

AP.10G GPS/Galileo 1 Stage SMD Active Patch 11.5*10*10mm

Part No:

AP.10G.01

Description:

10mm SMD 14dB Active GPS/Galileo Patch Antenna With Front End Saw Filter

Features:

Unique SMD GPS/Galileo active patch

Wide Input Voltage 1.5V to 3.3V

Ultra low power consumption

RoHS & Reach Compliant

1.	Introduction	3
2.	Specifications	4
3.	Passive Antenna Characteristics	6
4.	Active Antenna Characteristics	9
5.	Radiation Patterns	12
6.	Mechanical Drawing	14
7.	PCB Footprint	15
8.	Recommended Reflow Soldering Profile	16
9.	Packaging	17
	Changelog	18

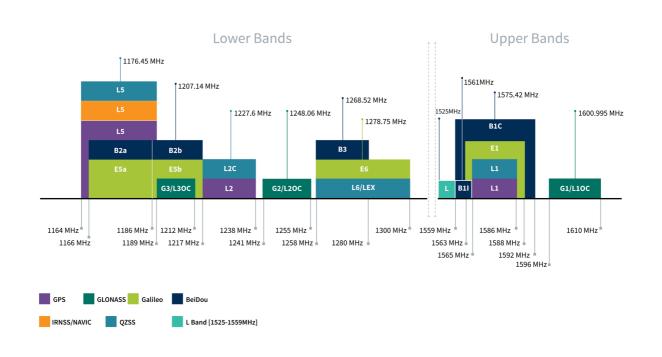
Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The AP.10G.01 one stage 14dB active GPS/Galileo patch antenna is the smallest SMD GPS/Galileo high performance embedded antenna currently available in the world. Using extremely sensitive high dielectric constant powder formulation and tight process control the 10mm x 10mm x 4mm patch antenna is accurately tuned to have its frequency band right at 1575.42MHz for GPS/Galileo systems.

A patented SMD structure gives high reliability in integration. With an ultra low power consumption one stage LNA with Saw Filter, this small active patch has the performance of an ordinary active patch, but at only a quarter of the size.

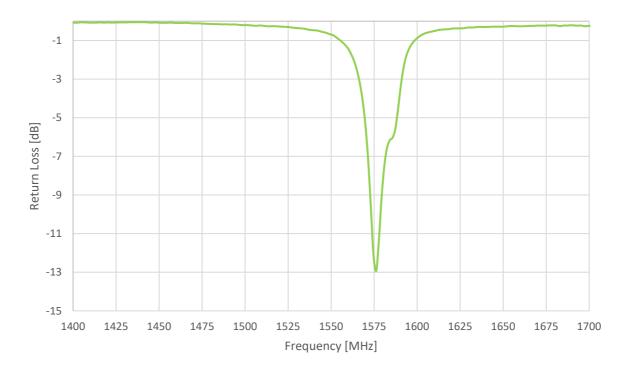
Typical Applications Include:


- Medical Devices
- Navigation
- Sports Tracking

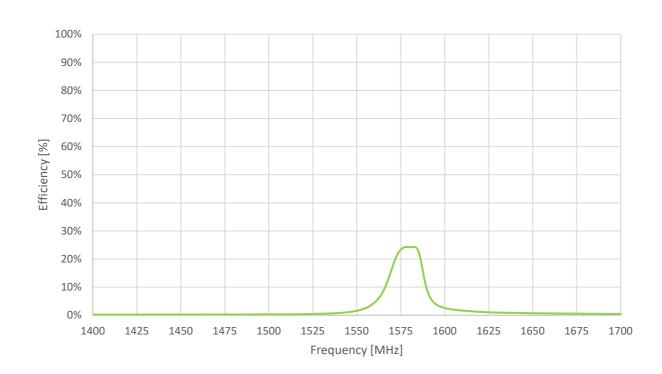
The AP.10G has been designed to be directly mounted onto a PCB board via SMD process. With this in mind the AP.10G is supplied on a tape and reel and is compatible with pick and place machines used in the electronic component industry. For integration instructions or concerns, please contact your regional Taoglas customer support team.

2. Specifications

		GNSS	Frequency	Bands Cover	ed		
GPS/QZSS	L1 1575.42MHz	L2 1227.6MHz	L5 1176.45MHz	L6 1278.75MHz			
	•						
GLONASS	L5R 1176.45MHz	L3PT 1201.5MHz	L2PT 1246MHz	L1CR 1575.42MHz	L1PT 1602MHz		
				•			
Galileo	E5a 1176.45MHz	E5b 1201.5MHz	E4 1215MHz	E3 1256MHz	E6 1278.75MHz	E2 1561MHz	L1 1575.42MHz
BeiDou	B1 1561MHz	B2 1207.14MHz	B3 1268.52MHz				
Compass	E5B(B2)/ E6(B3) 1268.56MHz	E2(B1) 1561MHz					
SBAS	Omnistar 1542.5MHz	WAAS/EGN OS 1575.42MHz					
		•					

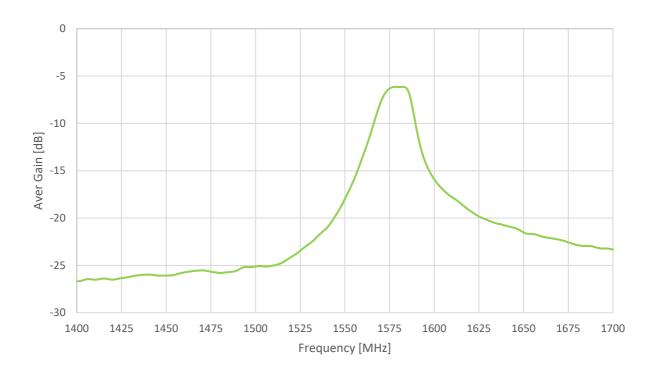

GNSS Electrical			
Frequency (MHz)	1575.42 ± 1.023MHz		
VSWR (max.)	2.0:1		
Gain (Patch)	Typ -10dBic @ Zenith		
Gain (Patch and LNA)	8 ± 4dBic @ 90°		
Axial Ratio (dB)	Max 4.0dB @ Zenith		
Polarization	RHCP		
Impedance	50Ω		
Connector	SMD via solder pads		

	LNA and Filton Floatwicel Buomenties			
LNA and Filter Electrical Properties				
Frequency (MHz)	1575.42 ± 1.023MHz			
Gain 1.5V - 3.3V	18dB			
Noise 1.5V - 3.3V	2.6dB			
Power consumption 1.5V - 3.3V	3.5mA			
	F0=1575.42MHz			
Outer Band Attenuation	F0±30MHz 9dB min.			
Outer Band Attenuation	F0±50MHz 14dB min.			
	F0±100MHz 16dB min.			
Pout at 1dB Gain Compression point	Typ. 1dBm			
	Mechanical			
Planner Dimension	10mm x 10mm x 4mm (add 7.3mm depth for vertical PCB)			
Connection	SMD via solder pads			
Weight	10g			
	Enviromental			
Operation Temperature	-20°C to + 85°C			
Storage Temperature	-30°C to + 85°C			
Relative Humidity	40% to 95%			

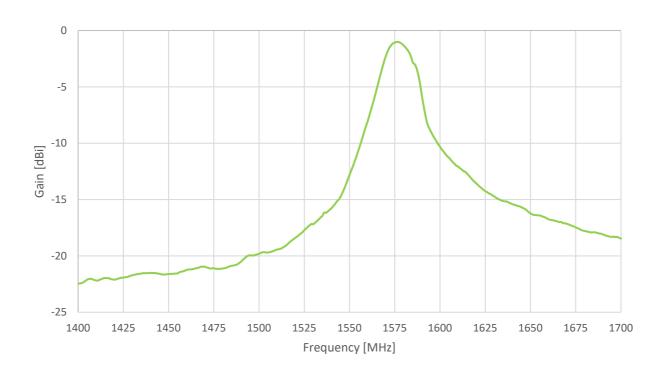


3. Passive Antenna Characteristics

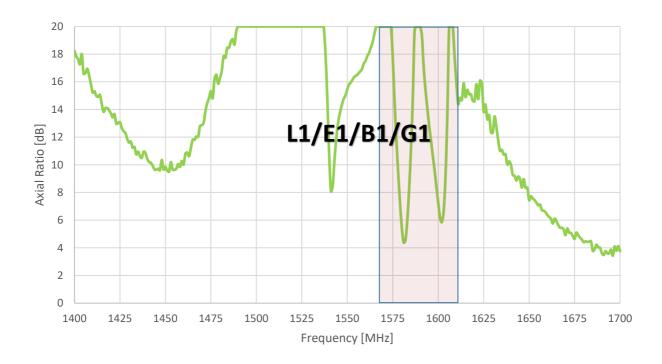
3.1 Return Loss



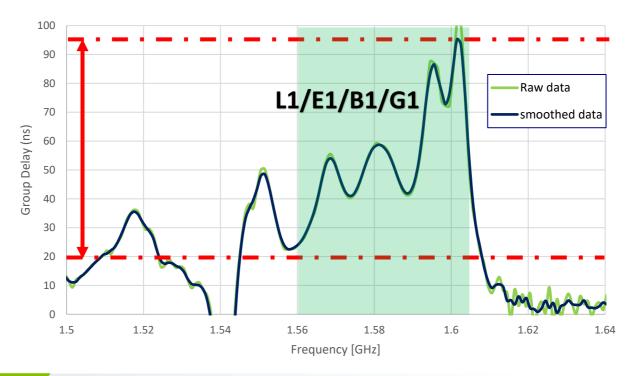
3.2 Efficiency

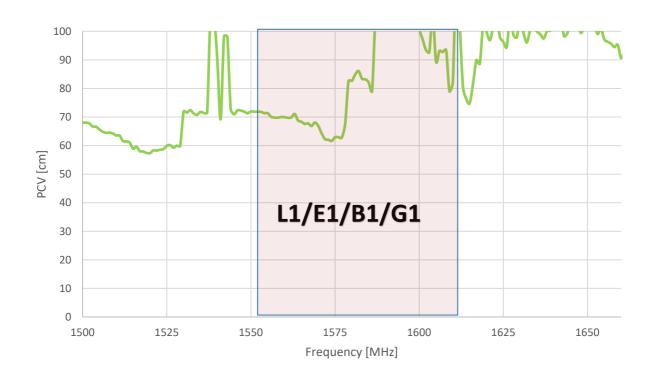


3.3 Average Gain



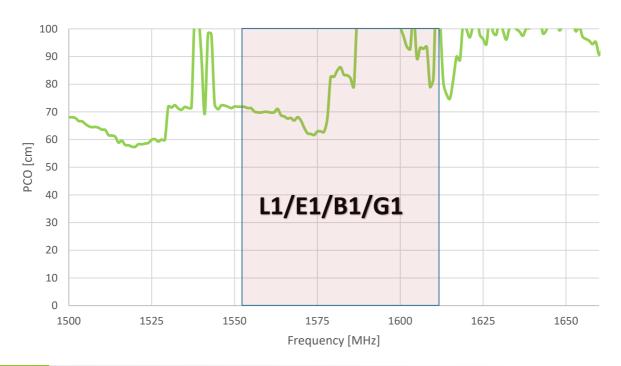
3.4 Peak Gain


3.5 Axial Ratio vs Frequency



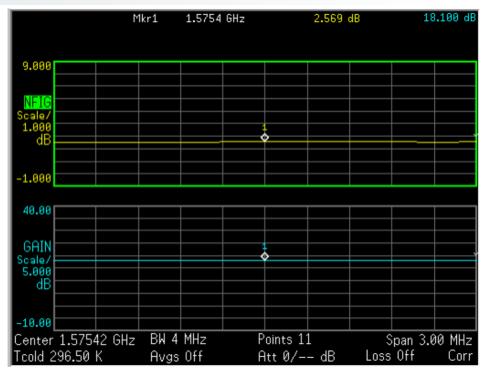
4. Active Antenna Characteristics

4.1 Group Delay



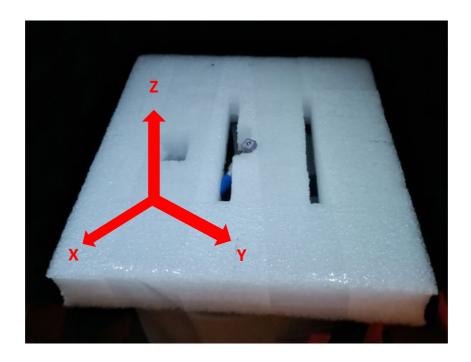
4.2 Phase Centre Variation

4.3 Phase Centre Offset

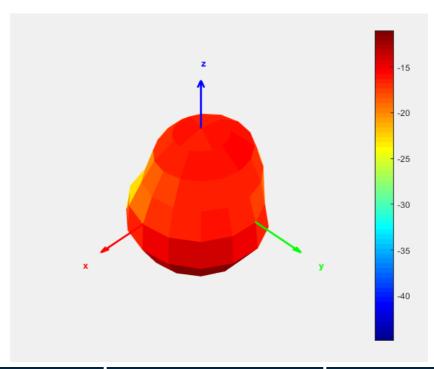


4.4 LNA Gain and Out Band Rejection @3.0V

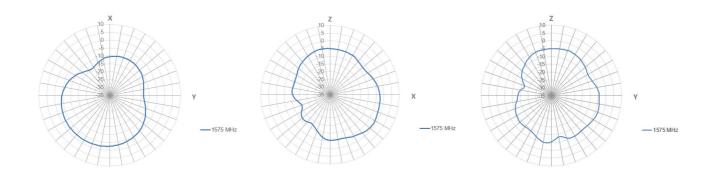
4.5 LNA Noise Figure @3.0V


11

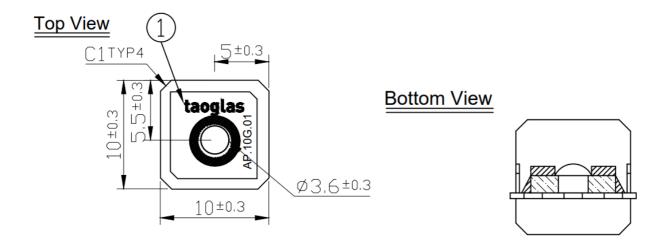
SPE-11-8-100-I

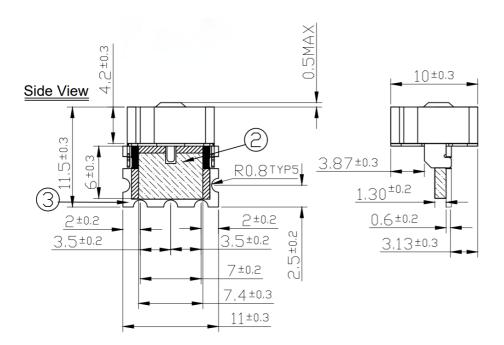

5. Radiation Patterns

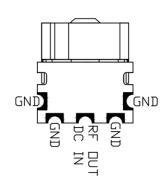
5.1 Test Setup



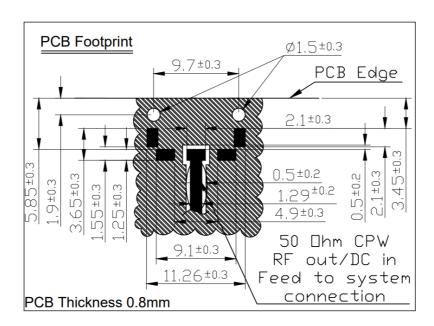
5.2 1575MHz 3D and 2D Radiation Patterns

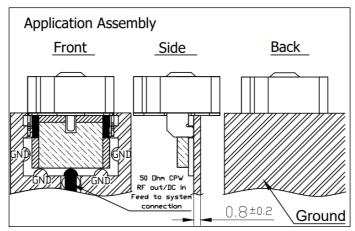



XY Plane XZ Plane YZ Plane



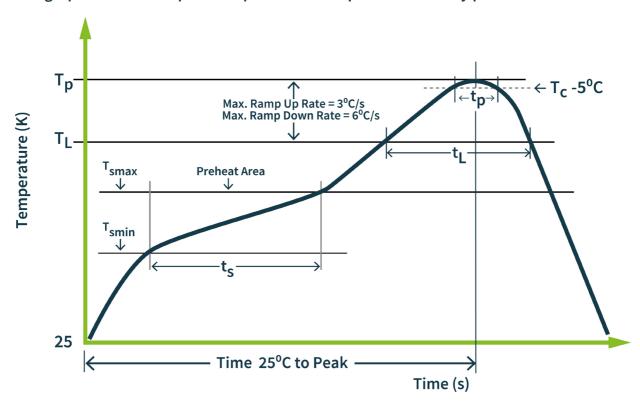
6. Mechanical Drawing (Units: mm)





PCB Footprint

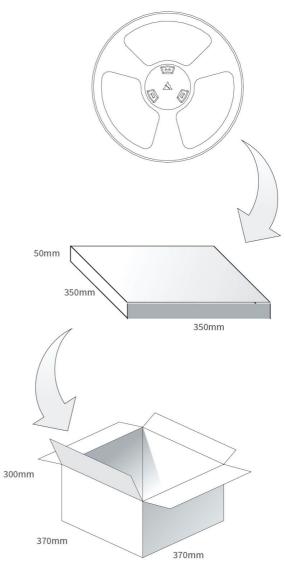
Note:

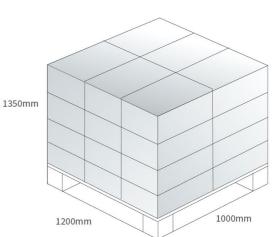

- 1.Soldered Area
- 2.Solder Mask Area(Green)
- 3.Clearance Area
- 4. Shielding Case Area
- 5.Area to be solder (Pad)

8. Recommended Reflow Soldering Profile

The graphic shows temperature profile for component assembly process in reflow ovens

Phase	Profile Features		Pb-Free Assembly (SnAgCu)
Preheat	Temperature Min(Tsmin) Temperature Max(Tsmax) Time(ts) from (Tsmin to Tsmax)		150°C 20∖0°C 60-120 seconds
Ramp-up	Avg. Ramp-up R	ate (Tsmax to TP)	3°C/second(max)
Reflow	· ·	ature(TL) above TL (tL)	217°C 30-100 seconds
Peak		ature(TP) e(tp)	260°C 2-5 seconds
Time from 25°C to Peak Temps	erature		8 minutes max
Composition of solder pas	te		96.5Sn/3Ag/0.5Cu
Solder Paste Model		S	HENMAO PF606-P26


9. Packaging


250 pcs AP.10G.01 reel Dimensions - 330 x 330 x 40mm Weight -1100g

250 pcs AP.10G.01 in small box Dimensions - 350 x 350 x 50mm Weight -1.4Kg

5 reels, 1250 pcs in one carton Carton Dimensions - 370 x 370 x 300mm Weight - 7.7Kg

Pallet Dimensions 1200 x 1000 x 1350mm 24 Cartons per Pallet 6 Cartons per layer 4 Layers

Changelog for the datasheet

SPE-11-8-100 - AP.10G.01

Revision: I (Current Version)		
Date:	2024-07-04	
Changes:	Updated product image and drawings	
Changes Made by:	Conor McGrath	

Previous Revisions

Revision: H		
Date:	2022-02-22	
Changes:	Updated GNSS Bands & Constellations Graphics	
Changes Made by:	Cesar Sousa	

Revision: C	
Date:	2012-03-07
Changes:	
Changes Made by:	Staff

Revision: G		
Date:	2021-11-01	
Changes:	Updated Data.	
Changes Made by:	Gary West	

Revision: B	
Date:	2012-01-18
Changes:	
Changes Made by:	Staff

Revision: F		
Date:	2021-10-07	
Changes:	Added MSL, updated format	
Changes Made by:	Erik Landi	

Revision: A (Origina	Revision: A (Original First Release)		
Date:	2011-10-14		
Notes:	Initial Release		
Author:	Staff		

Revision: E	
Date:	2014-05-13
Changes:	Added reflow
Changes Made by:	AINE DOYLE

Revision: D	
Date:	2012-04-03
Changes:	
Changes Made by:	Staff

www.taoglas.com

