

MOSFET - Power, N-Channel

100 V, 19 A, 74 m Ω

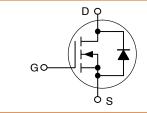
NTD6416ANL, NVD6416ANL

Features

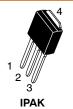
- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltag	je – Contir	nuous	V_{GS}	±20	V
Continuous Drain	Steady	T _C = 25 °C	I _D	19	Α
Current	State	T _C = 100 °C		13	
Power Dissipation	Steady State T _C = 25 °C		P _D	71	W
Pulsed Drain Current	t _p	= 10 μs	I _{DM}	70	Α
Operating and Storage	ting and Storage Temperature Range			-55 to +175	°C
Source Current (Body	Source Current (Body Diode) I _S			19	Α
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 18.2 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	50	mJ
Lead Temperature for Purposes, 1/8" from C		Seconds	TL	260	°C

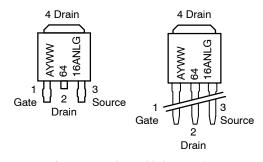

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS


Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) - Steady State	$R_{\theta JC}$	2.1	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	47	

^{1.} Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} MAX I _D MA	
100 V	74 mΩ @ 10 V	19 A



IPAK CASE 369D STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENTS

A = Assembly Location*
Y = Year
WW = Work Week
6416ANL = Device Code
G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted)

Parameter	Symbol	Test Condit	ion	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	250 μΑ	100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				120		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25 °C			1.0	μΑ
		$V_{GS} = 0 \text{ V},$ $V_{DS} = 100 \text{ V}$	T _J = 125 °C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} :	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)	-						-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	250 μΑ	1.0		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.4		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D	= 10 A		70	80	mΩ
		V _{GS} = 10 V, I _D	= 10 A		62	74	1
		V _{GS} = 10 V, I _D = 19 A			68	74	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D =	= 10 A		18		S
CHARGES, CAPACITANCES AND GA	TE RESISTANCE	i .					
Input Capacitance	C _{ISS}				700	1000	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			110]
Reverse Transfer Capacitance	C _{RSS}			50			
Total Gate Charge	Q _{G(TOT)}				25	40	nC
Threshold Gate Charge	Q _{G(TH)}				0.7		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 10 V, V _{DS} = 80) V, I _D = 19 A		2.4		
Gate-to-Drain Charge	Q_{GD}				9.6		1
Plateau Voltage	V_{GP}				3.2		V
Gate Resistance	R_{G}				2.4		Ω
SWITCHING CHARACTERISTICS (No	te 3)					-	
Turn-On Delay Time	t _{d(on)}				7.0		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD}	= 80 V.		16		1
Turn-Off Delay Time	t _{d(off)}	I _D = 19 A, R _G =	6.1 Ω		35		1
Fall Time	t _f				40		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS				•		_
Forward Diode Voltage	V _{SD}		T _J = 25 °C		0.9	1.2	V
		V _{GS} = 0 V, I _S = 19 A			0.72		1
Reverse Recovery Time	t _{RR}		1		50		ns
Charge Time	Ta	V _{GS} = 0 V, dl _S /dt =	100 A/us		38		1
Discharge Time	T _b	l _S = 19 A	. 50 / 1 / 100,		14		1
Reverse Recovery Charge	Q _{RR}		ŀ		112		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

- 3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

ID, DRAIN CURRENT (A)

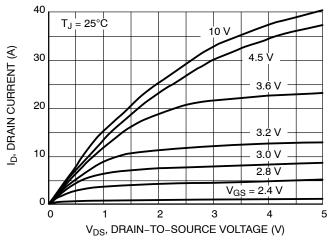


Figure 1. On-Region Characteristics

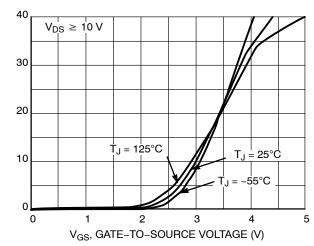


Figure 2. Transfer Characteristics

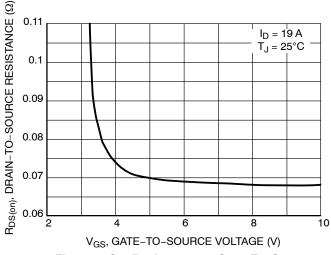


Figure 3. On-Region versus Gate-To-Source Voltage

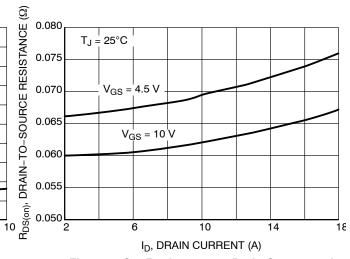


Figure 4. On-Region versus Drain Current and Gate-To-Source Voltage

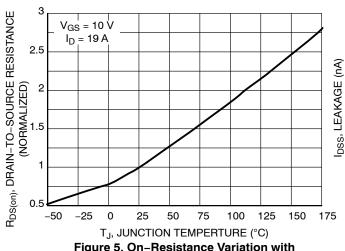


Figure 5. On–Resistance Variation with Temperature

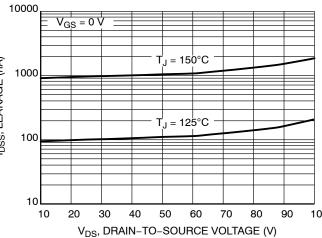
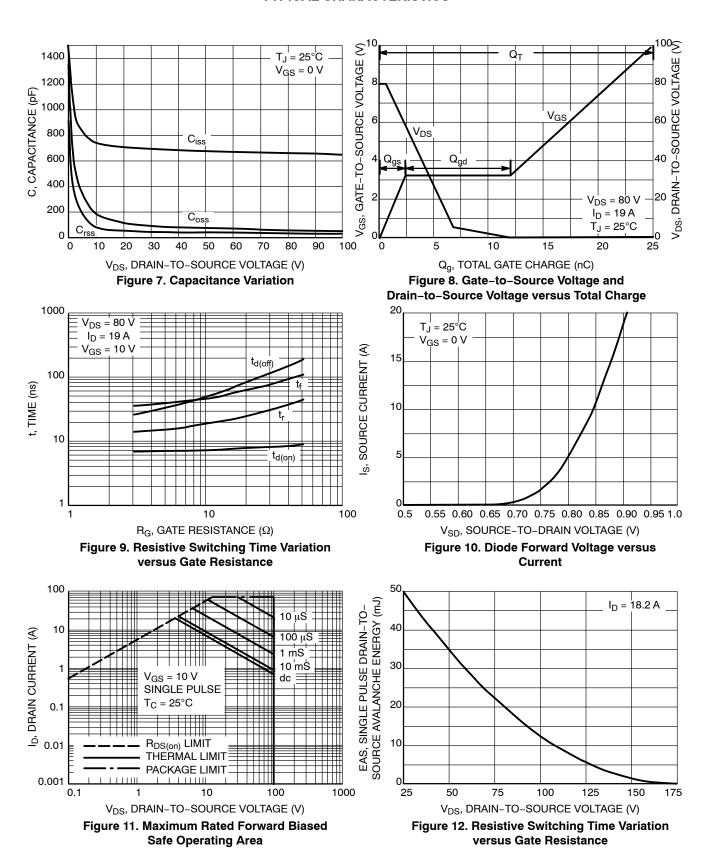



Figure 6. Drian-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

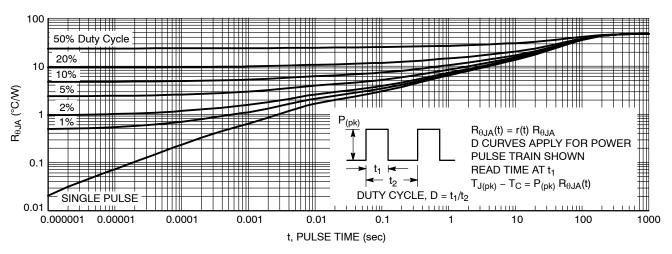


Figure 13. Thermal Response (NTD6416ANL DPAK PCB Cu Area 720 mm² PCB Cu thk 2 oz)

ORDERING INFORMATION

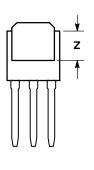
Device	Package	Shipping [†]
NTD6416ANLT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD6416ANLT4G-VF01*	DPAK (Pb-Free)	2500 / Tape & Reel

DISCONTINUED (Note 4)

NTD6416ANL-1G	IPAK (Pb-Free)	75 Units / Rail
NVD6416ANLT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


^{4.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

DATE 15 DEC 2010

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

GENERIC MARKING DIAGRAMS

STYLE 1	:
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4	COLLECTOR

 ANODE
 CATHODE ANODE

STYLE 5:

PIN 1. GATE

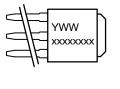
STYLE 2	<u>:</u>
PIN 1.	GATE
2.	DRAIN
3.	SOURC
1	DRAIN

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

Œ

STYLE 3: PIN 1. ANODE 2. CATHODE

STYLE 7: PIN 1. GATE


3. ANODE4. CATHODE

2. COLLECTOR 3. EMITTER

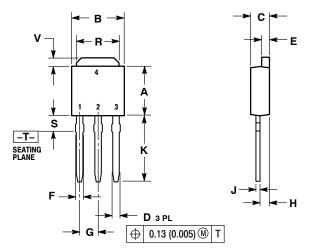
COLLECTOR

4. ANODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE Discrete

xxxxxxxxx = Device Code = Assembly Location = Wafer Lot IL Υ = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.



DPAK INSERTION MOUNT

CASE 369 ISSUE O

DATE 02 JAN 2000

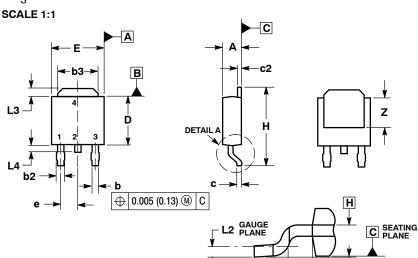
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
٧	0.030	0.050	0.77	1.27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B**

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

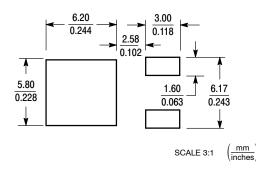
	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

4. COLLECTOR

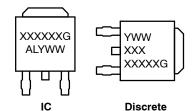
STYLE 2: PIN 1. GATE STYLE 3:

PIN 1. ANODE 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. DRAIN CATHODE


STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

DETAIL A ROTATED 90° CW

STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE


STYLE 6: PIN 1. MT1 2. MT2 3. GATE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales