

# Octal D-Type Latch / 3-STATE Octal D-Type Flip-Flop

## MM74HCT573/MM74HCT574

#### **General Description**

The MM74HCT573 octal D-type latches and MM74HCT574 octal D-type flip-flop advanced silicon-gate CMOS technology, which provides the inherent benefits of low power consumption and wide power supply range, but are LS-TTL input and output characteristic and pin-out compatible. The 3-STATE outputs are capable of driving 15 LS-TTL loads. All inputs are protected from damage due to static discharge by internal diodes to V<sub>CC</sub> and ground.

When the MM74HCT573 Latch Enable input is HIGH, the Q outputs will follow the D inputs. When the Latch Enable goes LOW, data at the D inputs will be retained at the outputs until Latch Enable returns HIGH again. When a high logic level is applied to the Output Control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM74HCT574 are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time requirements, are transferred to the Q outputs on positive going transitions of the Clock (CK) input. When a high logic level is applied to the Output Control (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

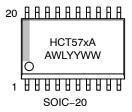
The MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

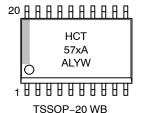
#### **Features**

- TTL Input Characteristic Compatible
- Typical Propagation Delay: 17 ns
- Low Input Current: 1 μA Maximum
- Low Quiescent Current: 160 μA Maximum
- Compatible with Bus-oriented Systems
- Output Drive Capability: 15 LS-TTL Loads
- These are Pb-Free Devices



SOIC-20 WB CASE 751D-05





TSSOP20, 4.4x6.5 CASE 948AQ



TSSOP-20 WB CASE 948E

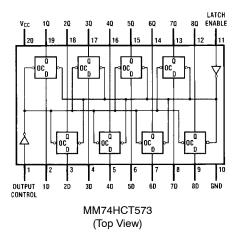
#### **MARKING DIAGRAMS**





HCT57xA = Specific Device Code

x = 3 or 4


A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 7 of this data sheet.

#### **Connection Diagrams**



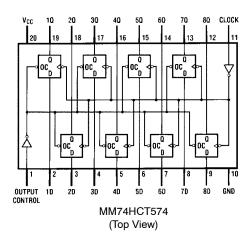



Figure 1. Pin Assignments for SOIC and TSSOP

#### **Truth Tables**

#### **MM74HCT573**

| Output Control | LE | Data | 373 Output |
|----------------|----|------|------------|
| L              | Н  | Н    | Н          |
| L              | Н  | L    | L          |
| L              | L  | Х    | $Q_0$      |
| Н              | Х  | Х    | Z          |

NOTES: H = HIGH Level

L = LOW Level

 $\label{eq:Q0} Q_0 \ = \mbox{Level of output before steady-state input} \\ \ \ \mbox{conditions were established.}$ 

Z = High Impedance State

#### **MM74HCT574**

| Output Control | Clock | Data | 374 Output |
|----------------|-------|------|------------|
| L              | 1     | Н    | Н          |
| L              | 1     | L    | L          |
| L              | L     | Х    | $Q_0$      |
| Н              | Х     | Х    | Z          |

NOTES: H = HIGH Level

L = LOW Level

 $\label{eq:Q0} Q_0 \ = \mbox{The level of the output before steady state input conditions were established.}$ 

X = Don't Care

Z = High Impedance State

↑ = Transition from LOW-to-HIGH

#### ABSOLUTE MAXIMUM RATINGS (Note 1)

| Symbol                            |                                            | Parameter                                  | Rating                          |
|-----------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------|
| V <sub>CC</sub>                   | Supply Voltage                             |                                            | −0.5 to +7.0 V                  |
| V <sub>IN</sub>                   | DC Input Voltage                           |                                            | –0.5 to V <sub>CC</sub> + 0.5 V |
| V <sub>OUT</sub>                  | DC Output Voltage                          | DC Output Voltage                          |                                 |
| I <sub>IK</sub> , I <sub>OK</sub> | Clamp Diode Current                        |                                            | ±20 mA                          |
| l <sub>out</sub>                  | DC Output Current, per Pin                 |                                            | ±35 mA                          |
| I <sub>CC</sub>                   | DC V <sub>CC</sub> or GND Current, per Pin | DC V <sub>CC</sub> or GND Current, per Pin |                                 |
| T <sub>STG</sub>                  | Storage Temperature Range                  |                                            | –65°C to +150°C                 |
| P <sub>D</sub>                    | Power Dissipation                          | S.O. Package only                          | 500 mW                          |
| TL                                | Lead Temperature (Soldering 10 S           | Seconds)                                   | 260°C                           |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### RECOMMENDED OPERATING CONDITIONS

| Symbol                             | Parameter                   | Min         | Max             | Unit |
|------------------------------------|-----------------------------|-------------|-----------------|------|
| V <sub>CC</sub>                    | Supply Voltage              | 4.5         | 5.5             | V    |
| V <sub>IN</sub> , V <sub>OUT</sub> | DC Input or Output Voltage  | 0           | V <sub>CC</sub> | V    |
| T <sub>A</sub>                     | Operating Temperature Range | <b>–</b> 55 | +125            | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | Input Rise or Fall Times    |             | 500             | ns   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

<sup>1.</sup> Unless otherwise specified all voltages are referenced to ground.

### DC ELECTRICAL CHARACTERISTICS ( $V_{CC}$ = 5 V $\pm$ 10%, unless otherwise specified)

|                 |                                           |                                                                                     | TA              | . = 25°C              | T <sub>A</sub> = -40°C<br>to 85°C | T <sub>A</sub> = -55°C<br>to 125°C |      |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------------------|------------------------------------|------|
| Symbol          | Parameter                                 | Conditions                                                                          | Тур             | Gı                    | uaranteed Lim                     | nits                               | Unit |
| V <sub>IH</sub> | Minimum HIGH Level Input<br>Voltage       |                                                                                     | -               | 2.0                   | 2.0                               | 2.0                                | V    |
| V <sub>IL</sub> | Maximum LOW Level Input Voltage           |                                                                                     | -               | 0.8                   | 0.8                               | 0.8                                | V    |
| V <sub>OH</sub> | Minimum HIGH Level Output<br>Voltage      | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br> I <sub>OUT</sub>   = 20 μA | V <sub>CC</sub> | V <sub>CC</sub> - 0.1 | V <sub>CC</sub> - 0.1             | V <sub>CC</sub> - 0.1              | ٧    |
|                 |                                           | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 6.0$ mA, $V_{CC} = 4.5$ V             | 4.2             | 3.98                  | 3.84                              | 3.7                                | ٧    |
|                 |                                           | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 7.2$ mA, $V_{CC} = 5.5$ V             | 5.7             | 4.98                  | 4.84                              | 4.7                                | ٧    |
| V <sub>OL</sub> | Maximum LOW Level Voltage                 | V <sub>IN</sub> = V <sub>IH</sub> or V <sub>IL</sub><br> I <sub>OUT</sub>   = 20 μA | 0               | 0.1                   | 0.1                               | 0.1                                | ٧    |
|                 |                                           | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 6.0$ mA, $V_{CC} = 4.5$ V             | 0.2             | 0.26                  | 0.33                              | 0.4                                | ٧    |
|                 |                                           | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  = 7.2$ mA, $V_{CC} = 5.5$ V             | 0.2             | 0.26                  | 0.33                              | 0.4                                | ٧    |
| I <sub>IN</sub> | Maximum Input Current                     | V <sub>IN</sub> = V <sub>CC</sub> or GND,<br>V <sub>IH</sub> or V <sub>IL</sub>     | -               | ±0.1                  | ±1.0                              | ±1.0                               | μΑ   |
| I <sub>OZ</sub> | Maximum 3-STATE<br>Output Leakage Current | $V_{OUT} = V_{CC}$ or GND,<br>Enable = $V_{IH}$ or $V_{IL}$                         | -               | ±0.5                  | ±5.0                              | ±10                                | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current       | $V_{IN} = V_{CC}$ or GND,<br>$I_{OUT} = 0 \mu A$                                    | -               | 8.0                   | 80                                | 160                                | μΑ   |
|                 |                                           | V <sub>IN</sub> = 2.4 V or 0.5 V<br>(Note 2)                                        | -               | 1.5                   | 1.8                               | 2.0                                | mA   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Measured per pin. All others tied to V<sub>CC</sub> or ground.

#### **AC ELECTRICAL CHARACTERISTICS**

(MM74HCT573:  $V_{CC}$  = 5.0 V,  $T_A$  = 25°C,  $t_r$  =  $t_f$  = 6 ns, unless otherwise specified)

| Symbol                              | Parameter                                              | Conditions                                        | Тур | Guaranteed Limit | Unit |
|-------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----|------------------|------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay<br>Data to Output            | C <sub>L</sub> = 45 pF                            | 17  | 27               | ns   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay<br>Latch Enable to Output    | C <sub>L</sub> = 45 pF                            | 16  | 27               | ns   |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Enable Propagation Delay<br>Control to Output  | $C_L$ = 45 pF<br>$R_L$ = 1 k $\Omega$             | 21  | 30               | ns   |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Disable Propagation Delay<br>Control to Output | $C_L = 5 \text{ pF}$<br>$R_L = 1 \text{ k}\Omega$ | 14  | 23               | ns   |
| t <sub>W</sub>                      | Minimum Clock Pulse Width                              |                                                   | -   | 15               | ns   |
| t <sub>S</sub>                      | Minimum Setup Time Data to Clock                       |                                                   | _   | 5                | ns   |
| t <sub>H</sub>                      | Minimum Hold Time Clock to Data                        |                                                   | _   | 12               | ns   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **AC ELECTRICAL CHARACTERISTICS**

(MM74HCT573:  $V_{CC}$  = 5.0 V  $\pm$  10%,  $t_r$  =  $t_f$  = 6 ns, unless otherwise specified)

|                                     |                                                        |                                                 | T <sub>A</sub> = | 25°C | T <sub>A</sub> = -40°C<br>to 85°C | T <sub>A</sub> = -55°C<br>to 125°C |      |
|-------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------|------|-----------------------------------|------------------------------------|------|
| Symbol                              | Parameter                                              | Conditions                                      | Тур              |      | Guaranteed L                      | imits                              | Unit |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay<br>Data to Output            | C <sub>L</sub> = 50 pF                          | 18               | 30   | 38                                | 45                                 | ns   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay<br>Latch Enable to Output    | C <sub>L</sub> = 50 pF                          | 17               | 30   | 44                                | 53                                 | ns   |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Enable Propagation Delay<br>Control to Output  | $C_L$ = 50 pF<br>$R_L$ = 1 k $\Omega$           | 22               | 30   | 38                                | 45                                 | ns   |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Disable Propagation Delay<br>Control to Output | $C_L = 50 \text{ pF}$ $R_L = 1 \text{ k}\Omega$ | 15               | 30   | 38                                | 45                                 | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise and Fall Time                      | C <sub>L</sub> = 50 pF                          | 6                | 12   | 15                                | 18                                 | ns   |
| t <sub>W</sub>                      | Minimum Clock Pulse Width                              |                                                 | -                | 15   | 20                                | 24                                 | ns   |
| t <sub>S</sub>                      | Minimum Setup Time Data to Clock                       |                                                 | 3                | 5    | 6                                 | 8                                  | ns   |
| t <sub>H</sub>                      | Minimum Hold Time Clock to Data                        |                                                 | 4                | 12   | 15                                | 18                                 | ns   |
| C <sub>IN</sub>                     | Maximum Input Capacitance                              |                                                 | -                | 10   | 10                                | 10                                 | pF   |
| C <sub>OUT</sub>                    | Maximum Output Capacitance                             |                                                 | -                | 20   | 20                                | 20                                 | pF   |
| C <sub>PD</sub>                     | Power Dissipation Capacitance (Note 3)                 | OC = V <sub>CC</sub>                            | -                | 5    | -                                 | -                                  | pF   |
|                                     |                                                        | OC = GND                                        | -                | 52   | _                                 | -                                  | pF   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. C<sub>PD</sub> determines the no load dynamic power consumption, P<sub>D</sub> = C<sub>PD</sub> V<sub>CC</sub><sup>2</sup> f + I<sub>CC</sub> V<sub>CC</sub>, and the no load dynamic current consumption, I<sub>S</sub> = C<sub>PD</sub> V<sub>CC</sub><sup>2</sup> f + I<sub>CC</sub>.

#### **AC ELECTRICAL CHARACTERISTICS**

(MM74HCT574:  $V_{CC} = 5.0 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ ,  $t_r = t_f = 6 \text{ ns}$ )

| Symbol                              | Parameter                                              | Conditions                            | Тур | Guaranteed Limit | Unit |
|-------------------------------------|--------------------------------------------------------|---------------------------------------|-----|------------------|------|
| f <sub>MAX</sub>                    | Maximum Clock Frequency                                |                                       | 60  | 33               | MHz  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay to Output                    | C <sub>L</sub> = 45 pF                | 17  | 27               | ns   |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Enable Propagation Delay Control to Output     | $C_L$ = 45 pF<br>$R_L$ = 1 k $\Omega$ | 19  | 28               | ns   |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Disable Propagation Delay<br>Control to Output | $C_L$ = 45 pF<br>$R_L$ = 1 k $\Omega$ | 14  | 25               | ns   |
| t <sub>W</sub>                      | Minimum Clock Pulse Width                              |                                       | -   | 15               | ns   |
| t <sub>S</sub>                      | Minimum Setup Time Data to Clock                       |                                       | _   | 12               | ns   |
| t <sub>H</sub>                      | Minimum Hold Time Clock to Data                        |                                       | -   | 5                | ns   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **AC ELECTRICAL CHARACTERISTICS**

(MM74HCT574:  $V_{CC}$  = 5.0 V  $\pm$  10%,  $t_r$  =  $t_f$  = 6 ns, unless otherwise specified)

|                                     |                                                        |                                                 | T <sub>A</sub> = | 25°C | T <sub>A</sub> = -40°C<br>to 85°C | T <sub>A</sub> = -55°C<br>to 125°C |      |
|-------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------|------|-----------------------------------|------------------------------------|------|
| Symbol                              | Parameter                                              | Conditions                                      | Тур              |      | Guaranteed L                      | imits                              | Unit |
| f <sub>MAX</sub>                    | Maximum Clock Frequency                                |                                                 | -                | 33   | 28                                | 23                                 | MHz  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay Clock to Output              | C <sub>L</sub> = 50 pF                          | 18               | 30   | 38                                | 45                                 | ns   |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Maximum Enable Propagation Delay<br>Control to Output  | $C_L = 50 \text{ pF}$ $R_L = 1 \text{ k}\Omega$ | 22               | 30   | 38                                | 45                                 | ns   |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Disable Propagation Delay<br>Control to Output | $C_L = 50 \text{ pF}$ $R_L = 1 \text{ k}\Omega$ | 15               | 30   | 38                                | 45                                 | ns   |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise and Fall Time                      | C <sub>L</sub> = 50 pF                          | 6                | 12   | 15                                | 18                                 | ns   |
| t <sub>W</sub>                      | Minimum Clock Pulse Width                              |                                                 | -                | 15   | 20                                | 24                                 | ns   |
| t <sub>S</sub>                      | Minimum Setup Time Data to Clock                       |                                                 | 6                | 12   | 15                                | 18                                 | ns   |
| t <sub>H</sub>                      | Minimum Hold Time Clock to Data                        |                                                 | 1                | 5    | 6                                 | 8                                  | ns   |
| C <sub>IN</sub>                     | Maximum Input Capacitance                              |                                                 | -                | 10   | 10                                | 10                                 | рF   |
| C <sub>OUT</sub>                    | Maximum Output Capacitance                             |                                                 | -                | 20   | 20                                | 20                                 | рF   |
| C <sub>PD</sub>                     | Power Dissipation Capacitance (Note 4)                 | OC = V <sub>CC</sub>                            | 5                | -    | -                                 | -                                  | рF   |
|                                     |                                                        | OC = GND                                        | 58               | -    | -                                 | -                                  | pF   |

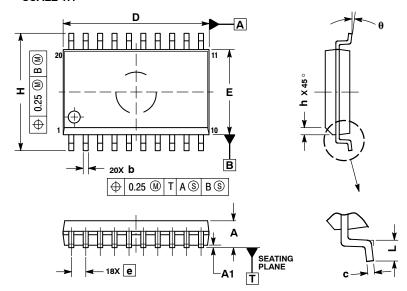
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. CPD determines the no load dynamic power consumption, PD = CPD VCC² f + ICC VCC, and the no load dynamic current consumption, IS = CPD VCC² f + ICC.

#### **ORDERING INFORMATION**

| Part Number    | Package                                               | Shipping <sup>†</sup>    |
|----------------|-------------------------------------------------------|--------------------------|
| MM74HCT573WMX  | SOIC-20 WB, Case 751D-05<br>(Pb-Free and Halide-Free) | 1000 Units / Tape & Reel |
| MM74HCT573MTC  | TSSOP-20 WB, Case 948E                                | 75 Units / Tube          |
| MM74HCT573MTCX | (Pb-Free)                                             | 2500 Units / Tape & Reel |
| MM74HCT574WM   | SOIC-20 WB, Case 751D-05                              | 38 Units / Tube          |
| MM74HCT574WMX  | (Pb-Free and Halide-Free)                             | 1000 Units / Tape & Reel |
| MM74HCT574MTC  | TSSOP-20 WB, Case 948E<br>(Pb-Free)                   | 75 Units / Tube          |
| MM74HCT574MTCX | TSSOP20, Case 948AQ-01<br>(Pb-Free)                   | 2500 Units / Tape & Reel |

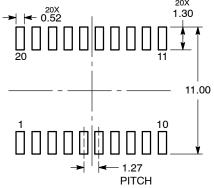
<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





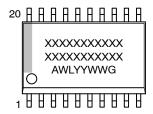

SOIC-20 WB CASE 751D-05 **ISSUE H** 

**DATE 22 APR 2015** 


#### SCALE 1:1



- DIMENSIONS ARE IN MILLIMETERS.
   INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
  3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


|     | MILLIMETERS |       |  |  |
|-----|-------------|-------|--|--|
| DIM | MIN         | MAX   |  |  |
| Α   | 2.35        | 2.65  |  |  |
| A1  | 0.10        | 0.25  |  |  |
| b   | 0.35        | 0.49  |  |  |
| С   | 0.23        | 0.32  |  |  |
| D   | 12.65       | 12.95 |  |  |
| E   | 7.40        | 7.60  |  |  |
| е   | 1.27        | BSC   |  |  |
| Н   | 10.05       | 10.55 |  |  |
| h   | 0.25        | 0.75  |  |  |
| L   | 0.50        | 0.90  |  |  |
| A   | 0 °         | 7 °   |  |  |

#### RECOMMENDED **SOLDERING FOOTPRINT\***



DIMENSIONS: MILLIMETERS

#### **GENERIC MARKING DIAGRAM\***

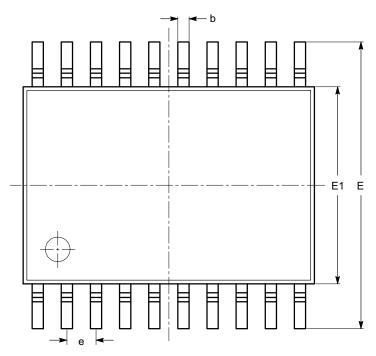


XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

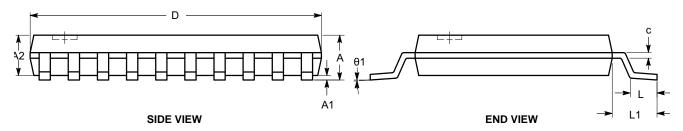
\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Rep<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SOIC-20 WB  |                                                                                                                                                                             | PAGE 1 OF 1 |  |  |


onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.




#### TSSOP20, 4.4x6.5 CASE 948AQ ISSUE A

**DATE 19 MAR 2009** 



| SYMBOL | MIN      | NOM      | MAX  |
|--------|----------|----------|------|
| Α      |          |          | 1.20 |
| A1     | 0.05     |          | 0.15 |
| A2     | 0.80     |          | 1.05 |
| b      | 0.19     |          | 0.30 |
| С      | 0.09     |          | 0.20 |
| D      | 6.40     | 6.50     | 6.60 |
| E      | 6.30     | 6.40     | 6.50 |
| E1     | 4.30     | 4.40     | 4.50 |
| е      | 0.65 BSC |          |      |
| L      | 0.45     | 0.60     | 0.75 |
| L1     | ·        | 1.00 REF |      |
| θ      | 0°       |          | 8°   |

#### **TOP VIEW**



#### Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-153.

| DOCUMENT NUMBER: | 98AON34453E      | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TSSOP20, 4.4X6.5 |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.org/bit/Patent-Marking.pdf">www.onsemi.org/bit/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Shoul

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

