MOSFET - Power, N-Channel, DPAK/IPAK 9.0 A, 60 V

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

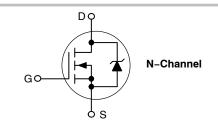
Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Drain-to-Gate Voltage (R _{GS} = 10 MΩ)	V_{DGR}	60	Vdc
Gate-to-Source Voltage - Continuous - Non-repetitive (t _p ≤10 ms)	V _{GS} V _{GS}	±20 ±30	Vdc
	I _D I _D I _{DM}	9.0 3.0 27	Adc Apk
Total Power Dissipation @ T _A = 25°C Derate above 25°C Total Power Dissipation @ T _A = 25°C (Note 1) Total Power Dissipation @ T _A = 25°C (Note 2)	P _D	28.8 0.19 2.1 1.5	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}C$ ($V_{DD} = 25$ Vdc, $V_{GS} = 10$ Vdc, L = 1.0 mH, $I_L(pk) = 7.75$ A, $V_{DS} = 60$ Vdc)	E _{AS}	30	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA}$	5.2 71.4 100	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

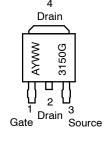
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

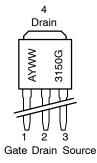

- 1. When surface mounted to an FR4 board using 0.5 sq in pad size.
- When surface mounted to an FR4 board using minimum recommended pad size.

ON Semiconductor®

www.onsemi.com

9.0 AMPERES, 60 VOLTS $R_{DS(on)} = 122 \text{ m}\Omega$ (Typ)




STYLE 2

IPAK CASE 369D (STRAIGHT LEAD) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location*
3150 = Device Code
Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*} The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		-			l	1
Drain-to-Source Breakdown Vo (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positiv		V _{(BR)DSS}	60 -	_ 70.2	_ _	Vdc mV/°C
Zero Gate Voltage Drain Currer (V_{DS} = 60 Vdc, V_{GS} = 0 Vdc) (V_{DS} = 60 Vdc, V_{GS} = 0 Vdc,		I _{DSS}	- -	- -	1.0 10	μAdc
Gate-Body Leakage Current (V	′ _{GS} = ±20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Note	3)	•	•	•		'
Gate Threshold Voltage (Note 3 $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coeffici	,	V _{GS(th)}	2.0	3.0 6.4	4.0 -	Vdc mV/°C
Static Drain-to-Source On-Rec (V _{GS} = 10 Vdc, I _D = 4.5 Adc)	sistance (Note 3)	R _{DS(on)}	_	122	150	mΩ
Static Drain-to-Source On-Vol (V_{GS} = 10 Vdc, I_D = 9.0 Adc) (V_{GS} = 10 Vdc, I_D = 4.5 Adc,		V _{DS(on)}	_ _	1.4 1.1	1.9	Vdc
Forward Transconductance (No	9FS	-	5.4	-	mhos	
DYNAMIC CHARACTERISTICS	1					
Input Capacitance		C _{iss}	-	200	280	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	70	100	
Transfer Capacitance	,	C _{rss}	-	26	40	
SWITCHING CHARACTERISTIC	CS (Note 4)					
Turn-On Delay Time		t _{d(on)}	-	11.2	25	ns
Rise Time	$(V_{DD} = 48 \text{ Vdc}, I_D = 9.0 \text{ Adc},$	t _r	-	37.1	80	
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc},$ $R_G = 9.1 \Omega) \text{ (Note 3)}$	t _{d(off)}	-	12.2	25	
Fall Time		t _f	-	23	50	
Gate Charge		Q _T	-	7.1	15	nC
	$(V_{DS} = 48 \text{ Vdc}, I_D = 9.0 \text{ Adc}, V_{GS} = 10 \text{ Vdc}) \text{ (Note 3)}$	Q ₁	-	1.7	-	
	1 43 11 11, (1111 1,	Q ₂	-	3.5	-	
SOURCE-DRAIN DIODE CHAP	RACTERISTICS					
Forward On-Voltage	$(I_S = 9.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$ $(I_S = 19 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	V _{SD}	_ _	0.98 0.86	1.20 –	Vdc
Reverse Recovery Time		t _{rr}	-	28.9	-	ns
	$(I_S = 9.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A}/\mu\text{s}) \text{ (Note 3)}$	ta	-	21.6	-]
	J, 78, ()	t _b	-	7.3	-	
Reverse Recovery Stored Char	Q _{RR}	-	0.036	-	μС	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.

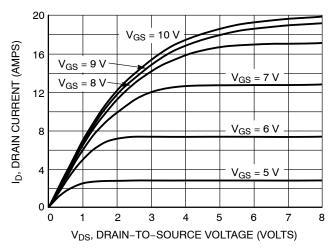


Figure 1. On-Region Characteristics

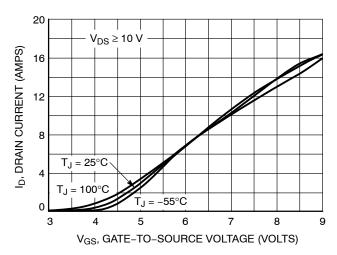


Figure 2. Transfer Characteristics

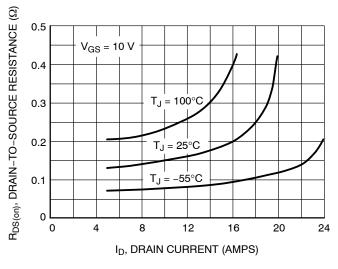


Figure 3. On–Resistance versus Gate–To–Source Voltage

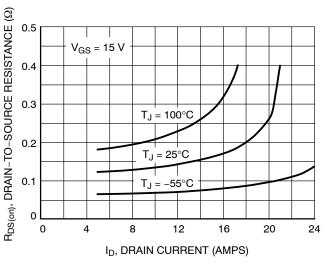


Figure 4. On-Resistance versus Drain Current and Gate Voltage

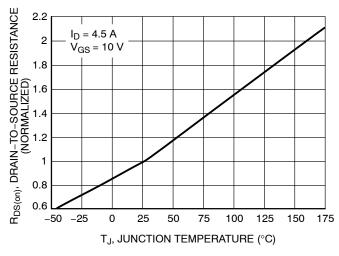


Figure 5. On–Resistance Variation with Temperature

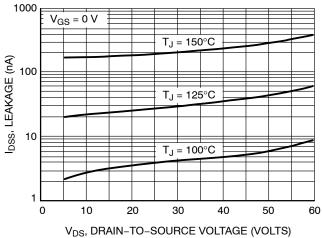


Figure 6. Drain-To-Source Leakage Current versus Voltage

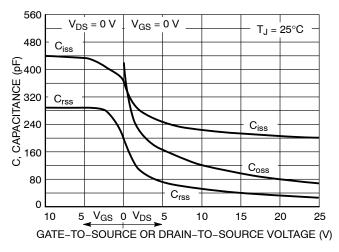


Figure 7. Capacitance Variation

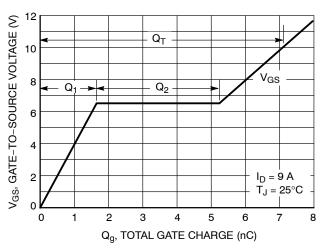


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

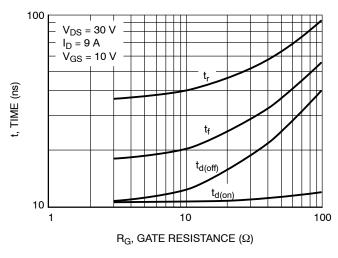


Figure 9. Resistive Switching Time Variation versus Gate Resistance

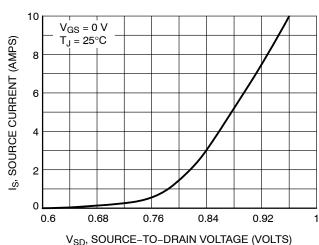


Figure 10. Diode Forward Voltage versus Current

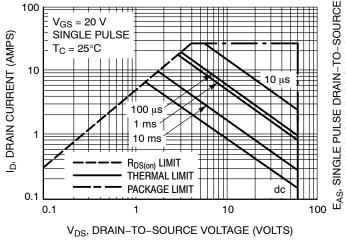


Figure 11. Maximum Rated Forward Biased Safe Operating Area

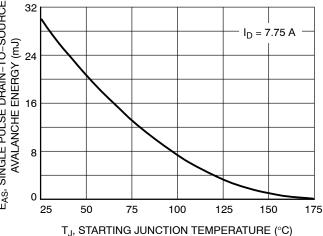


Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

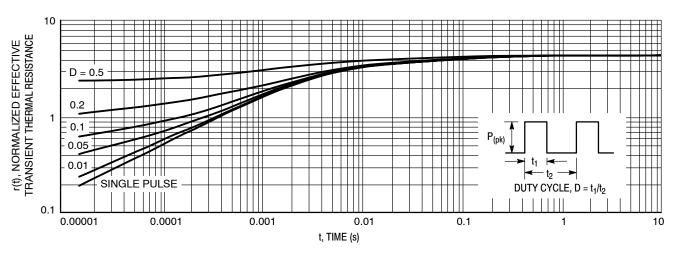


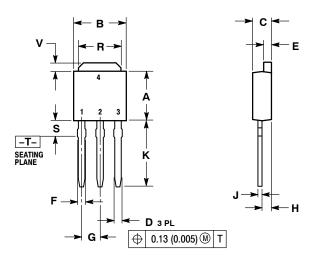
Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD3055-150G	DPAK (Pb-Free)	75 Units / Rail
NTD3055-150-1G	IPAK (Pb-Free)	75 Units / Rail
NTD3055-150T4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD3055-150T4H	DPAK (Halide-Free)	2500 / Tape & Reel
NVD3055-150T4G*	DPAK (Pb-Free)	2500 / Tape & Reel
NVD3055-150T4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.



DPAK INSERTION MOUNT

CASE 369 ISSUE O

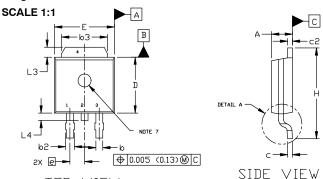
DATE 02 JAN 2000

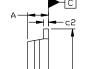
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
V	0.030	0.050	0.77	1 27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1	

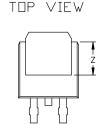

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

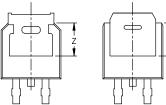


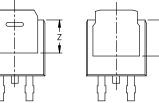
DPAK (SINGLE GAUGE) CASE 369C

ISSUE G

DATE 31 MAY 2023

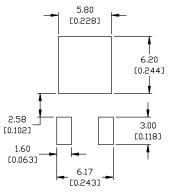

NUTES:

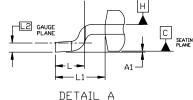

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.


 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

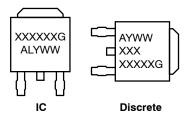
- OPTIONAL MOLD FEATURE.

DIM	INC	HES	MILLIM	ETERS
MIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
C	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	





BOTTOM VIEW


BOTTOM VIEW AL TERNATE CONSTRUCTIONS

CW ROTATED 90°

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

STYLE 1:	ST
PIN 1. BASE	F
2. COLLECTOR	
EMITTER	
4 COLLECTOR	

STYLE 6:

PIN 1. MT1 2. MT2

3 GATE

TYLE 2: PIN 1. GATE 2. DRAIN 3 SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE 2. CATHODE 3 ANODE 4. CATHODE

STYLE 9:

PIN 1. ANODE 2. CATHODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3 GATE 4. ANODE

3 RESISTOR ADJUST

CATHODE

STYLE 5: PIN 1. GATE 2. ANODE

STYLE 10:

3 CATHODE ANODE

PIN 1. CATHODE 2. ANODE 3. CATHODE

4. ANODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON10527D

PIN 1. N/C 2. CATHODE 3. ANODE

4. CATHODE

STYLE 8:

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

STYLE 7: PIN 1. GATE 2. COLLECTOR

3 FMITTER

4. COLLECTOR

DPAK (SINGLE GAUGE)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales