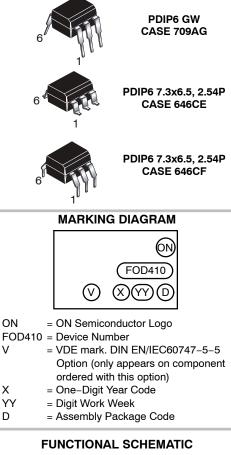
6-Pin DIP High dv/dt **Zero-Cross Triac Drivers**

Description

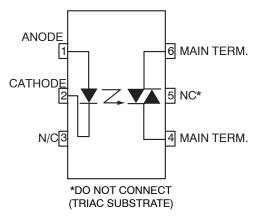
The FOD410, FOD4108, FOD4116 and FOD4118 devices consist of an infrared emitting diode coupled to a hybrid triac formed with two inverse parallel SCRs which form the triac function capable of driving discrete triacs. The FOD4116 and FOD4118 utilize a high efficiency infrared emitting diode which offers an improved trigger sensitivity. These devices are housed in a standard 6-pin dual in-line (DIP) package.


Features

- 300 mApeak On-State Current
- Zero-Voltage Crossing
- High Blocking Voltage
 - 600 V (FOD410, FOD4116)
 - 800 V (FOD4108, FOD4118)
- High Trigger Sensitivity
 - 1.3 mA (FOD4116, FOD4118)
 - 2 mA (FOD410, FOD4118)
- High Static dv/dt (10,000 V/µs)
- Safety and Regulatory Approvals:
 - UL1577, 5.000 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Solid-State Relays
- Industrial Controls
- Lighting Controls
- Static Power Switches
- AC Motor Starters



V

Х

YY

D

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

SAFETY AND INSULATION RATINGS

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1,	< 150 V _{RMS}	I–IV
For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	1594	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
VIOTM	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥7	mm
	External Clearance	≥7	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τ _S	Case Temperature (Note 1)	175	°C
I _{S,INPUT}	Input Current (Note 1)	400	mA
P _{S,OUTPUT}	Output Power (Note 1)	700	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	> 10 ⁹	Ω

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. 1. Safety limit values – maximum values allowed in the event of a failure.

Device Value Unit Symbol Parameter °C Tstg Storage Temperature All -55 to +150 °C TOPR Operating Temperature All -55 to +100 Junction Temperature All °C T_J -55 to +125 TSOL Lead Solder Temperature All 260 for 10 sec °C Total Device Power Dissipation @ 25°C All 500 mW PD(TOTAL) Derate Above 25°C All 6.6 mW/°C

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

EMITTER

١ _F	I _F Continuous Forward Current		30	mA
V _R	Reverse Voltage	All	6	V
P _{D(EMITTER)}	Total Power Dissipation 25°C Ambient	All	50	mW
⊂D(EMITTER)	Derate Above 25°C	All	0.71	mW/°C

DETECTOR

V _{DBM}		FOD410, FOD4116	600	
• DRM	VDRM Off-State Output Terminal Voltage		800	V
I _{TSM}	Peak Non-Repetitive Surge Current (single cycle 60 Hz sine wave)	All	3	A _{peak}
I _{TM}	I _{TM} Peak On-State Current		300	mA _{peak}
PD/DETEOTOD)	Total Power Dissipation @ 25°C Ambient	All	450	mW
P _{D(DETECTOR)}	Derate Above 25°C	All	5.9	mW/°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Device	Min	Тур	Max	Unit
INDIVIDU	JAL COMPONENT CHARAC	TERISTICS		I				
Emitter								
V _F	Input Forward Voltage	I _F = 20 mA		All	-	1.25	1.50	V
I _R	Reverse Leakage Current	V _R = 6 V		All	-	0.0001	10	μA
Detector		•		·	•	•	•	
I _{D(RMS)}	Peak Blocking Current Either Direction	$I_F = 0,$ $T_A = 100^{\circ}C$ (Nete 2)	V _D = 600 V	FOD410, FOD4116	-	3	100	μΑ
		(Note 2)	V _D = 800 V	FOD4108, FOD4118				
I _{R(RMS)}	Reverse Current	T _A = 100 °C	V _D = 600 V	FOD410, FOD4116	-	3	100	μΑ
			V _D = 800 V	FOD4108, FOD4118				
dv/dt	Critical Rate of Rise of Off-State Voltage	I _F = 0 A (Note 3)	$V_D = V_{DRM}$	All	10,000	-	-	V/µs

TRANSFER CHARACTERISTICS

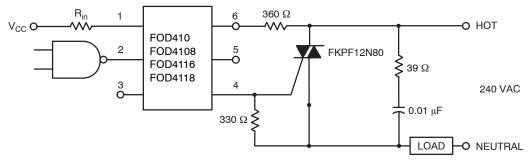
I _{FT}	LED Trigger Current	Main Terminal Vol	tage = 5 V (Note 4)	FOD410, FOD4108	-	0.65	2.0	mA
				FOD4116, FOD4118	-	0.65	1.3	
V _{TM}	Peak On-State Voltage, Either Direction	I _{TM} = 300 mA pea	k, I _F = Rated I _{FT}	All	-	2.2	3	V
Ι _Η	Holding Current, Either Direction	V _T = 3 V	V _T = 3 V		-	200	500	μΑ
١L	Latching Current	V _T = 2.2 V		All	-	5	-	mA
t _{ON}	Turn-On Time	PF = 1.0, I _T = 300 mA	V _{RM} = V _{DM} = 424 VAC	FOD410, FOD4116, FOD4118	-	60	-	μs
			$V_{RM} = V_{DM} = 565 \text{ VAC}$	FOD4108				
t _{OFF}	Turn-Off Time		V _{RM} = V _{DM} = 424 VAC	FOD410, FOD4116, FOD4118	-	52	-	μs
			$V_{RM} = V_{DM} = 565 \text{ VAC}$	FOD4108				
dv/dt _C	Critical Rate of Rise of Voltage at Current Commutation	V _D = 230 V _{RMS} , I _E	V _D = 230 V _{RMS} , I _D = 300 mA _{PK}		-	10	-	V/μs
di/dt _C	Critical Rate of Rise of On–State Current Commutation	V_D = 230 V_{RMS} , I_D = 300 mA _{PK}		All	-	9	-	A/ms
dv(_{IO})/dt	Critical Rate of Rise of Coupled Input / Output Voltage	I _T = 0 A, V _{RM} = V _I	_{DM} = 424 VAC	All	10,000	-	-	V/μs

Test voltage must be applied within dv/dt rating.
 This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.
 All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (2 mA for FOD410 and FOD4108 and 1.3 mA for FOD4116 and FOD4118) and the absolute max I_F (30 mA).

ZERO CROSSING CHARACTERISTICS

Voltage

Symbol	Parameter	Test Conditions	Device	Min	Тур	Max	Unit
V _{INH}	Inhibit Voltage (MT1-MT2 Voltage above which device will not trigger)	I _F = Rated I _{FT}	All	-	8	25	V _{peak}
I _{DRM2}	Leakage in Inhibit State	I _F = Rated I _{FT,} Rated V _{DRM} , Off-State	All	-	20	200	μA
ISOLATIO	N CHARACTERISTICS						
VISO	Steady State Isolation	f = 60 Hz, t = 1 Minute (Note 5)	All	5,000	-	-	VAC _{RMS}


Isolation voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, pins 1, 2 and 3 are common, and pins 4, 5 and 6 are common. 5,000 VAC_{RMS} for 1 minute duration is equivalent to 6,000 VAC_{RMS} for 1 second duration.

TYPICAL APPLICATION

Figure 1 shows a typical circuit for when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

Rin is calculated so that IF is equal to the rated IFT of the

part, 2 mA for FOD410 and FOD4108, 1.3 mA for FOD4116 and FOD4118. The 39 Ω resistor and 0.01 μ F capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load use.

*For highly inductive loads (power factor < 0.5), change this value to 360 Ω .

Figure 1. Hot-Line Switching Application Circuit

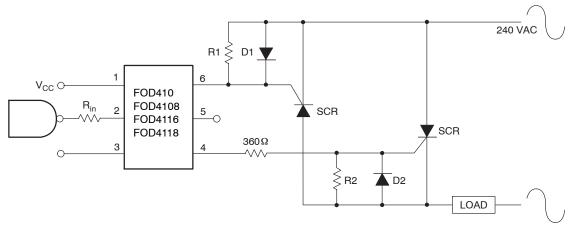
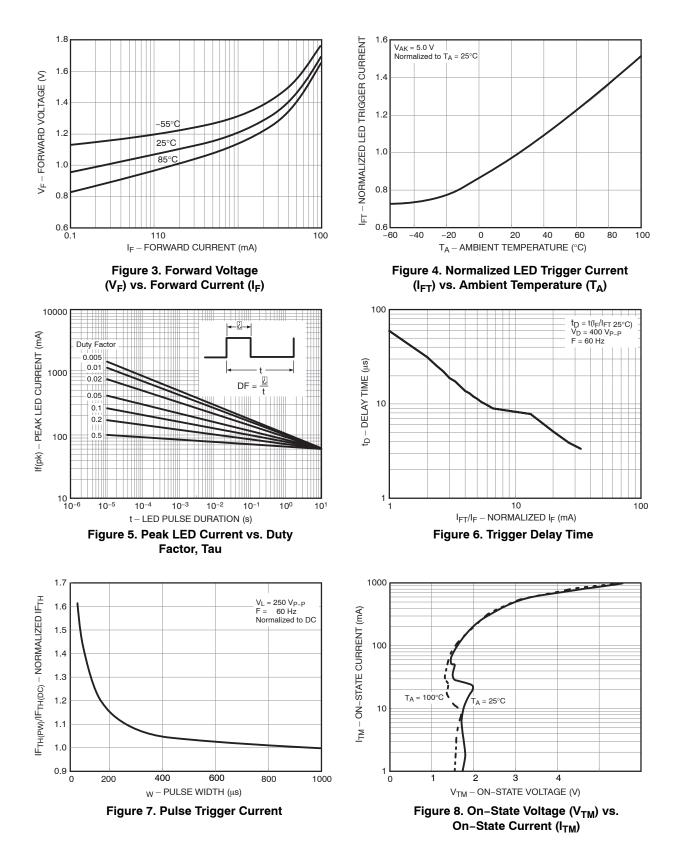



Figure 2. Inverse–Parallel SCR Driver Circuit

Suggested method of firing two, back-to-back SCR's with a ON Semiconductor triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330 Ω .

NOTE: This optoisolator should not be used to drive a load directly. It is intended to be a discrete triac driver device only.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

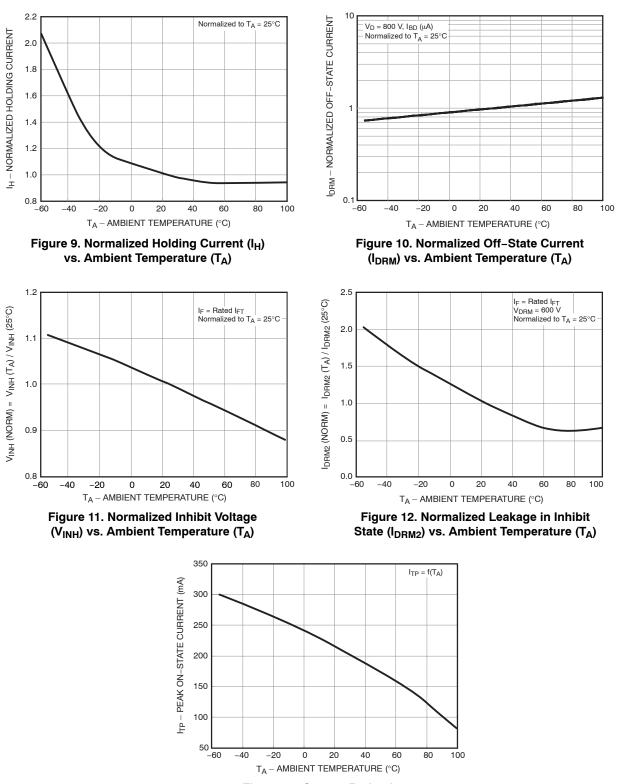
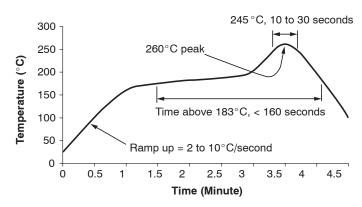



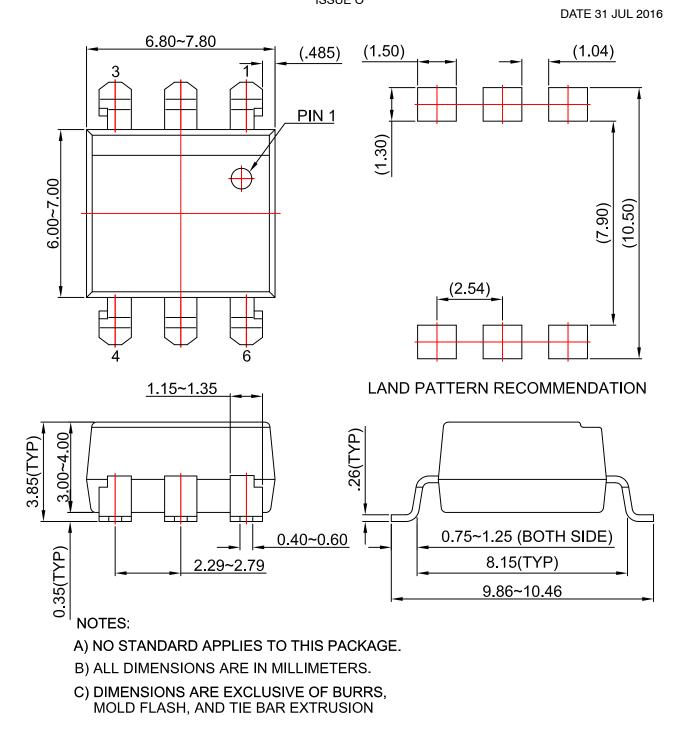
Figure 13. Current Reduction

REFLOW PROFILE

Peak reflow temperature: 262°C (package surface temperature)
Time of temperature higher than 185°C for 160 seconds or less
One time soldering reflow is recommended

Figure 14. Reflow Profile

ORDERING INFORMATION

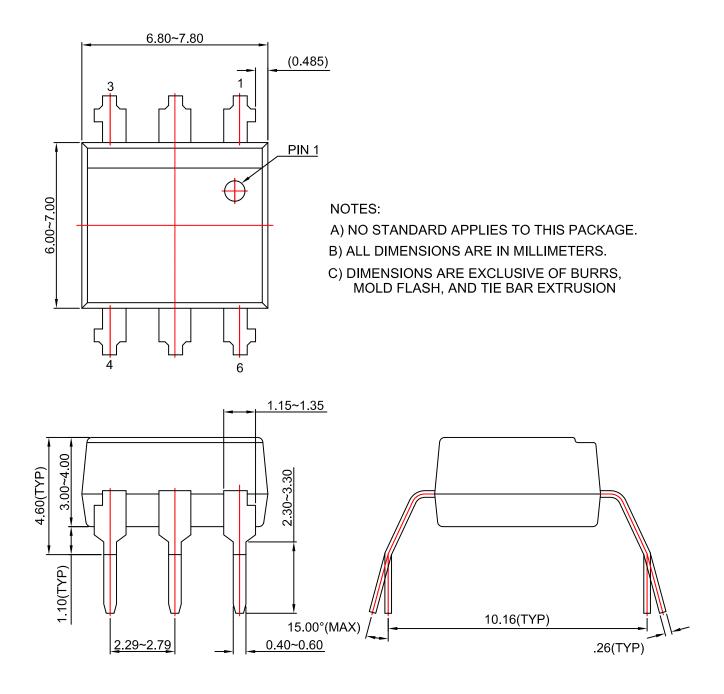

Part Number	Package	Shipping [†]
FOD410	DIP 6-Pin	Tube (50 Units)
FOD410S	SMT 6-Pin (Lead Bend)	Tube (50 Units)
FOD410SD	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
FOD410V	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD410SV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD410SDV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
FOD410TV	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

6. The product orderable part number system listed in this table also applies to the FOD4108, FOD4116, and FOD4118 product families.

ON

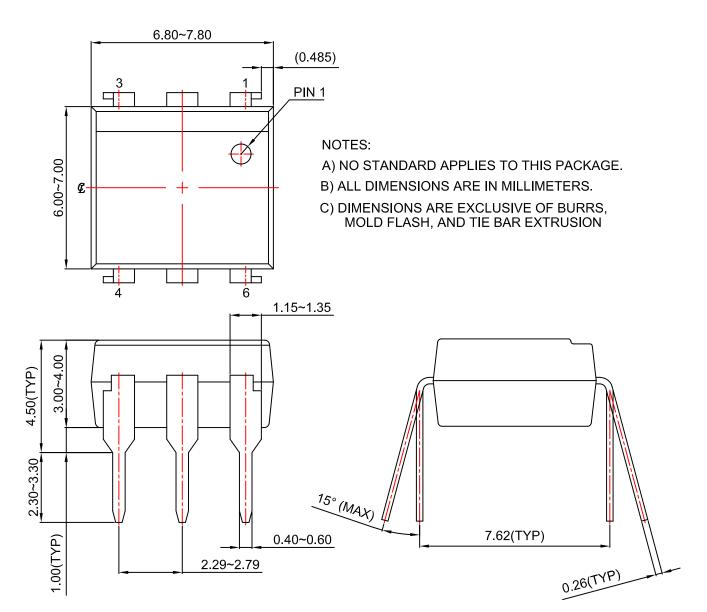
PDIP6 7.3x6.5, 2.54P CASE 646CE ISSUE O


DOCUMENT NUMBER:	98AON13456G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP6 7.3X6.5, 2.54P		PAGE 1 OF 1		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

© Semiconductor Components Industries, LLC, 2019

PDIP6 7.3x6.5, 2.54P CASE 646CF ISSUE O

DATE 31 JUL 2016


DOCUMENT NUMBER:	98AON13457G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP6 7.3X6.5, 2.54P		PAGE 1 OF 1		

ON Semiconductor and unarts of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

PDIP6 GW CASE 709AG ISSUE A

DATE 31 JUL 2016

DOCUMENT NUMBER:	98AON13455G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PDIP6 GW	PAGE 1 OF					
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥