EPC2206 — Automotive 80 V (D-S) Enhancement Mode Power Transistor

V_{DS}, 80 V R_{DS(on)}, 2.2 mΩ I_D, 90 A AEC-Q101

Revised April 25, 2025

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5–5.25 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Questions:
Ask a GaN
Expert

	Maximum Ratings					
	PARAMETER	VALUE	UNIT			
V _{DS}	Drain-to-Source Voltage (Continuous)	80	V			
	Continuous (T _A = 25°C)	90	۸			
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	390	Α			
\/	Gate-to-Source Voltage	6	V			
VGS	Gate-to-Source Voltage	-4				
TJ	Operating Temperature	-55 to 150	°C			
T _{STG}	Storage Temperature	-55 to 150	C			

Thermal Characteristics						
PARAMETER TYP						
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.4				
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	1.1	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	42				

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT
BV _{DSS}	SV_{DSS} Drain-to-Source Voltage $V_{GS} = 0 \text{ V, I}_D = 500$		80			V
I _{DSS}	Drain-Source Leakage $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$			20	200	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 6 \text{ V}, T_J = 25^{\circ}\text{C}$		0.02	4	mA
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 6 \text{ V}, T_J = 125^{\circ}\text{C}$		0.1	9	mΑ
	Gate-to-Source Reverse Leakage	V _{GS} = -4 V		20	200	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 13 \text{ mA}$	0.7	1.2	2.5	٧
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 29 \text{ A}$		1.8	2.2	mΩ
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.5		V

[#] Defined by design. Not subject to production test

Die Size: 6.05 x 2.3 mm

EPC2206 eGaN® FETs are supplied only in passivated die form with solder bars.

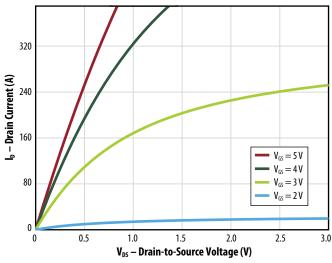
Applications

- 48 V automotive power
- · Open rack server architectures
- High power density DC-DC converters
- Isolated power supplies
- · Class-D audio
- · Low inductance motor drive

Benefits

- · Ultra high efficiency
- · No reverse recovery
- Ultra low Q_G
- · Small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!


https://l.ead.me/EPC2206

EPC2206 eGaN® FET DATASHEET

Dynamic Characteristics# (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			1610	1940	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$		15		
Coss	Output Capacitance			1100	1650	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+- 40VV 0V		1450		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 40 \text{ V}, V_{GS} = 0 \text{ V}$		1790		
R_{G}	Gate Resistance			0.3		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 40 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 29 \text{ A}$		15	19	
Q_GS	Gate-to-Source Charge			4.1		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 40 \text{ V}, I_D = 29 \text{ A}$		3		C
$Q_{G(TH)}$	Gate Charge at Threshold			2.7		nC
Q _{OSS}	Output Charge	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$		72	108	
Q_{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

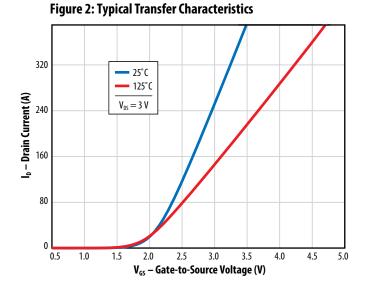


Figure 3: Typical $R_{DS(on)}\, vs.\, V_{GS}\, for\, Various\, Drain\, Currents$

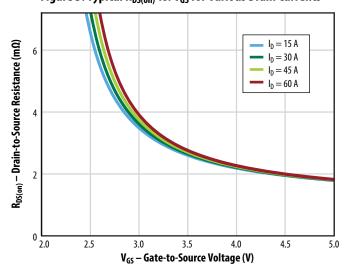
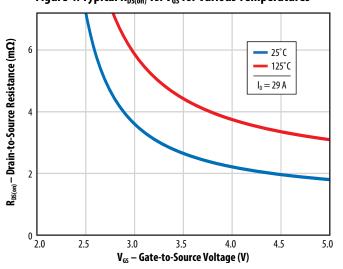



Figure 4: Typical R_{DS(on)} vs. V_{6S} for Various Temperatures

EPC — POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM ©2025 For more information: info@epc-co.com

All measurements were done with substrate connected to source. Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

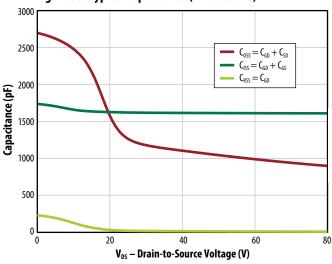


Figure 5b: Typical Capacitance (Log Scale)

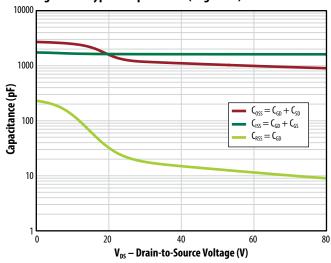


Figure 6: Typical Output Charge and Coss Stored Energy

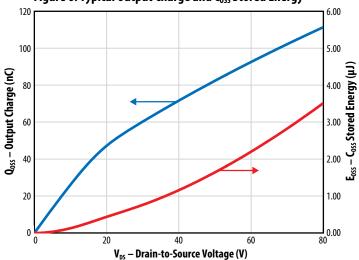
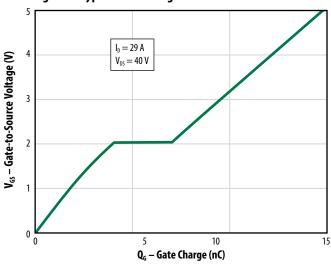
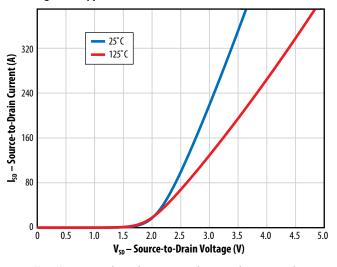
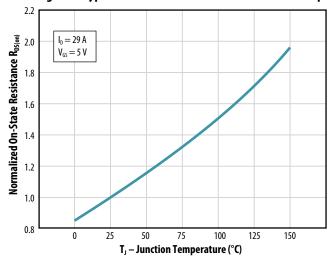
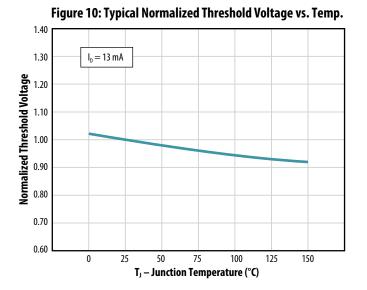
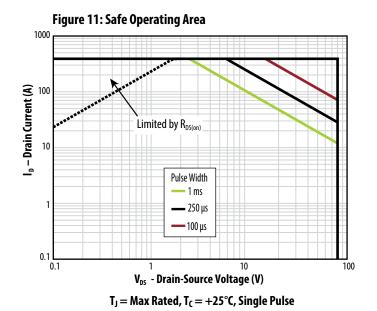
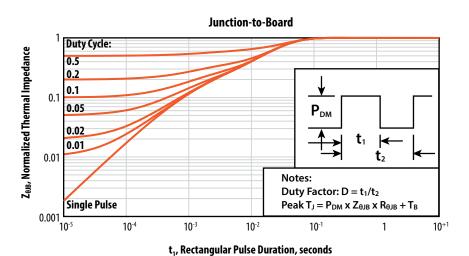



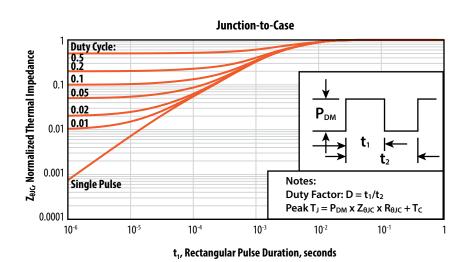
Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics


Figure 9: Typical Normalized On-State Resistance vs. Temp.


Note: Negative gate drive voltage increases the reverse drain-source voltage.


EPC recommends 0 V for OFF.

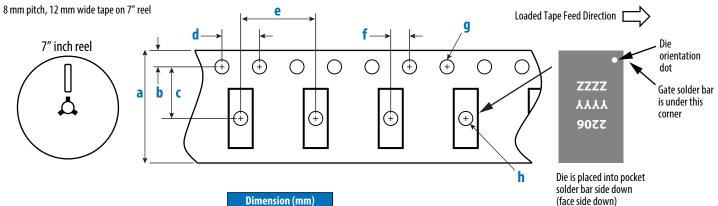
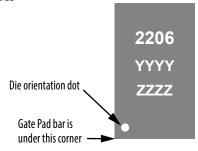


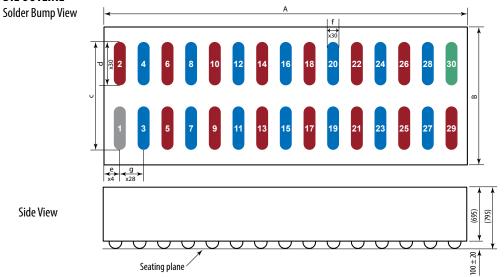
Figure 12: Typical Transient Thermal Response Curves

TAPE AND REEL CONFIGURATION



	Dimension (mm)			
EPC2206 (Note 1)	Target	MIN	MAX	
a	12.00	11.90	12.30	
b	1.75	1.65	1.85	
c (Note 2)	5.50	5.45	5.55	
d	4.00	3.90	4.10	
е	8.00	7.90	8.10	
f (Note 2)	2.00	1.95	2.05	
g	1.50	1.50	1.60	
h	1.50	1.50	1.75	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.


Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

	Dont	Laser Markings			
	Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
ĺ	EPC2206	2206	YYYY	7777	

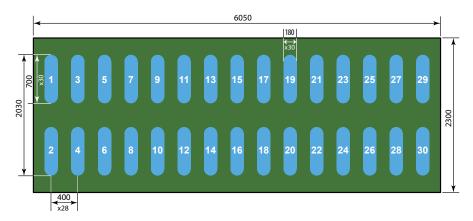
DIE OUTLINE

	Micrometers			
DIM	MIN	Nominal	MAX	
Α	6020	6050	6080	
В	2270	2300	2330	
c	2047	2050	2053	
d	717	720	723	
e	210	225	240	
f	195	200	205	
g	400	400	400	

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14,17,18,21,22, 25, 26, 29 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain;


Pad 30 is Substrate.*

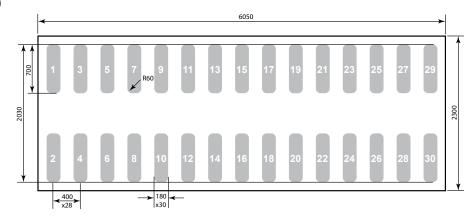
*Substrate pin should be connected to Source

EPC2206 eGaN® FET DATASHEET

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined.


Pad 1 is Gate; Pads 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29 are Source; Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain; Pad 30 is Substrate.*

*Substrate pin should be connected to Source

Solder mask (for solder mask defined pads)

RECOMMENDED STENCIL DRAWING

(units in μ m)

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

TYPICAL THERMAL CONCEPT

The EPC2206 can take advantage of dual sided cooling to maximize its heat dissipation capabilities in high power density designs.

Recommended best practice thermal solutions are covered in detail in How2AppNote012 - How to Get More Power Out of an eGaN Converter.pdf.

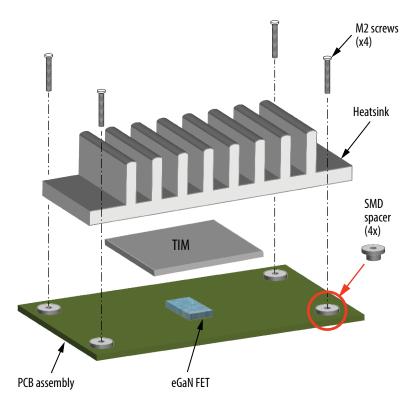


Figure 13: Exploded view of heatsink assembly using screws

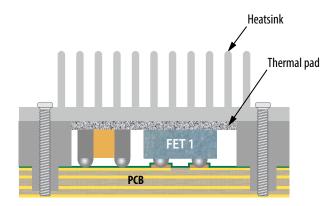


Figure 14: A cross-section image of dual sided thermal solution

Note: Connecting the heatsink to ground is recommended and can significantly improve radiated EMI

The thermal design can be optimized by using the **GaN FET Thermal Calculator** on EPC's website.

Solder mask defined pads are recommended for best reliability.

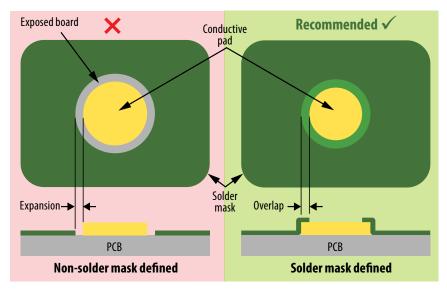


Figure 15: Solder mask defined versus non-solder mask defined pad

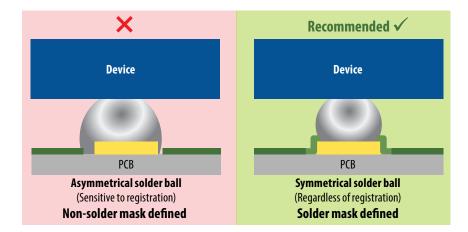


Figure 16: Effect of solder mask design on the solder ball symmetry

- Assembly resources https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote_GaNassembly.pdf
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.