IGBT for Automotive Application

1200 V, 40 A

AFGHL40T120RHD

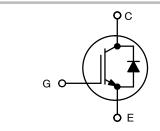
Description

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction. Provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss, which is AEC Q101 qualified offer the optimum performance for both hard and soft switching topology in automotive application.

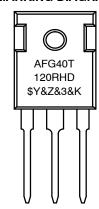
Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature: $T_I = 175^{\circ}C$
- Short Circuit Withstand Time 9 us
- 100% of the Parts Tested for I_{LM} (Note 2)
- Fast Switching
- Tighten Parameter Distribution
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

Typical Applications


- Automotive HEV-EV E-Compressor
- Automotive HEV-EV PTC Heater
- Automotive HEV-EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters

ON Semiconductor®


www.onsemi.com

V _{CES}	lc	V _{CE(Sat)}
1200 V	40 A	2.0 V (Typ.)

MARKING DIAGRAM

AFG40T120RHD = Specific Device Code \$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code

ORDERING INFORMATION

Device	Package	Shipping
AFGHL40T120RHD	TO-247-3L	30 Units / Rail

MAXIMUM RATINGS

Description	Symbol	Value	Units
Collector to Emitter Voltage	V _{CES}	1200	V
Gate to Emitter Voltage	V_{GES}	±20	V
Transient Gate to Emitter Voltage	1	±30	
Collector Current @ T _C = 25°C (Note 1)	I _C	48	Α
Collector Current @ T _C = 100°C	1	40	
Pulsed Collector Current (Note 2)	I _{LM}	160	Α
Pulsed Collector Current (Note 3)	I _{CM}	160	Α
Diode Forward Current @ T _C = 25°C (Note 1)	I _F	48	Α
Diode Forward Current @ T _C = 100°C	1	40	
Pulsed Diode Maximum Forward Current	I _{FM}	160	Α
Maximum Power Dissipation @ T _C = 25°C	P _D	400	W
Maximum Power Dissipation @ T _C = 100°C	1	200	
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 600 V, T_{J} = 150°C	SCWT	9	μs
Operating Junction / Storage Temperature Range	$T_{J_i}T_{STG}$	-55 to +175	°C
Maximum Lead Temp. For Soldering Purposes, %" from case for 5 seconds	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Value limited by bond wire. 2. V_{CC} = 600 V, V_{GE} = 15 V, I_{C} = 160 A, R_{G} = 15 Ω , Inductive Load, 100% Tested 3. Repetitive rating: pulse width limited by max. Junction temperature.

THERMAL CHARACTERISTICS

Rating	Symbol	Max.	Units
Thermal Resistance, Junction to Case, for IGBT	$R_{ heta JC}$	0.37	°C/W
Thermal Resistance, Junction to Case, Max for Diode	$R_{ heta JC}$	0.46	°C/W
Thermal Resistance, Junction to Ambient, Max	$R_{\theta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS						
Collector-emitter Breakdown Voltage, Gate-emitter Short-circuited	V _{GE} = 0 V, I _C = 1mA	BVCES	1250	-	-	V
Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 \text{ V, } I_C = 1\text{mA}$	$\Delta BV_CES / \Delta T_J$	-	1.4	-	V/°C
Collector-emitter Cut-off Current, Gate-emitter Short-circuited	V _{GE} = 0 V, V _{CE} = V _{CES}	ICES	-	_	40	μΑ
Gate Leakage Current, Collector-emitter Short-circuited	$V_{GE} = V_{GES}$, $V_{CE} = 0 V$	IGES	ı	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	VGE(th)	5.3	6.3	7.3	V
Collector-emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40 A V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	VCE(sat)	1 1	1.95 2.47	2.4 -	V

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 100 kHz	C _{ies}	-	6172	_	pF
Output Capacitance		C _{oes}	-	246	-	
Reverse Transfer Capacitance		C _{res}	-	111	-	
SWITCHING CHARACTERISTICS, II	NDUCTIVE LOAD	•		•		•
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	35	-	ns
Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 20 \text{ A}$ $Rg = 5 \Omega$	t _r	-	14	-	
Turn-off Delay Time	V _{GE} = 15 V Inductive Load	t _{d(off)}	-	162	-	
Fall Time	madelive Load	t _f	-	72	-	
Turn-on Switching Loss		E _{on}	-	1.65	_	mJ
Turn-off Switching Loss		E _{off}	-	0.48	-	
Total Switching Loss		E _{ts}	-	2.10	_	
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	37	_	ns
Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$ Rg = 5 Ω	t _r	-	29	_	
Turn-off Delay Time	V _{GE} = 15 V Inductive Load	t _{d(off)}	-	150	_	
Fall Time	madelive Load	t _f	-	80	_	
Turn-on Switching Loss		E _{on}	-	3.70	-	mJ
Turn-off Switching Loss		E _{off}	-	1.20	-	
Total Switching Loss		E _{ts}	-	4.90	-	
Turn-on Delay Time	T _J = 175°C	t _{d(on)}	-	36	-	ns
Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 20 \text{ A}$ $Rg = 5 \Omega$	t _r	-	20	_	
Turn-off Delay Time	V _{GE} = 15 V Inductive Load	t _{d(off)}	-	176	-	
Fall Time	madaive Edad	t _f	-	160	-	
Turn-on Switching Loss		E _{on}	-	2.64	-	mJ
Turn-off Switching Loss		E _{off}	-	0.99	-	
Total Switching Loss		E _{ts}	-	3.63	-	
Turn-on Delay Time	T _J = 175°C	t _{d(on)}	-	40	-	ns
Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$ Rg = 5 Ω	t _r	-	32	-	
Turn-off Delay Time	V _{GE} = 15 V Inductive Load	t _{d(off)}	-	160	-	
Fall Time	madawa 25aa	t _f	-	156	-	
Turn-on Switching Loss		E _{on}	-	5.60	-	mJ
Turn-off Switching Loss		E _{off}	-	2.32	-	
Total Switching Loss		E _{ts}	-	7.92	-	
Total Gate Charge	V _{CE} = 600 V, I _C = 40 A, V _{GE} = 15 V	Qg	-	277	-	nC
Gate to Emitter Charge		Q _{ge}	-	53	-	
Gate to collector Charge		Q _{gc}	-	146	_	
DIODE CHARACTERISTICS		_				
Forward Voltage	I _F = 40 A, T _J = 25°C I _F = 40 A, T _J = 175°C	V _F	- -	1.49 1.50	2.0	V
Reverse Recovery Energy	T _J = 25°C	E _{rec}	-	0.74	-	mJ
Diode Reverse Recovery Time	$V_R = 600 \text{ V}, I_F = 20 \text{ A},$ $dI_F/dt = 1000 \text{ A}/\mu\text{s}$	T _{rr}	-	142	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	2546	_	nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
DIODE CHARACTERISTICS	•					
Reverse Recovery Energy	T _J = 25°C	E _{rec}	-	1.14	_	mJ
Diode Reverse Recovery Time	$V_R = 600 \text{ V, I}_F = 40 \text{ A,}$ $dI_F/dt = 1000 \text{ A}/\mu\text{s}$	T _{rr}	-	195	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	3761	-	nC
Reverse Recovery Energy	T _J = 175°C	E _{rec}	-	1.92	-	mJ
Diode Reverse Recovery Time	$V_R = 600 \text{ V, I}_F = 20 \text{ A,}$ $dI_F/dt = 1000 \text{ A/}\mu\text{s}$	T _{rr}	-	212	-	ns
Diode Reverse Recovery Charge		Q _{rr}	-	5242	-	nC
Reverse Recovery Energy	T _J = 175°C	E _{rec}	-	2.768	-	mJ
Diode Reverse Recovery Time	$V_R = 600 \text{ V, I}_F = 40 \text{ A,}$ $dI_F/dt = 1000 \text{ A/}\mu\text{s}$	T _{rr}	-	286	-	ns
Diode Reverse Recovery Charge	7	Q _{rr}	-	7321	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

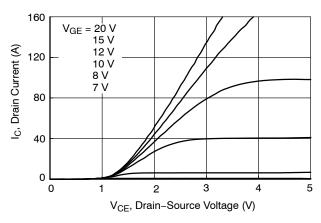


Figure 1. Typical Output Characteristics (25°C)

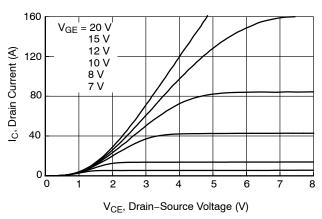


Figure 2. Typical Output Characteristics (175°C)

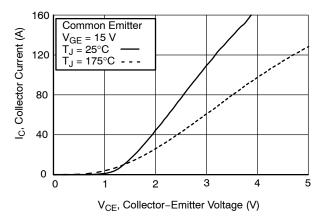


Figure 3. Typical Saturation Voltage Characteristics

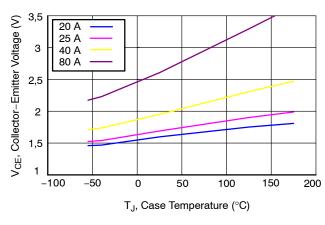


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

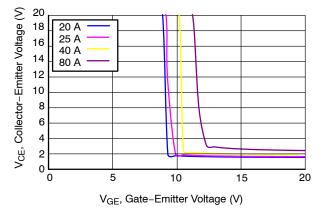


Figure 5. Saturation Voltage vs. V_{GE} (25°C)

Figure 6. Saturation Voltage vs. V_{GE} (175°C)

TYPICAL CHARACTERISTICS (continued)

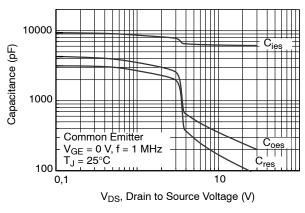


Figure 7. Capacitance Characteristics

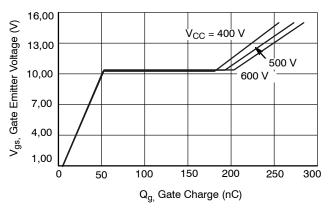


Figure 8. Gate Charge Characteristics

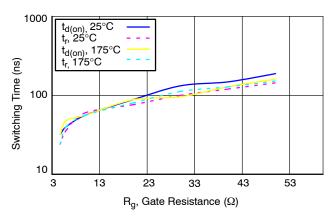


Figure 9. Turn-on Characteristics vs. Gate Resistance

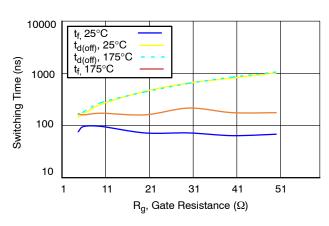


Figure 10. Turn-off Characteristics vs. Gate Resistance

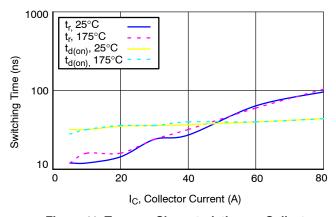


Figure 11. Turn-on Characteristics vs. Collector Current

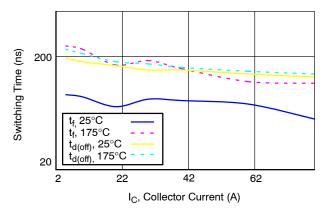


Figure 12. Turn-off Characteristics vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

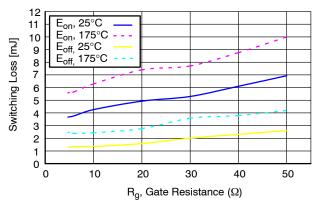


Figure 13. Switching Loss vs. Gate Resistance

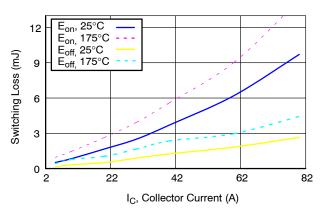


Figure 14. Switching Loss vs. Collector Current

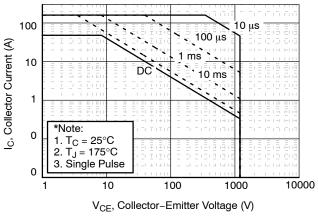


Figure 15. SOA Characteristics

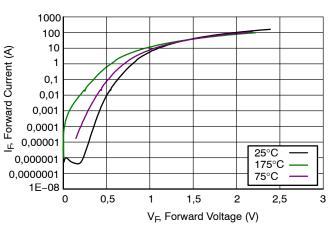


Figure 16. Forward Characteristics

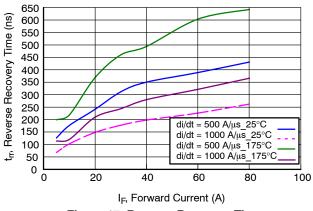


Figure 17. Reverse Recovery Time

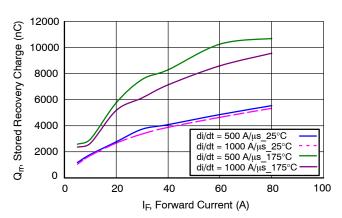


Figure 18. Stored Charge

TYPICAL CHARACTERISTICS (continued)

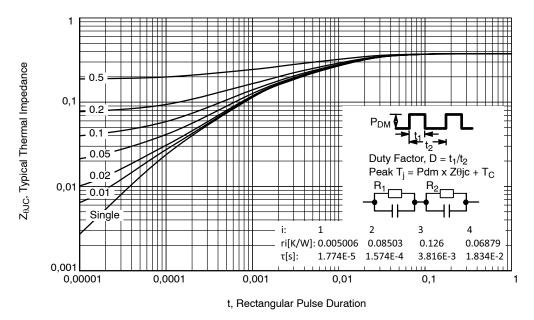


Figure 19. Transient Thermal Impedance of IGBT

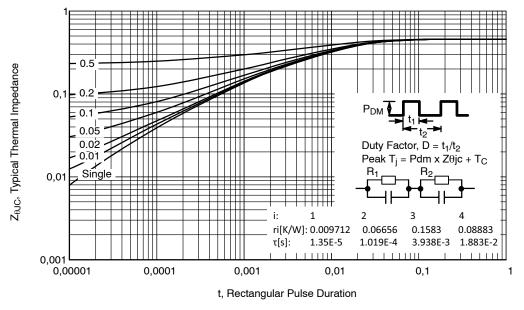


Figure 20. Transient Thermal Impedance of Diode

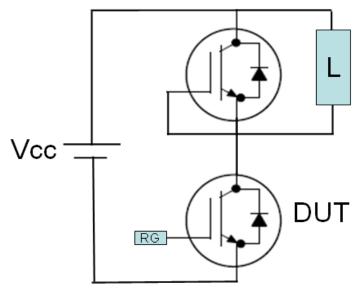


Figure 21. Test Circuit for Switching Characteristics

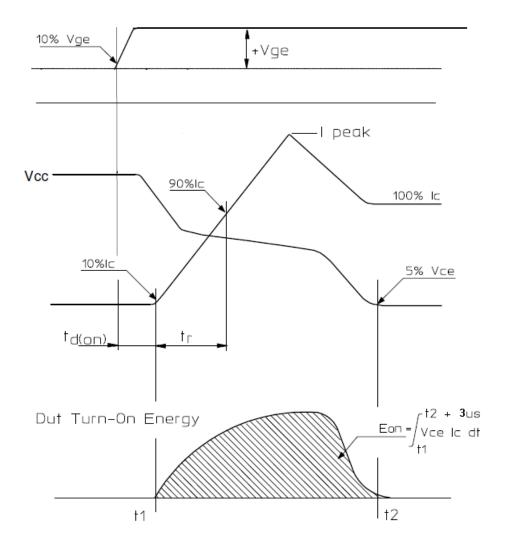


Figure 22. Definition of Turn On Waveform

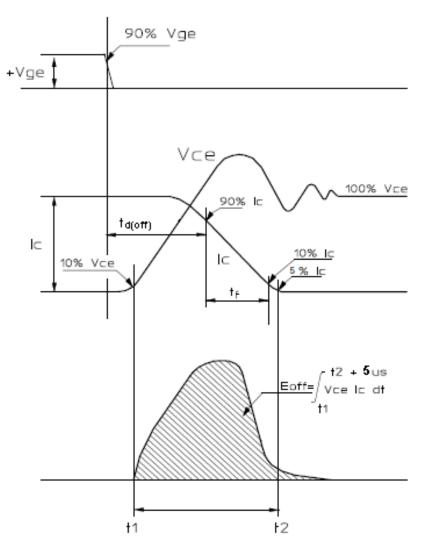
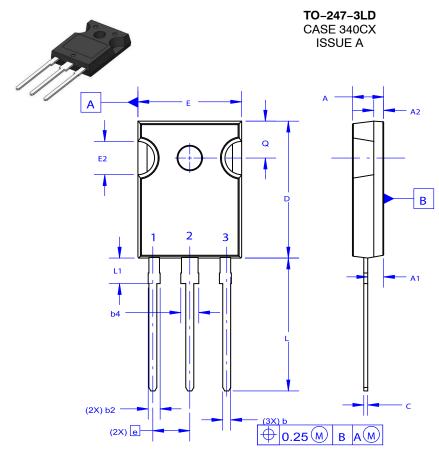
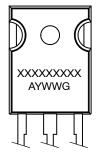



Figure 23. Definition of Turn Off Waveform

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

Ø _P		Ø _{P1} D2
E1 —	2	D1

DIM	MIL	LIMETER	S
DIM	MIN	NOM	MAX
Α	4.58	4.70	4.82
A 1	2.20	2.40	2.60
A2	1.40	1.50	1.60
D	20.32	20.57	20.82
E	15.37	15.62	15.87
E2	4.96	5.08	5.20
е	~	5.56	~
L	19.75	20.00	20.25
L1	3.69	3.81	3.93
ØΡ	3.51	3.58	3.65
Q	5.34	5.46	5.58
S	5.34	5.46	5.58
b	1.17	1.26	1.35
b2	1.53	1.65	1.77
b4	2.42	2.54	2.66
С	0.51	0.61	0.71
D1	13.08	~	~
D2	0.51	0.93	1.35
E1	12.81	~	~
ØP1	6.60	6.80	7.00

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

