1. General description

The SSL2101 is a Switched Mode Power Supply (SMPS) driver IC that operates in combination with a phase cut dimmer directly from the rectified mains. It is designed to drive LED devices. The device includes a high-voltage power switch, a circuit to allow start-up directly from the rectified mains voltage and a high-voltage circuitry to supply the phase cut dimmer.

For dimmer applications, an integrated dedicated circuitry optimizes the dimming curve.

- SSL2101: fully integrated LED driver for lamps up to 10 W
- SSL2102: fully integrated LED driver for lamps up to 25 W
- SSL2103: gives the application designer flexibility to:
 - Use an external power switch to allow the IC to provide any power
 - Use external bleeder transistors to provide extended dimmer interoperability

2. Features and benefits

- Easy migration to existing lighting control infrastructure
- Supports most available dimming solutions
- Optimized efficiency with valley switching managed by a built-in circuitry
- Demagnetization detection
- OverTemperature Protection (OTP)
- Short-Winding Protection (SWP) and OverCurrent Protection (OCP)
- Internal V_{CC} generation allowing start-up from the rectified mains voltage
- Natural dimming curve by logarithmic correction, down to 1 %
- Limited external components required because of the high integration level
- Thermal enhanced SO16 wide body package
- Suitable for flyback and buck applications

3. Applications

- SSL applications below 15 W
- Retro-fit lamps (for example, GU10, E27)
- LED modules such as LED spots, down-lights
- LED strings suitable for retail displays, etc.

Dimmable Greenchip driver for LED lighting

4. Quick reference data

Table 1: Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R_{DSon}	drain-source on-state	power switch; $I_{SOURCE} = -0.50 \text{ A}$				
	resistance	T _j = 25 °C	4.5	6.5	7.5	Ω
		$I_{\text{source}} = -0.20 \text{ A}$				
		T _j = 125 °C	-	9.5	10	Ω
V_{CC}	supply voltage		8.5	-	40	V
f _{osc}	oscillator frequency		10	100	200	kHz
I _{DRAIN}	current on pin DRAIN	V _{DRAIN} > 60 V; no auxiliary supply	-	-	2.2	mA
		V _{DRAIN} > 60 V; with auxiliary supply	-	30	125	μΑ
V_{DRAIN}	voltage on pin DRAIN		40	-	600	V
δ_{min}	minimum duty factor		-	0	-	%
δ_{max}	maximum duty cycle	f = 100 kHz	-	75	-	%
T _{amb}	ambient temperature		-40	-	+100	°C

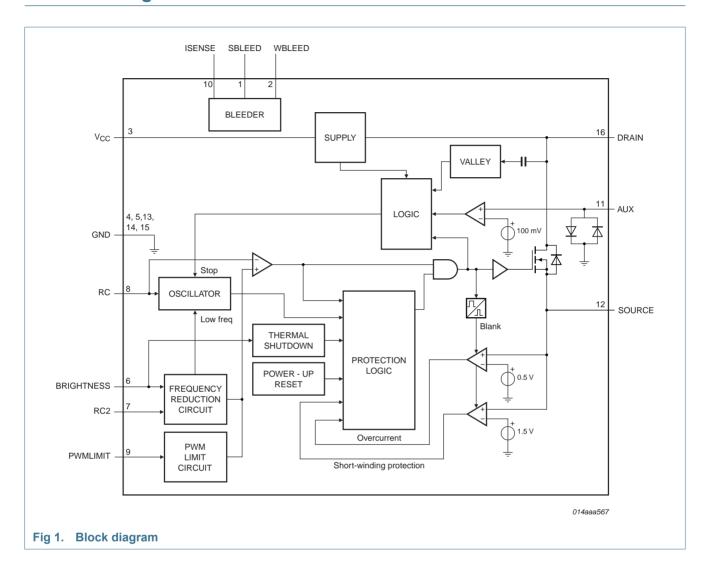
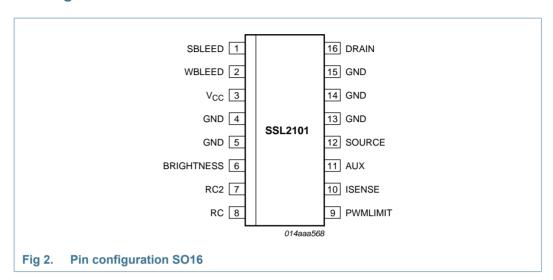

5. Ordering information

Table 2: Ordering information

Type number	Package						
	Name	Description	Version				
SSL2101T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				

Dimmable Greenchip driver for LED lighting


6. Block diagram

Dimmable Greenchip driver for LED lighting

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
SBLEED	1	drain of internal strong bleeder switch
WBLEED	2	drain of internal weak bleeder switch
V _{CC}	3	supply voltage
GND	4	ground
GND	5	ground
BRIGHTNESS	6	brightness input
RC2	7	setting for frequency reduction
RC	8	frequency setting
PWMLIMIT	9	PWM limit input
ISENSE	10	current sense input for WBLEED
AUX	11	Input for voltage from auxiliary winding for timing (demagnetization)
SOURCE	12	source of internal power switch
GND	13	ground
GND	14	ground
GND	15	ground
DRAIN	16	drain of internal power switch; input for start-up current and valley sensing

Downloaded from Arrow.com.

Dimmable Greenchip driver for LED lighting

8. Functional description

The SSL2101 is an LED driver IC that operates directly from the rectified mains.

The SSL2101 uses on-time mode control and frequency control to control the LED brightness. The BRIGHTNESS and PWMLIMIT input of the IC can be used to control the LED light output in combination with an external dimmer. The PWMLIMIT input can also be used for Thermal Lumen Management (TLM) and for precision LED current control.

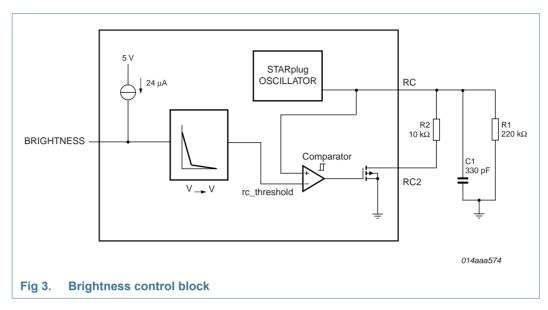
8.1 Start-up and UnderVoltage LockOut (UVLO)

Initially, the IC is self-supplying from the rectified mains voltage. The IC starts switching as soon as the voltage on pin V_{CC} passes the $V_{CC(startup)}$ level. The supply can be taken over by the auxiliary winding of the transformer as soon as V_{CC} is high enough and the supply from the line is stopped for high efficiency operation. Alternatively the IC can be supplied via a bleeder resistor connected to a high voltage. Note however the maximum V_{CC} voltage rating of the IC.

If for some reason the auxiliary supply is not sufficient, the high-voltage supply can also supply the IC. As soon as the voltage on pin V_{CC} drops below the $V_{CC(UVLO)}$ level, the IC stops switching and will restart from the rectified mains voltage, if the internal current delivered is sufficient.

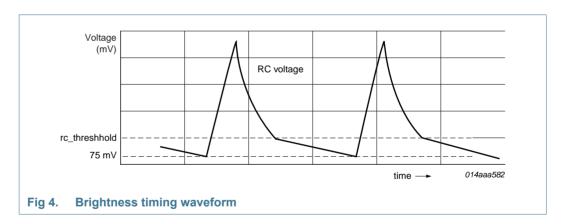
8.2 Oscillator

An internal oscillator inside the IC provides the timing for the switching converter logic.


The frequency of the oscillator is set by the external resistors and the capacitor on pin RC and pin RC2. The external capacitor is charged rapidly to the $V_{RC(max)}$ level and, starting from a new primary stroke, it discharges to the $V_{RC(min)}$ level. Because the discharge is exponential, the relative sensitivity of the duty factor to the regulation voltage at low duty factor is almost equal to the sensitivity at high duty factors. This results in a more constant gain over the duty factor range compared to Phase Width Modulated (PWM) systems with a linear sawtooth oscillator. Stable operation at low duty factors is easily realized. The frequency of the converter when $V_{RRIGHTNESS}$ is high can be estimated using Equation 1:

$$RC = \frac{1}{3.5} \cdot \left(\frac{1}{f_{osc}} - t_{charge}\right) \tag{1}$$

R equals the parallel resistance of both oscillator resistors. C is the capacitor connected at the RC pin (pin 8).


The BRIGHTNESS input controls the frequency reduction mode. Figure 3 shows that the oscillator switches over from an RC curve with R1 in parallel with R2 to R1 only. A low BRIGHTNESS voltage will reduce the switching frequency.

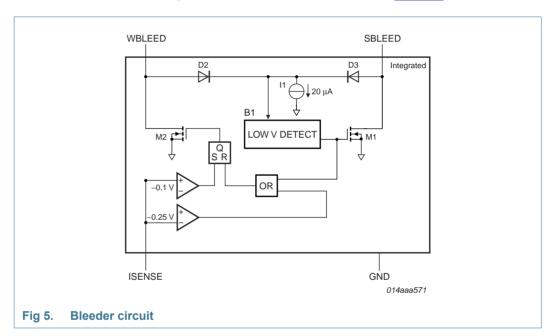
Dimmable Greenchip driver for LED lighting

A typical RC waveform is given in <u>Figure 4</u>. The RC switch-over threshold is controlled by the BRIGHTNESS pin.

To ensure that the capacitor can be charged within the charge time, the value of the oscillator capacitor should be limited to 1 nF. Due to leakage current, the value of the resistor connected between the RC pin and the ground should be limited to a maximum of $220~k\Omega$.

8.3 Duty factor control

The duty factor is controlled by an internally regulated voltage and the oscillator signal on pin RC. The internal regulation voltage is set by the voltage on the PWMLIMIT pin.


A low PWMLIMIT voltage will results in a low on-time for the internal power switch. The minimum duty factor of the switched mode power supply can be set to $0\,\%$. The maximum duty factor is set to $75\,\%$.

Dimmable Greenchip driver for LED lighting

8.4 Bleeder for dimming applications

The SSL2101 IC contains some circuitry intended for mains dimmer compatibility. This circuit contains two current sinks that are called bleeders. A strong bleeder is used for zero-cross reset of the dimmer and triac latching. A weak bleeder is added to maintain the hold current through the dimmer.

The strong bleeder switch is switched on when the maximum voltage on pin WBLEED and SBLEED is below the $V_{th(SBLEED)}$ level (52 V typically). The weak bleeder switch is switched on as soon as the voltage on pin ISENSE exceeds the $V_{th(high)(ISENSE)}$ level (–100 mV typically). The weak bleeder switch is switched off when the ISENSE voltage drops below the $V_{th(low)(ISENSE)}$ level (–250 mV typically). The weak bleeder switch is also switched off when the strong bleeder switch is switched on. See Figure 5.

8.5 Valley switching

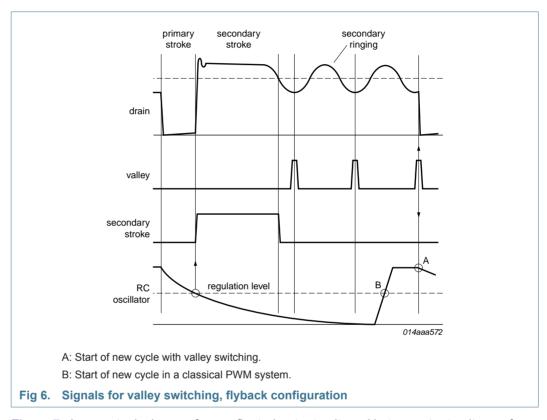
A new cycle is started when the primary switch is switched on (see <u>Figure 6</u>). After a time determined by the oscillator voltage, RC and the internal regulation level, the switch is turned off and the secondary stroke starts. The internal regulation level is determined by the voltage on pin PWMLIMIT.

After the secondary stroke, the drain voltage shows an oscillation with a frequency of approximately:

$$\frac{1}{2 \times \pi \times \sqrt{(L_p \times C_p)}}\tag{2}$$

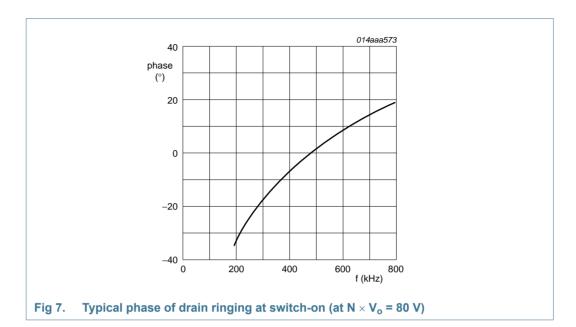
where:

 L_p = primary self inductance


C_p = parasitic capacitance on drain node

Dimmable Greenchip driver for LED lighting

As soon as the oscillator voltage is high again and the secondary stroke has ended, the circuit waits for a low drain voltage before starting a new primary stroke.


<u>Figure 6</u> shows the drain voltage together with the valley signal, the signal indicating the secondary stroke and the RC voltage.

The primary stroke starts some time before the actual valley at low ringing frequencies, and some time after the actual valley at high ringing frequencies.

<u>Figure 7</u> shows a typical curve for a reflected output voltage N at an output voltage of 80 V. This voltage is the output voltage transferred to the primary side of the transformer with the factor N (determined by the turns ratio of the transformer). It shows that the system switches exactly at minimum drain voltage for ringing frequencies of 480 kHz, thus reducing the switch-on losses to a minimum. At 200 kHz, the next primary stroke is started at 33° before the valley. The switch-on losses are still reduced significantly.

Dimmable Greenchip driver for LED lighting

8.6 Demagnetization

The system operates in discontinuous conduction mode if the AUX pin is connected. As long as the secondary stroke has not ended, the oscillator will not start a new primary stroke. During the first $t_{sup(xfmr_ring)}$ seconds, demagnetization recognition is suppressed. This suppression may be necessary in applications where the transformer has a large leakage inductance and at low output voltages.

8.7 Overcurrent protection

The cycle-by-cycle peak drain current limit circuit uses the external source resistor R_{SENSE} to measure the current. The circuit is activated after the leading edge blanking time t_{leb} . The protection circuit limits the source voltage over the R_{SENSE}^{-1} resistor to $V_{th(ocp)SOURCE}$, and thus limits the primary peak current.

8.8 Short-winding protection

The short-winding protection circuit is also activated after the leading edge blanking time. If the source voltage exceeds the short-winding protection threshold voltage $V_{th(swp)SOURCE}$, the IC stops switching. Only a power-on reset will restart normal operation. The short-winding protection also protects in case of a secondary diode short circuit.

8.9 Overtemperature protection

Accurate temperature protection is provided in the device. When the junction temperature exceeds the thermal shut-down temperature, the IC stops switching. During thermal protection, the IC current is lowered to the start-up current. The IC continues normal operation as soon as the overtemperature situation has disappeared.

1 Silergy Corp. Confidential- Prepared for Customer Use Only

^{1.} R_{SENSE} is the resistor between the SOURCE pin and GND

Dimmable Greenchip driver for LED lighting

9. Limiting values

Table 4: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are measured with respect to ground; positive currents flow into the device; pins $V_{\rm CC}$ and RC cannot be current driven. Pins ISENSE and AUX cannot be voltage driven.

Symbol	Parameter	Conditions	Min	Max	Unit
Voltages					
V _{CC}	supply voltage	continuous	-0.4	+40	V
V _{RC}	voltage on pin RC		-0.4	+3	V
V _{RC2}	voltage on pin RC2		-0.4	+3	V
V _{BRIGHTNESS}	voltage on pin BRIGHTNESS		-0.4	+5	V
V _{PWMLIMIT}	voltage on pin PWMLIMIT		-0.4	+5	V
V _{SOURCE}	voltage on pin SOURCE		-0.4	+5	V
V_{DRAIN}	voltage on pin DRAIN	DMOS power transistor; T _{amb} = 25 °C	-0.4	+600	V
V _{SBLEED}	voltage on pin SBLEED	off-state; T _j = 125 °C	-0.4	+600	V
		on-state; V _{VCC} > 8.5 V; T _j < 125 °C	-0.4	+16	V
V _{WBLEED}	voltage on pin WBLEED	off-state; T _j < 125 °C	-0.4	+600	V
		on-state; $V_{VCC} > 8.5 V$; $T_j < 125 °C$	-0.4	+12	V
Currents					
I _{ISENSE}	current on pin ISENSE		-20	+5	mA
I _{AUX}	current on pin AUX		-10	+5	mA
I _{SOURCE}	current on pin SOURCE		-2	+2	Α
I _{DRAIN}	current on pin DRAIN		-2	+2	Α
General					
P _{tot}	total power dissipation	T _{amb} = 70 °C	-	1	W
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+100	°C
Tj	junction temperature		-40	+150	°C

Dimmable Greenchip driver for LED lighting

Table 4: Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are measured with respect to ground; positive currents flow into the device; pins V_{CC} and RC cannot be current driven. Pins ISENSE and AUX cannot be voltage driven.

	-	•				
Symbol	Parameter	Conditions		Min	Max	Unit
V _{ESD}	electrostatic discharge voltage	human body model;	<u>[1]</u>	-1000 +1000 V -2000 +2000 V -200 +200 V		
		Pins 16, 1, 2		-1000	+1000	V
		All other pins		-2000	+2000	V
		machine model	[2]	-200	+200	V
		charged device model	[3]	-500	+500	V

- [1] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.
- [2] Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 μ H coil and a 10 Ω series resistor.
- [3] Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each pin down to 0 V over a 1 Ω resistor.

10. Thermal characteristics

The heat sink in the application with the SSL2101 is made with the copper on the Printed-Circuit Board (PCB). The SSL2101 uses thermal leads (pins 4, 5, 13, 14 and 15) for heat transfer from die to PCB.

Enhanced thermal lead connection may drastically reduce thermal resistance.

The following equation shows the relationship between the maximum allowable

The following equation shows the relationship between the maximum allowable power dissipation P and the thermal resistance from junction to ambient.

$$R_{th(j-a)} = (T_{j(max)} - T_{amb})/P$$

Where:

 $R_{th(i-a)}$ = thermal resistance from junction to ambient

 $T_{i(max)}$ = maximum junction temperature

 T_{amb} = ambient temperature

P = power dissipation

The thermal resistance as a function of the PCB area (Board: 0.8 mm thickness, 2 layers, Bottom Cu coverage 90 %, Cu thickness 70 μm

(390 W/mK), Core material conductivity: 0.5 W/mK, 10 vias dia 0.3 mm) is shown in Figure 8

Dimmable Greenchip driver for LED lighting

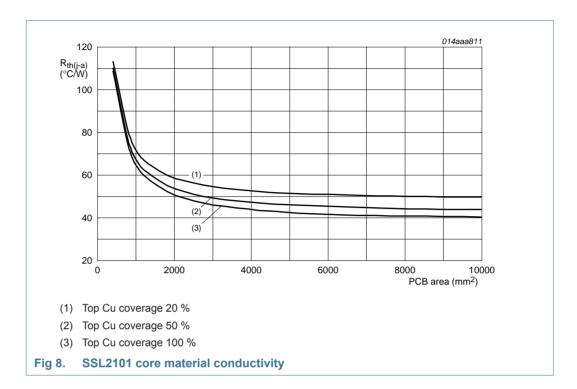


Table 5: Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient		<u>[1]</u>	90	KW

^[1] Measured on a JEDEC test board (standard EIA/JESD 51-3) in free air with natural convection.

11. Characteristics

Table 6: Characteristics

 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
Icc	supply current	normal operation; $V_{DRAIN} = 60 \text{ V};$ $V_{CC} = 20 \text{ V}$	-	1.7	2	mA
I _{CC(ch)}	charge supply current	$V_{DRAIN} > 60 \text{ V};$ $V_{CC} = 0 \text{ V}$	-6	-4.5	-	mA
V _{CC}	supply voltage		8.5	-	40	V
V _{CC(startup)}	start-up supply voltage		9.75	10.25	10.75	V
V _{CC(UVLO)}	undervoltage lockout supply voltage	L	7.9	8.2	8.5	V

SSL2101

Dimmable Greenchip driver for LED lighting

Table 6: Characteristics ...continued

 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DRAIN}	current on pin DRAIN	V _{DRAIN} > 60 V; no auxiliary supply	-	-	2.2	mA
		V _{DRAIN} > 60 V; with auxiliary supply	-	30	125	μΑ
V_{DRAIN}	voltage on pin DRAIN		40	-	600	V
Pulse width me	odulator					
δ_{min}	minimum duty factor		-	0	-	%
δ_{max}	maximum duty cycle	f = 100 kHz	-	75	-	%
SOPS						
V _{det(demag)}	demagnetization detection voltage		50	100	150	mV
t _{sup(xfmr_ring)}	transformer ringing suppression time	at start of secondary stroke	1.0	1.5	2.0	μS
RC oscillator						
$V_{RC(min)}$	minimum voltage on pin RC		60	75	90	mV
$V_{RC(max)}$	maximum voltage on pin RC		2.4	2.5	2.6	V
t _{ch(RC)}	charge time on pin RC		-	1	-	μS
V _{BRIGHTNESS}	voltage on pin BRIGHTNESS	2.5 V RC2 trip level	-	0.5	-	V
		180 mV RC2 trip level	-	1.25	-	V
		75 mV RC2 trip level	-	2.3	-	V
f _{osc}	oscillator frequency		10	100	200	kHz
I _{BRIGHTNESS}	current on pin BRIGHTNESS	$V_{BRIGHTNESS} = 0 V$	-20	-24	-28	μΑ
Bleeder						
$V_{th(SBLEED)}$	threshold voltage on pin SBLEED		46	52	56	V
$V_{\text{th(low)}}$ ISENSE	low threshold voltage on pin ISENSE		-	-250	-	mV
$V_{th(high)ISENSE}$	high threshold voltage on pin ISENSE		-	-100	-	mV
R _{DSon(SBLEED)}	drain-source	I _{SBLEED} = 25 mA				
	on-state	T _j = 25 °C	140	170	200	Ω
	resistance on pin SBLEED	T _j = 125 °C	220	270	320	Ω

SSL2101

Dimmable Greenchip driver for LED lighting

Table 6: Characteristics ...continued

 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{DSon(WBLEED)}	drain-source	I_{WBLEED} = 10 mA					
	on-state resistance on pin	T _j = 25 °C		250	310	350	Ω
	WBLEED	T _j = 125 °C		400	500	600	Ω
Duty factor reg	ulator: pin PWMLIN	IIT					
I _{PWMLIMIT}	current on pin PWMLIMIT			-25	-	-18	μΑ
V _{PWMLIMIT}	voltage on pin PWMLIMIT	maximum duty cycle = 3 V		-	3	-	V
		minimum duty factor threshold		-	0.45	-	V
Valley switchin	g						
$(\Delta V/\Delta t)_{V rec}$	valley recognition voltage change with time	minimum absolute value	<u>[1]</u>	-	100	-	V/μs
f _{ring}	ringing frequency	$N \times V_O = 100 V$		200	550	800	kHz
t _{d(vrec-swon)}	valley recognition to switch-on delay time			-	150	-	ns
Current and sh	ort circuit winding	protection					
$V_{th(ocp)}$ SOURCE	overcurrent protection threshold voltage on pin SOURCE	$dV/dt = 0.1 V/\mu s$		0.47	0.50	0.53	V
V _{th(swp)} SOURCE	short-winding protection threshold voltage on pin SOURCE	$dV/dt = 0.1 V/\mu s$		-	1.5	-	V
t _{d(ocp-swoff)}	delay time from overcurrent protection to switch-off	$dV/dt = 0.5 V/\mu s$		-	160	185	ns
t _{leb}	leading edge blanking time			250	350	450	ns
FET output sta	ge						
I _{L(DRAIN)}	leakage current on pin DRAIN	V _{DRAIN} = 600 V		-	-	125	μА
V _{BR(DRAIN)}	breakdown voltage on pin DRAIN	T _{amb} = 25 °C		600	-	-	V
R _{DSon}	drain-source on-state	power switch; $I_{SOURCE} = -0.50 \text{ A}$					
	resistance	T _j = 25 °C		4.50	6.5	7.5	Ω
		$I_{\text{SOURCE}} = -0.20 \text{ A}$					
		T _j = 125 °C		-	9.5	10	Ω

SSL2101

Silergy Corp. Confidential- Prepared for Customer Use Only

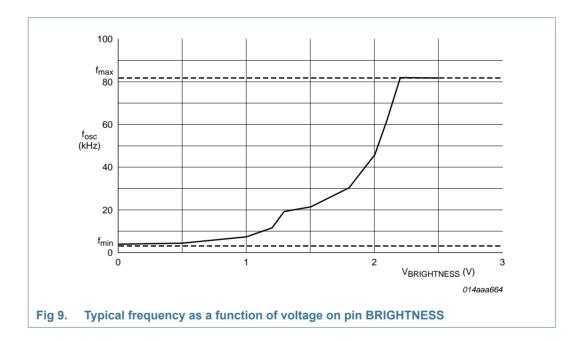

Dimmable Greenchip driver for LED lighting

Table 6: Characteristics ...continued

 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.


				_		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{f(DRAIN)}$	fall time on pin DRAIN	input voltage: 300 V; no external capacitor at drain	-	75	-	ns
Temperature p	rotection					
T _{otp}	overtemperature protection trip	junction temperature	150	160	170	°C
T _{otp(hys)}	overtemperature protection trip hysteresis	junction temperature	-	2	-	°C

[1] Voltage change in time for valley recognition.

Dimmable Greenchip driver for LED lighting

014aaa666

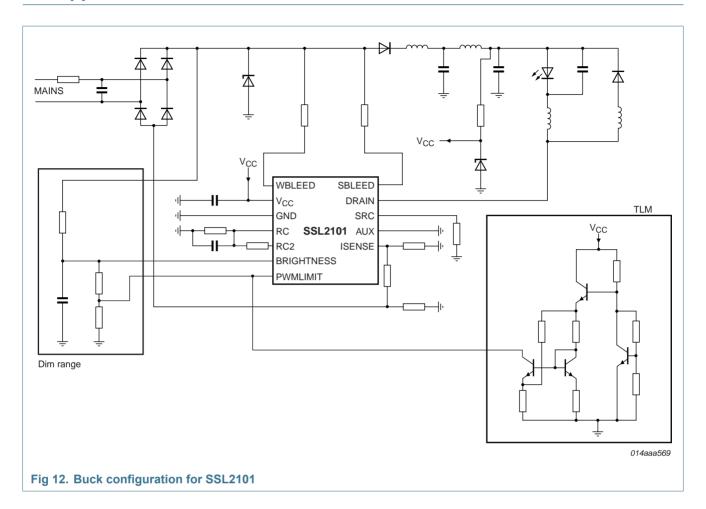
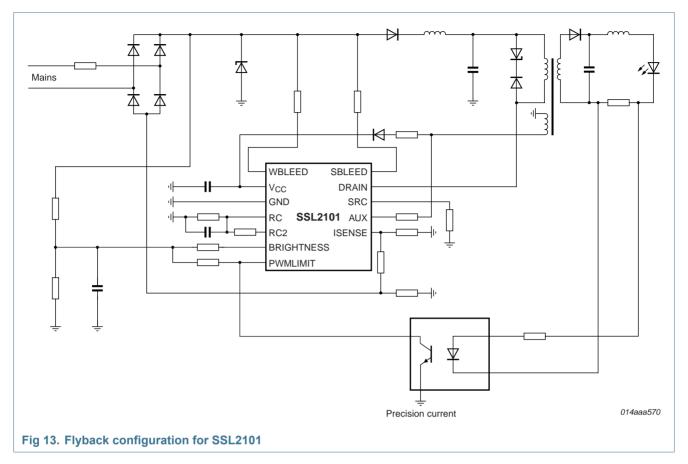

120 ton (μs) 80 40 0 1 2 V_{PWMLIMIT} (V) 3

Fig 11. Turn-on time as a function of voltage on pin PWMLIMIT


 $V_{BRIGHTNESS} = 1 V$

Dimmable Greenchip driver for LED lighting

12. Application information

Dimmable Greenchip driver for LED lighting

Further application information can be found in the SSL2101 application notes.

Dimmable Greenchip driver for LED lighting

13. Package outline

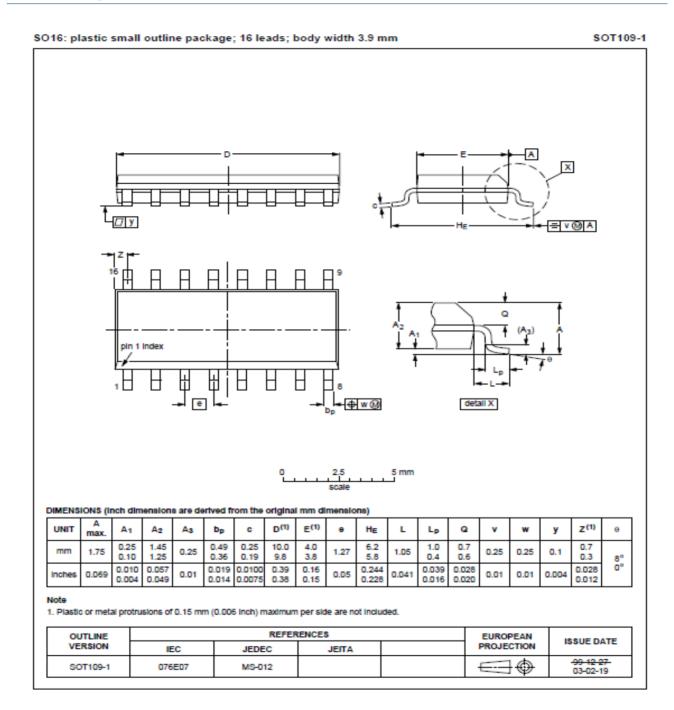


Fig 14. Package outline SOT109-1 (SO16)