MOSFET – Dual, N-Channel, POWERTRENCH®, Power Clip, Asymmetric 25 V

General Description

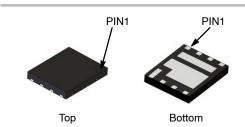
This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET $^{\text{TM}}$ (Q2) have been designed to provide optimal power efficiency.

Features

- Q1: N-Channel
 - Max $r_{DS(on)} = 3.8 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$
 - Max $r_{DS(on)} = 4.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 18 \text{ A}$
- O2: N-Channel
 - Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 40 \text{ A}$
 - Max $r_{DS(on)} = 1.2 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 37 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

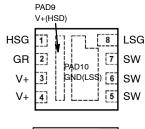
- Computing
- Communications
- General Purpose Point of Load

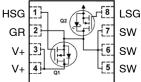

PIN DESCRIPTION

Pin	Name	Description
1	HSG	High Side Gate
2	2 GR Gate Return	
3, 4, 9	V+ (HSD)	High Side Drain
5, 6, 7	SW Switching Node, Low Side Drain	
8	LSG	Low Side Gate
10 GND (LSS) Low Side Source		Low Side Source

ON Semiconductor®

www.onsemi.com


Power Clip 5x6 PDFN8 5x6, 1.27P, CASE 483AR


MARKING DIAGRAM

\$Y&Z&3&K FDPC 8014AS

FDPC8014AS = Specific Device Code \$Y = ON semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code

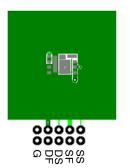
&K = 2-Digits Lot Run Traceability Code

N-Channel MOSFET

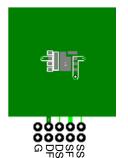
ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

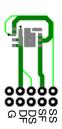
MOSFET MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

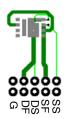

Symbol	Parameter	Q1	Q2	Unit	
V _{DS}	Drain to Source Voltage	25 (Note 4)	25	V	
V_{GS}	Gate to Source Voltage		±12	±12	V
I _D	Drain Current -Continuous	T _C = 25°C (Note 5)	59	159	Α
	-Continuous	T _C = 100°C (Note 5)	37	100	
	-Continuous	T _A = 25°C	20 (Note 1a)	40 (Note 1b)	
	-Pulsed	(Note 3)	266	1116	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	73	294	mJ
P_{D}	Power Dissipation for Single Operation	T _C = 25°C	21	37	W
	Power Dissipation for Single Operation	T _A = 25°C	2.1 (Note 1a)	2.3 (Note 1b)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

Symbol	Parameter	Q1	Q2	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	6.0	3.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	60 (Note 1a)	55 (Note 1b)	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	130 (Note 1c)	120 (Note 1d)	


^{1.} $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,C}$ is guaranteed by design while $R_{\theta,C}$ is determined by the user's board design.


a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

b. 55°C/W when mounted on a 1 in² pad of 2 oz copper

c. 130°C/W when mounted on a minimum pad of 2 oz copper

d. 120°C/W when mounted on a minimum pad of 2 oz copper

- 2. Q1: E_{AS} of 73 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 24 A. Q2: E_{AS} of 294 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 14 A, V_{DD} = 25 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 46 A.
- 3. Pulsed Id please refer to Figure 11 and Figure 24 SOA graph for more details.
- 4. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 kHz frequency can be applied.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$\begin{array}{l} I_D = 250 \; \mu A, \; V_{GS} = 0 \; V \\ I_D = 1 \; mA, \; V_{GS} = 0 \; V \end{array}$	Q1 Q2	25 25	- -	- -	V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	-	24 25	- -	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V V _{DS} = 20 V, V _{GS} = 0 V	Q1 Q2	-	- -	1 500	μ Α μ Α
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 12 \text{ V} / -8 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = 12 \text{ V} / -8 \text{ V}, V_{DS} = 0 \text{ V}$	Q1 Q2	-	- -	±100 ±100	nA nA
ON CHARACT	ERISTICS		•				
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$ $V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	Q1 Q2	0.8 1.0	1.3 1.5	2.5 3.0	V
$\Delta V_{GS(th)}$ / ΔT_{J}	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C I_D = 10 mA, referenced to 25°C	Q1 Q2	-	-4 -3	- -	mV/°C
r _{DS(on)}	Drain to Source On Resistance	V _{GS} = 10 V, I _D = 20 A V _{GS} = 4.5 V, I _D = 18 A V _{GS} = 10 V, I _D = 20 A, T _J =125°C	Q1	- - -	2.9 3.6 3.9	3.8 4.7 5.3	mΩ
		$V_{GS} = 10 \text{ V, } I_D = 40 \text{ A} \\ V_{GS} = 4.5 \text{ V, } I_D = 37 \text{ A} \\ V_{GS} = 10 \text{ V, } I_D = 40 \text{ A} \text{ , } T_J = 125 ^{\circ}\text{C}$	Q2	- - -	0.75 0.9 1.0	1.0 1.2 1.5	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 20 A V _{DS} = 5 V, I _D = 40 A	Q1 Q2	_ _	182 296	_ _	S
DYNAMIC CHA	ARACTERISTICS						
C _{iss}	Input Capacitance	Q1: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	- -	1695 6985	2375 9780	pF
C _{oss}	Output Capacitance	Q2: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	-	495 2170	710 3040	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		54 172	100 245	pF
R_g	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.4	1.2 1.2	Ω
SWITCHING C	HARACTERISTICS						
td(on)	Turn-On Delay Time	Q1: $V_{DD} = 13 \text{ V}, I_D = 20 \text{ A}, R_{GEN} = 6 \Omega$	Q1 Q2	- -	8 16	16 29	ns
t _r	Rise Time	Q2: $V_{DD} = 13 \text{ V}, I_{D} = 40 \text{ A}, R_{GEN} = 6 \Omega$	Q1 Q2	-	2 6	10 12	ns
td(off)	Turn-Off Delay Time		Q1 Q2	- -	24 48	38 76	ns
t _f	Fall Time		Q1 Q2	- -	2 5	10 10	ns
\mathbf{Q}_{g}	Total Gate Charge	V _{GS} = 0 V to 10 V Q1: V _{DD} = 13 V, I _D = 20 A Q2: V _{DD} = 13 V, I _D = 40 A	Q1 Q2	- -	25 97	35 135	nC
\mathbf{Q}_{g}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ Q1: $V_{DD} = 13 \text{ V}$, $I_D = 20 \text{ A}$ Q2: $V_{DD} = 13 \text{ V}$, $I_D = 40 \text{ A}$	Q1 Q2	-	11 44	16 62	nC
Qgs	Gate to Source Gate Charge	Q1: V _{DD} = 13 V, I _D = 20 A Q2: V _{DD} = 13 V, I _D = 40 A	Q1 Q2	- -	3.4 14	- -	nC
\mathbf{Q}_{gd}	Gate to Drain "Miller" Charge		Q1 Q2	- -	2.2 9	- -	nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS									
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 20 A (Note 6) V _{GS} = 0 V, I _S = 40 A (Note 6)	Q1 Q2	- -	0.8 0.8	1.2 1.2	V		
I _S	Diode Continuous Forward Current	T _C = 25°C	Q1 Q2	- -	59 159	-	Α		
I _{S,Pulse}	Diode Pulse Current		Q1 Q2	- -	266 1116	- -	Α		
t _{rr}	Reverse Recovery Time	Q1: I_F = 20 A, di/dt = 100 A/ μ s Q2: I_F = 40 A, di/dt = 300 A/ μ s	Q1 Q2	- -	25 44	40 70	ns		
Q _{rr}	Reverse Recovery Charge		Q1 Q2	- -	10 78	20 125	nC		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_J = 25°C unless otherwise noted)

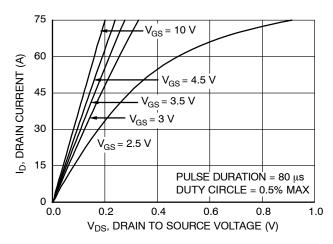


Figure 1. On Region Characteristics

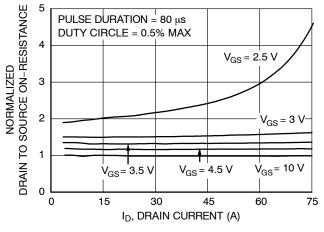


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

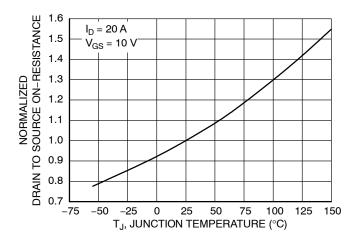


Figure 3. Normalized On Resistance vs. Junction Temperature

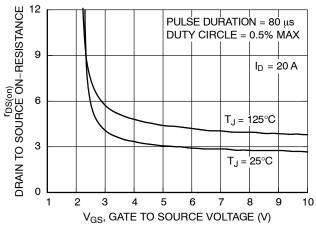


Figure 4. On-Resistance vs. Gate to Source Voltage

$\textbf{TYPICAL CHARACTERISTICS (Q1 N-CHANNEL)} \ (T_J = 25^{\circ}\text{C unless otherwise noted}) \ (\text{continued})$

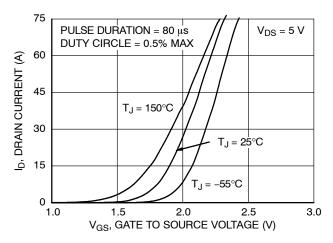


Figure 5. Transfer Characteristics

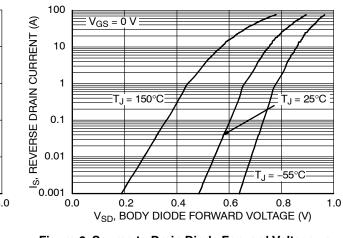


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

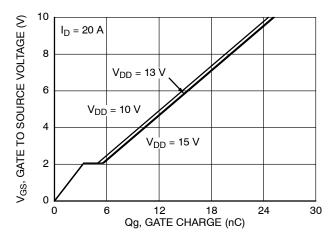


Figure 7. Gate Charge Characteristics

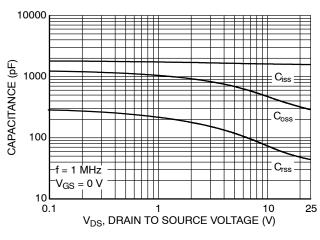


Figure 8. Capacitance vs. Drain to Source Voltage

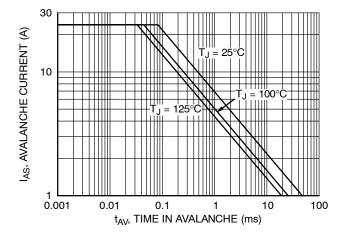


Figure 9. Unclamped Inductive Switching Capability

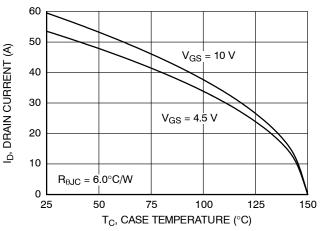


Figure 10. Maximum Continuous Drain Current vs.

Case Temperature

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

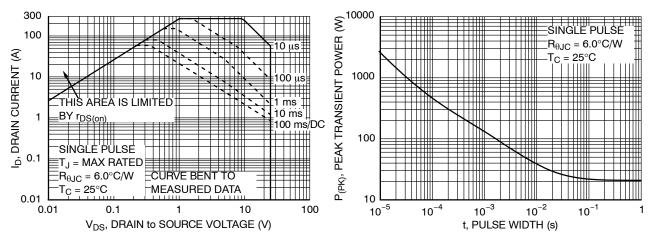


Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

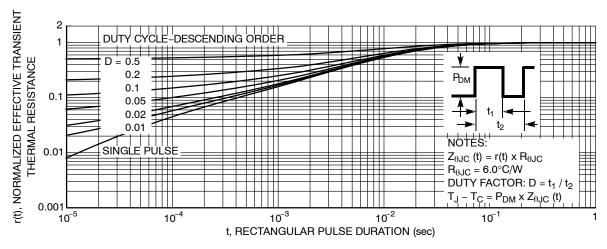


Figure 13. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C unless otherwise noted)

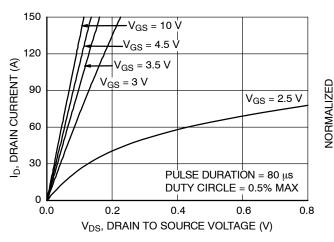


Figure 14. On-Region Characteristics

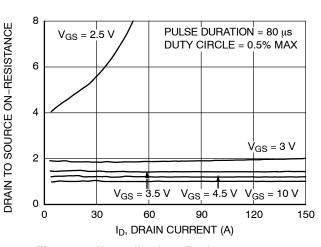


Figure 15. Normalized on–Resistance vs.

Drain Current and Gate Voltage

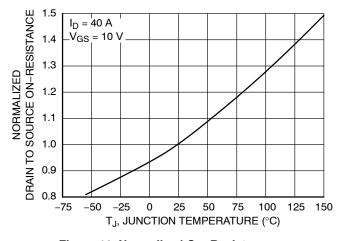


Figure 16. Normalized On–Resistance vs.
Junction Temperature

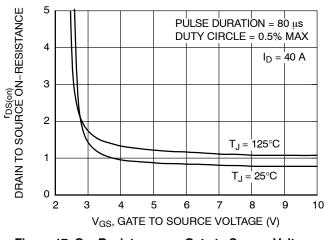


Figure 17. On-Resistance vs. Gate to Source Voltage

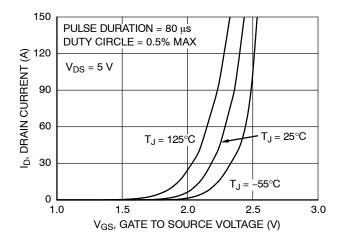


Figure 18. Transfer Characteristics

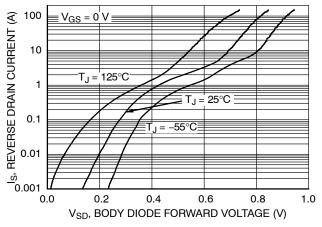


Figure 19. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

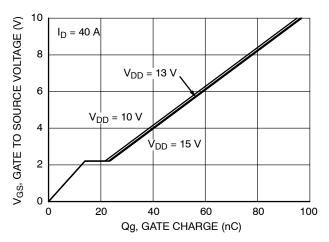


Figure 20. Gate Charge Characteristics

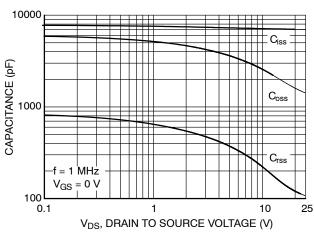


Figure 21. Capacitance vs. Drain to Source Voltage

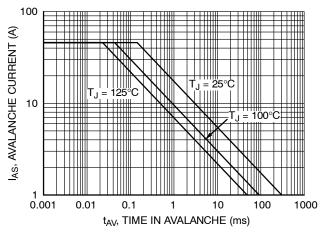


Figure 22. Unclamped Inductive Switching Capability

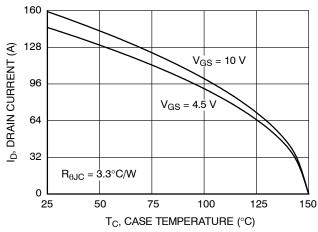


Figure 23. Maximum Continuous Drain Current vs.

Case Temperature

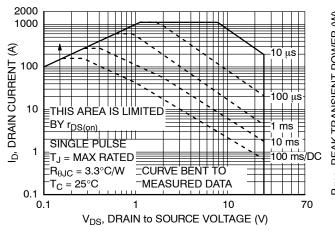


Figure 24. Forward Bias Safe Operating Area

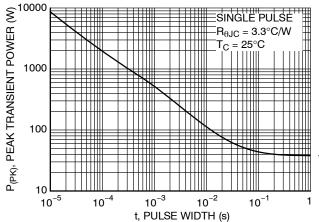


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) ($T_J = 25^{\circ}$ C unless otherwise noted) (continued)

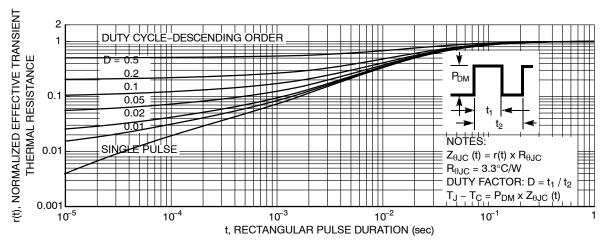


Figure 26. Junction-to-Case Transient Thermal Response Curve

TYPICAL CHARACTERISTICS

SyncFET Schottky Body Diode Characteristics

ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with POWERTRENCH MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET.

Figure 27 shows the reverses recovery characteristic of the FDPC8014AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

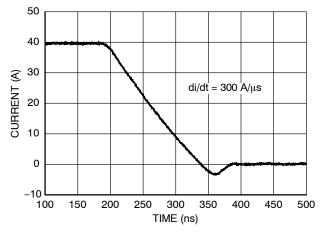


Figure 27. FDPC8014AS SyncFET Body Diode Reverse Recovery Characteristic

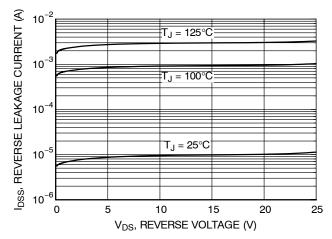


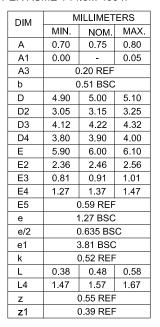
Figure 28. SyncFET Body Diode Reverse Leakage vs.
Drain-source Voltage

ORDERING INFORMATION

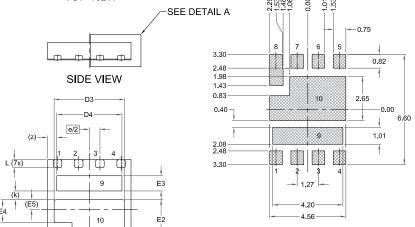
I	Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
	FDPC8014AS	FDPC8014AS	Power Clip 56 PDFN8 5x6, 1.27P (Pb-Free)	13"	12 mm	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark and SyncFET is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



PQFN8 5.00x6.00x0.75, 1.27P CASE 483AR ISSUE D


DATE 06 NOV 2023

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

A ○ 0.10 C 2X B // 0.10 C ○ 0.08 C C (A3) A1 SEATING **PLANE DETAIL A** △ 0.10 C (SCALE: 2X) PIN 1 INDICATOR TOP VIEW 0.00 84833 53 SEE DETAIL A

RECOMMENDED LAND PATTERN
*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING
DETAILS, PLEASE DOWNLOAD THE ON
SEMICONDUCTOR SOLDERING AND
MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13666G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5.00x6.00x0.75, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

b

(8X)

e1

BOTTOM VIEW

0.10M C A B 0.05M C

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

