | | 13 | NWE | | | 14 | A5(CA4) | | | 15 | A6(CA6) | | | 16 | A7(RA10) | | | 17 | A8(RA0) | | | 18 | A9(RA1) | | | 19 | NC(NAS) | | | 20 | A10(RA8) | | | 21 | A11(RA5) | | | 22 | A12(RA7) | | | 23 | A13(RA9) | | | 24 | A14(RA6) | | | 25 | D7 | | | 26 | D6 | | | 27 | V_{DD} | | | 28 | V_{SS} | | | 29 | D5 | | | 30 | D4 | | | 31 | NOE | | | 32 | A15(RA3) | | | 33 | A16(RA2) | | | 34 | A17(RA4) | | | 35 | A18(CA1) | | | 36 | NSL | | FIGURE 2. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 12 | | NCS | NSL | NWE | NOE | NAS | MODE | DQ | |-----|-----|-----|-----|-----|------------|----------| | L | Н | Н | L | X | READ | Data Out | | L | Н | L | X | X | WRITE | Data In | | Н | Х | Х | Х | Х | Deselected | High Z | | Х | L | Х | Х | Х | Disabled | High Z | Note: L=low, H=high, X=low or high FIGURE 3. Truth table. NOTE 1: Set to 5 pF for T*QZ (Low-Z to High-Z) timing parameters. | I/O Type | VLOAD | |-----------|---------| | 3.3V CMOS | VDDIO/2 | FIGURE 4. Output load circuit | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 13 | # AC Timing Input and Output References # NOTES: - 1. All input rise and fall times = 1 ns between the 90% and 10% levels - 2. Timing parameter reference voltage level. - 3. ss: Low-Z V_{OH} and V_{OL} steady state output voltage. - 4. High-Z output pin pulled to V_{LOAD} by output load circuit. | I/O type | V _{IH} ac | V _{IL} ac | V_{REF} | |-----------|--------------------|--------------------|----------------------| | 3.3V CMOS | V_{DDIO} | V _{SS} | V _{DDIO} /2 | # FIGURE 5. Timing waveforms. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 14 | # Read cycle timing waveform FIGURE 5. <u>Timing waveforms</u> - continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 15 | # Write cycle timing waveform FIGURE 5. <u>Timing waveforms</u> - continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 16 | # TABLE IIA. Electrical test requirements. 1/2/3/4/5/6/7/ | Line
no. | Test requirements | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |-------------|---|---|---------------------------------------| | | | Device
class Q | Device
class V | | 1 | Interim electrical parameters (see 4.2) | | 1*, 2, 3, 7*, 8A,
8B, 9, 10, 11 | | 2 | Static burn-in (method 1015) | Not
required | Required | | 3 | Same as line 1 | | 1*, 7* Δ | | 4 | Dynamic burn-in (method 1015) | Required | Required | | 5 | Same as line 1 | | 1*, 7* Δ | | 6 | Final electrical parameters (see 4.2) | 1*, 2, 3, 7*, 8A,
8B, 9, 10, 11 | 1*, 2, 3, 7*, 8A,
8B, 9, 10, 11 | | 7 | Group A test requirements (see 4.4) | 1, 2, 3, 4**, 7,
8A, 8B, 9, 10, 11 | 1, 2, 3, 4**, 7,
8A, 8B, 9, 10, 11 | | 8 | Group C end-point electrical parameters (see 4.4) | 2, 3, 7,
8A, 8B | 1, 2, 3, 7, 8A,
8B, 9, 10, 11 Δ | | 9 | Group D end-point electrical parameters (see 4.4) | 2, 3, 8A, 8B | 2, 3, 8A, 8B | | 10 | Group E end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | - 1/ Blank spaces indicate tests are not applicable. - $\underline{2}$ / Any or all subgroups may be combined when using high-speed testers. - 3/ Subgroups 7, 8A, and 8B functional tests shall verify the truth table. - 4/ * indicates PDA applies to subgroup 1 and 7. - <u>5</u>/ ** see 4.4.1e. - 6/ \(\Delta \) indicates delta limit (see table IIB) shall be required where specified, and the delta values shall be computed with reference to the previous interim electrical parameters (see line 1). - <u>7</u>/ See 4.4.1d. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 17 | ## Table IIB. Delta limits at +25°C. | Parameter <u>1</u> / | Limits | |-------------------------------------|--------| | I _{DDSB} | 200 μΑ | | I _{ILK} , I _{OLK} | 1 μΑ | 1/ The above parameter shall be recorded before
and after the required burn-in and life tests to determine the delta. #### PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V. #### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing. - 6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer: - a. RHA test conditions (SEP). - b. Number of upsets (SEU). - c. Number of transients (SET). - d. Occurrence of latchup (SEL). | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 18 | ### APPENDIX A ## Appendix A forms a part of SMD 5962-06203 #### FUNCTIONAL ALGORITHMS ### A.1 SCOPE - A.1.1 <u>Scope.</u> Functional algorithms are test patterns which define the exact sequence of events used to verify proper operation of a random access memory (RAM). Each algorithm serves a specific purpose for the testing of the device. It is understood that all manufacturers do not have the same test equipment; therefore, it becomes the responsibility of each manufacturer to guarantee that the test patterns described herein are followed as closely as possible, or equivalent patterns be used that serve the same purpose. Each manufacturer should demonstrate that this condition will be met. Algorithms shall be applied to the device in a topologically pure fashion. This appendix is a mandatory part of the specification. The information contained herein is intended for compliance. - A.1.1.1 <u>Functional Test Conditions</u>. V_{IH} and V_{IL} levels during functional testing shall comply with the requirements of 3.2.7 herein. - A.1.1.2 <u>Functional Test Sequence</u>. Functional test patterns may be performed in any order. - A.2 APPLICABLE DOCUMENTS. This section is not applicable to this appendix. - A.3 ALGORITHMS - A.3.1 Algorithm A (pattern 1). - A.3.1.1 Checkerboard, checkerboard-bar. - Step 1. Load memory with a checkerboard data pattern by incrementing from location 0 to maximum. - Step 2. Read memory, verifying the output checkerboard pattern by incrementing from location 0 to maximum. - Step 3. Load memory with a checkerboard-bar pattern by incrementing from location 0 to maximum. - Step 4. Read memory, verifying the output checkerboard-bar pattern by incrementing from location 0 to maximum. # A.3.2 Algorithm B (pattern 2). ### A.3.2.1 March Left-Right. - Step 1. Increment address from minimum to maximum writing each address with alternating data pattern (x55). - Step 2. Increment address from minimum to maximum while performing 2a and 2b - Step 2a. Read and verify an address. - Step 2b. Write the address with complement data. - Step 3. Decrement address from maximum to minimum while performing 3a, 3b, 3c, 3d - Step 3a. Read and verify an address. - Step 3b. Write the address with complement data. - Step 3c. Read and verify the address. - Step 3d. Write the address with complement data. - Step 4. Decrement address from maximum to minimum while performing 4a and 4b - Step 4a. Read and verify the address - Step 4b. Write the address with complement data - Step 5. Decrement address from maximum to minimum while performing 5a, 5b, 5c, and 5d - Step 5a. Read and verify the address - Step 5b. Write the address with complement data - Step 5c. Read and verify the address - Step 5d. Write the address with complement data - Step 6. Decrement address from maximum to minimum while performing 6a - Step 6a. Read and verify the address | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |----------------------------------|------------------|----------------|------------| | DLA LAND AND MARITIME | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | C | 19 | # APPENDIX A # Appendix A forms a part of SMD 5962-06203 ## FUNCTIONAL ALGORITHMS - Continued. # A.3.3 Algorithm C (pattern 3). # A.3.3.1 Solids. - Step1. Write x55 data pattern to all addresses from minimum to maximum. - Step 2. Read and verify x55 data pattern at all addresses. - Step 3. Write xAA data pattern to all addresses from minimum to maximum. - Step 4. Read and verify xAA data pattern at all addresses. # A.3.4 Algorithm D (pattern 4). # A.3.4.1 Control Signals Functional Verfication. Each test performed independently. NOE Functional test: Read with NOE = V_{IH} and confirm high-Z outputs NCS Functional test: Read with NCS = V_{IH} and verify high-Z outputs NSL Functional test: Read with NSL = = V_{IL} and verify high-Z outputs | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 20 | ## Appendix B forms a part of SMD 5962-06203 ### B.1 Scope - B.1.1 <u>Scope.</u> This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QML plan for use in monolithic microcircuits, multichip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or Identification Number (PIN). When available a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN. - B.1.2 PIN. The PIN is as shown in the following example: - B.1.2.1 <u>RHA designator.</u> Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - B.1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | <u>Circuit function</u> | Access time | |-------------|---------------------------------|-------------| | 01 | 512K X 8 Rad-Hard CMOS/SOI SRAM | 25 ns | | 02 | 512K X 8 Rad-Hard CMOS/SOI SRAM | 20 ns | B.1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows: Device class Device requirements documentation Q or V Certification and qualification to MIL-PRF-38535 - B.1.2.4 <u>Die code</u>. The die code designator shall be a number 9 for all devices supplied as die only with no case outline. - B.1.2.5 <u>Die details.</u> The die details designation shall be a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix. - B.1.2.5.1 Die physical dimensions. | Device type | <u>Die size</u> | Die thickness | Die Detail | Figure Number | |-------------|---------------------|---------------|------------|---------------| | All | 14492 µm X 14362 µm | 675 + 20 µm | Α | B-1 | B.1.2.5.2 Die bonding pad locations and electrical functions. | Device type | Die Detail | Figure Number | |-------------|------------|---------------| | All | А | B-1 | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 21 | Appendix B forms a part of SMD 5962-06203 - Continued. ## B.1.2.5.3 Interface materials <u>Device type</u> <u>Top metallization</u> <u>Backside metallization</u> <u>Die Detail</u> <u>Figure Number</u> All Al/Cu, 9kÅ - 11.0 kÅ None (backgrind) A B-1 B.1.2.5.4 Assembly related information. <u>Device type</u> <u>Glassivation</u> <u>Die Detail</u> <u>Figure Number</u> All Nitride 9kÅ A B-1 B.1.2.5.5 Wafer fabrication source. Device type Source Die Detail Figure Number All Honeywell SSEC, Plymouth A B-1 - B.1.3 Absolute maximum ratings. See paragraph 1.3 within the body of this drawing for details. -
B.1.4 Recommended operating conditions. See paragraph 1.4 within the body of this drawing for details. ### B.2. APPLICABLE DOCUMENTS. B.2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. # DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. ## DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK - 103 - List of Standard Microcircuit Drawings MIL-HDBK - 780 - Standard Microcircuit Drawings. (Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) B.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. # **B.3. REQUIREMENTS.** - B.3.1 <u>Item requirements.</u> The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit or function as described herein. - B.3.2 <u>Design, construction and physical dimensions</u>. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein. - B.3.2.1 Die physical dimensions. The die physical dimensions shall be specified in B.1.2.5.1 and on figure B-1. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 22 | ### Appendix B forms a part of SMD 5962-06203 - Continued. - B.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in B.1.2.5.2 and on figure A-1. Bond pads may contain stub bonds that require compound bonding. - B.3.2.2.1 <u>Additional die pads bonding instructions.</u> The die contains a number of bonding pads for functions not pinned out in the single chip package configuration. The purchaser should contact the manufacturer for specific instructions for each application. The following paragraphs describe these additional functions. Failure to bond these functions appropriately may result in incorrect operation of the device. - B.3.2.2.1.1 Not address strobe (NAS). For synchronous options only, the falling edge of this signal strobes in new addresses and data. NAS should be bonded to V_{SS} . - B.3.2.2.1.2 Synchronous (SYNCH). SYNCH enables NAS during synchronous operation. SYNCH should be bonded to Vss. - B.3.2.2.1.3 <u>Chip enable, Chip enable address 0, Not Chip Enable Polarity 0, Chip Enable Address 1, and Not Chip Enable Polarity 1. (CE, CEA0, NCEP0, CEA1, and NCE01).</u> All of these signals support multi-chip module operation. In a single chip configuration CE, CEA0, and CEA1 shall be tied to V_{DD} . NCEP0 and NCEP1 shall be bonded to V_{SS} . - B.3.2.2.1.4 <u>Slew Rate 1 and Slew Rate 2 (SR1, and SR2).</u> SR1 and SR2 control the slew rate of the output buffers. The maximum slew rate is attained with the two signals bonded to V_{DD}. - B.3.2.2.1.5 Back Side Contact (BSC). These pads allow contact to the substrate of the die and shall be bonded to V_{SS}. - B.3.2.2.1.6 Disable Time Option (DTO). DTO is used for diagnostic purposes at wafer evaluation. DTO is bonded to Vss. - B.3.2.2.1.7 Sleep Mode (NSL). NSL is used to enable sleep mode and shall be bonded to V_{DD} when not used - B.3.2.3 Interface materials. The interface materials for the die shall be as specified in B.1.2.5.3 and on figure A-1. - B.3.2.4 <u>Assembly related information</u>. The assembly related information shall be as specified in B.1.2.5.4 and figure B-1. Bond pads may contain stub bonds that require compound bonding. - B.3.2.5 <u>Truth table(s)</u>. Where technically applicable, (for die) the truth table(s) shall be as defined within paragraph 3.2.3 of the body of this document. - B.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table IA of the body of this document. - B.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table IA. - B.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in B.1.2 herein. The certification mark shall be "QML" or "Q" as required by MIL-PRF-38535. - B.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see B.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein. - B.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 23 | ## Appendix B forms a part of SMD 5962-06203 – Continued. #### **B.4. VERIFICATION** - B.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - B.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum it shall consist of: - a) Wafer lot acceptance for Class V product using the criteria within MIL-STD-883 method 5007. - b) 100% wafer probe (see paragraph B.3.4) - c) 100% internal visual inspection to the applicable class Q or V criteria defined within MIL-STD-883 method 2010 or the alternate procedures allowed within MIL-STD-883 method 5004. - B.4.3 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed including groups A, B, C, D and E inspections and as specified herein except where MIL-PRF-38535 permits alternate in-line control testing. - B.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see B.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified within paragraphs 4.4.4, 4.4.4.1, 4.4.4.2, 4.4.4.3, and 4.4.4.4. #### **B.5. DIE CARRIER** B.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection. ### **B.6 NOTES** - B.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit application (original equipment), design applications and logistics purposes. - B.6.2 <u>Comments</u>. Comments on this appendix should be directed to DLA Land and Maritime-VA, Columbus, Ohio, 43218-3990 or telephone (614) 692-0540. - B.6.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined within MILPRF-38535 and MIL-HDBK-1331. - B.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see B.3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 24 | | CHIP S | | 14520µ | ım 14390µm | PAD LIST | X(µm) | Y(µm) | Signal (relative to | |-------------------|----------------------|-------------------------------|--|----------------------|--------------------|--------------------|------------------------------------| | Lower L | | -7246µ | | 171D EIGT | λ(μπ) | ' (μ''') | center of sawed
die | | Upper F | | 7246µr | | 37 | -7076.45 | -6771.5 | V_{SS} | | Saw C
PAD LIST | X(µm) | • | including PM bar)
Signal (relative to | 38 | 7081.45 | -6840.7 | V_{SS} | | FAD LIST | Λ(μπ) | | center of sawed die) | 39 | 7081.45 | -6551.7 | V_{DD} | | 1 | -7076.45 | 6567.1 | Vss | 40 | 7081.45 | -6262.7 | BSC | | 2 | -7076.45 | 6278.1 | V_{DD} | 41 | 7081.45 | -5973.7 | V_{SS} | | 3 | -7076.45 | 5400.4 | CA5 | 42 | 7081.45 | -5684.7 | V_{DD} | | 4 | -7076.45 | 4988.6 | CA6 | 43 | 7081.45 | -5367.7 | DQ7 | | 5 | -7076.45 | 4577.2 | CA7 | 44 | 7081.45 | -4928.7 | DQ6 | | 6 | -7076.45 | 4165.7 | RA10 | 45 | 7081.45 | -4547.9 | V_{DD} | | 7 | -7076.45 | 3754.3 | CA4 | 46 | 7081.45 | -4258.9 | V_{SS} | | | | | | 47 | 7081.45 | -3941.9 | DQ5 | | 8 | -7076.45 | 3415.5 | NAS | 48 | 7081.45 | -3502.4 | DQ4 | | 9 | -7076.45 | 3126.5 | V_{DD} | 49 | 7081.45 | -3122.1 | V _{SS} | | 10 | -7076.45 | 2837.5 | V _{SS} | 50 | 7081.45 | -2833.1 | V_{DD} | | 11 | -7076.45 | 2488.25 | SYNCH | 51 | 7081.45 | -2544.1 | V_{DD} | | 12 | -7076.45 | 2074.1 | NWE | 52
53 | 7081.45 | -2255.1 | SR2 | | 13 | -7076.45 | 1670.9 | RA0 | 53
54 | 7081.45
7081.45 | -1966.1
-1677.1 | SR1 | | 14 | -7076.45 | 1267.7 | RA1 | 5 4
55 | 7081.45
7081.45 | -1877.1 | V _{SS}
NOE | | 15 | -7076.45 | 864.5 | RA9 | 56 | 7081.45 | -1366.13 | NSLP | | 16 | -7076.45 | 461.3 | RA8 | 57 | 7081.45 | -681.9 | DTO | | 17 | -7076.45 | 172.3 | RA7 (#1) | 58 | 7081.45 | -328.8 | V _{SS} | | 18 | -7076.45 | -276.4 | V_{DD} | 59 | 7081.45 | -39.8 | V _{SS}
V _{DD} | | 19 | -7076.45 | -565.4 | V_{SS} | 60 | 7081.45 | 380.5 | CA1 | | 20 | -7076.45 | -976.9 | RA7 (#2) | 61 | 7081.45 | 787.7 | CA2 | | 21 | -7076.45 | -1265.9 | V_{SS} | 62 | 7081.45 | 1194.9 | CA3 | | 22 | -7076.45 | -1554.9 | V_{DD} | 63 | 7081.45 | 1602.1 | CA0 | | 23 | -7076.45 | -1962.1 | RA6 | 64 | 7081.45 | 2009.3 | NCS | | 24 | -7076.45 | -2365.3 | RA5 | 65 | 7081.45 | 2362.2 | V_{DD} | | 25 | -7076.45 | -2768.5 | RA4 | 66 | 7081.45 | 2651.2 | V_{SS} | | 26 | -7076.45 | -3171.7 | RA3 | 67 | 7081.45 | 2940.2 | V_{DD} | | 27 | -7076.45 | -3574.9 | RA2 | 68 | 7081.45 | 3229.2 | V_{SS} | | 28 | -7076.45 | -3863.9 | V _{SS} | 69 | 7081.45 | 3546.2 | DQ0 | | 29 | -7076.45 | -4152.9 | V_{DD} | 70 | 7081.45 | 3985.7 | DQ1 | | 30 | -7076.45 | -4506.5 | CE | 71 | 7081.45 | 4369.9 | V_{DD} | | 31 | -7076.45 | -4856 | CEA0 | 72 | 7081.45 | 4658.9 | V _{SS} | | 32 | -7076.45
-7076.45 | - 4 856
-5205.5 | NCEP0 | 73 | 7081.45 | 4975.9 | DQ2 | | 32
33 | | | CEA1 | 74 | 7081.45 | 5415.4 | DQ3 | | | -7076.45 | -5555
5004 5 | | 75
70 | 7081.45 | 5795.6 | V_{DD} | | 34 | -7076.45 | -5904.5 | NCEP1 | 76
77 | 7081.45 | 6084.6 | V _{SS} | | 35 | -7076.45 | -6193.5 | BSC | 77 | 7081.45 | 6373.6 | V_{DD} | | 36 | -7076.45 | -6482.5 | V_{DD} | 78 | 7081.45 | 6662.6 | V_{SS} | Note: Bond pads may contain stub bonds that require compound bonding. Figure B-1. <u>Bond Pad Locations and Functions for Devices.</u> | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-06203 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
C | SHEET 25 | ## STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 15-07-14 Approved sources of supply for SMD 5962-06203 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mii/Programs/Smcr/. | Standard | Vendor | Vendor | |---|------------|--------------------| | microcircuit drawing | CAGE | similar | | PIN <u>1</u> / | number | PIN <u>2</u> / | | _ | | _ | | 5962F0620301QXC | 34168 | HX6408XQFN25 | | | | | | 5962F0620301VXC | 34168 | HX6408XVFN25 | | | | | | 5962F0620301Q9A | 34168 | HX6408KQFN25 | | | | | | 5962F0620301V9A | 34168 | HX6408KVFN25 | | 00021 00200011011 | 000 | | | 5962F0620302QXC | 34168 | HX6408XQFN20 | | 33021 0020302Q//C | 04100 | 11/10-100/(Q1 1420 | | 5962F0620302VXC | 34168 | HX6408XVFN20 | | 39021 0020302 VAC | 34100 | 11/0400/(11/120 | | 5962F0620302Q9A | 34168 | HX6408KQFN20 | | 5902F0020302Q9A | 34100 | TIA0408KQFN20 | | 5962F0620302V9A | 34168 | HX6408KVFN20 | | 5962F0620302V9A | 34100 | HA0400KVFINZU | | 5000500000000000 | 0.44.00 | LIVOACOVOEMOS | | 5962F0620303QXC | 34168 | HX6408XQFM25 | | 500050000000000000000000000000000000000 | 0.4400 | 11)/0400/0/51405 | | 5962F0620303VXC | 34168 | HX6408XVFM25 | | | | | | 5962F0620304QXC | <u>3</u> / | HX6408XQFM20 | | | | | | 5962F0620304VXC | <u>3</u> / | HX6408XVFM20 | | | | | | 5962H0620305QXC | 34168 | HX6408XQHM25 | | | | | | 5962H0620305VXC | 34168 | HX6408XVHM25 | | | ı | | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the Vendor to determine its availability. - <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ No longer available from an approved source. Vendor CAGEVendor namenumberand address 34168 Honeywell Inc. 12001 State Highway 55 Plymouth, MN 55441 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.