

International **IR** Rectifier

PD - 93983A

**REPETITIVE AVALANCHE AND dv/dt RATED
HEXFET® TRANSISTORS
SURFACE MOUNT (LCC-18)**

**IRFE120
JANTX2N6788U
REF: MIL-PRF-19500/555
100V, N-CHANNEL**

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRFE120	100V	0.30Ω	4.5A

The leadless chip carrier (LCC) package represents the logical next step in the continual evolution of surface mount technology. Desinged to be a close replacement for the TO-39 package, the LCC will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the LCC package to meet the specific needs of the power market by increasing the size of the bottom source pad, thereby enhancing the thermal and electrical performance. The lid of the package is grounded to the source to reduce RF interference.

Features:

- Surface Mount
- Small Footprint
- Alternative to TO-39 Package
- Hermetically Sealed
- Dynamic dv/dt Rating
- Avalanche Energy Rating
- Simple Drive Requirements
- Light Weight

Absolute Maximum Ratings

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	4.5	A
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	2.8	
IDM	Pulsed Drain Current ①	18	
PD @ TC = 25°C	Max. Power Dissipation	14	W
	Linear Derating Factor	0.11	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	0.242	mJ
IAR	Avalanche Current ①	2.2	A
EAR	Repetitive Avalanche Energy ①	1.4	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.5	V/ns
TJ	Operating Junction	-55 to 150	°C
TSTG	Storage Temperature Range		
	Pckg. Mounting Surface Temp.	300 (for 5s)	
	Weight	0.42(typical)	g

For footnotes refer to the last page

www.irf.com

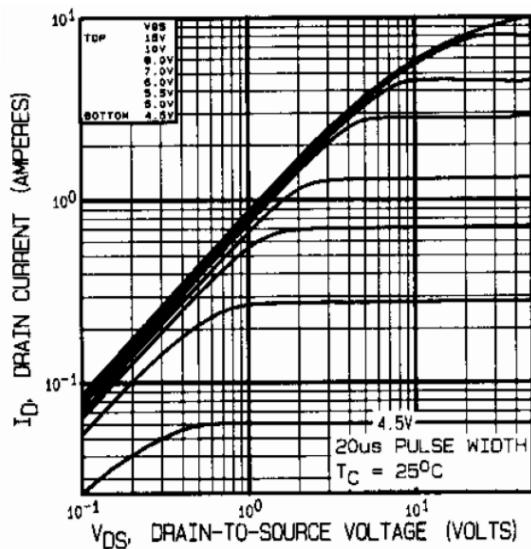
1

08/03/07

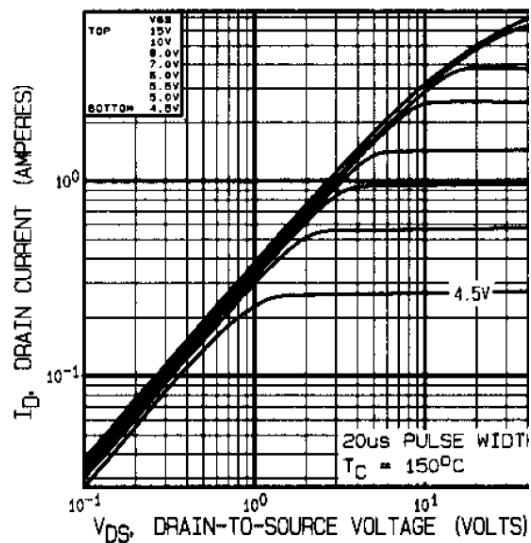
Electrical Characteristics @ $T_j = 25^\circ\text{C}$ (Unless Otherwise Specified)

	Parameter	Min	Typ	Max	Units	Test Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	100	—	—	V	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{I}_D = 1.0\text{mA}$
$\Delta \text{BV}_{\text{DSS}}/\Delta T_j$	Temperature Coefficient of Breakdown Voltage	—	0.10	—	V°C	Reference to 25°C , $\text{I}_D = 1.0\text{mA}$
$\text{R}_{\text{DS(on)}}$	Static Drain-to-Source On-State Resistance	—	—	0.30	Ω	$\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_D = 2.8\text{A}$ ④
		—	—	0.35		$\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_D = 4.5\text{A}$ ④
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	2.0	—	4.0	V	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}$, $\text{I}_D = 250\mu\text{A}$
g_{fs}	Forward Transconductance	1.5	—	—	S	$\text{V}_{\text{DS}} > 15\text{V}$, $\text{I}_{\text{DS}} = 2.8\text{A}$ ④
I_{DSS}	Zero Gate Voltage Drain Current	—	—	25	μA	$\text{V}_{\text{DS}} = 80\text{V}$, $\text{V}_{\text{GS}} = 0\text{V}$
		—	—	250		$\text{V}_{\text{DS}} = 80\text{V}$ $\text{V}_{\text{GS}} = 0\text{V}$, $T_j = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Leakage Forward	—	—	100	nA	$\text{V}_{\text{GS}} = 20\text{V}$
I_{GSS}	Gate-to-Source Leakage Reverse	—	—	-100		$\text{V}_{\text{GS}} = -20\text{V}$
Q_g	Total Gate Charge	—	—	18	nC	$\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_D = 4.5\text{A}$
Q_{gs}	Gate-to-Source Charge	—	—	4.0		$\text{V}_{\text{DS}} = 50\text{V}$
Q_{gd}	Gate-to-Drain ('Miller') Charge	—	—	9.0		
$t_{\text{d(on)}}$	Turn-On Delay Time	—	—	40	ns	$\text{V}_{\text{DD}} = 35\text{V}$, $\text{I}_D = 4.5\text{A}$
t_r	Rise Time	—	—	70		$\text{V}_{\text{GS}} = 10\text{V}$, $\text{R}_G = 7.5\Omega$
$t_{\text{d(off)}}$	Turn-Off Delay Time	—	—	40		
t_f	Fall Time	—	—	70		
$\text{L}_{\text{S}} + \text{L}_{\text{D}}$	Total Inductance	—	6.1	—	nH	Measured from the center of drain pad to center of source pad
C_{iss}	Input Capacitance	—	350	—	pF	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{V}_{\text{DS}} = 25\text{V}$ $f = 1.0\text{MHz}$
C_{oss}	Output Capacitance	—	150	—		
C_{rss}	Reverse Transfer Capacitance	—	24	—		

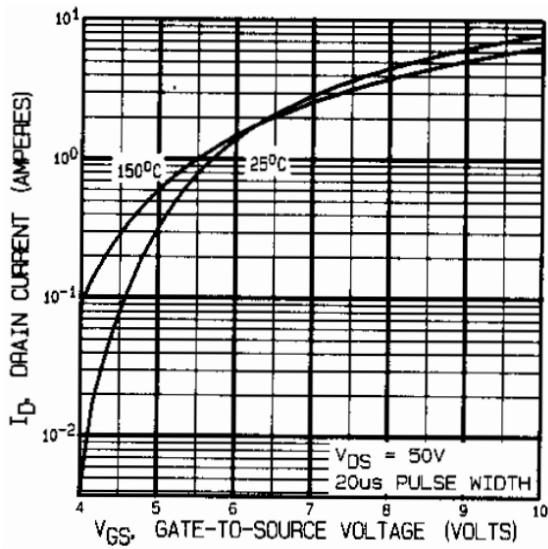
Source-Drain Diode Ratings and Characteristics


	Parameter	Min	Typ	Max	Units	Test Conditions
I_{S}	Continuous Source Current (Body Diode)	—	—	4.5	A	
I_{SM}	Pulse Source Current (Body Diode) ④	—	—	18		
V_{SD}	Diode Forward Voltage	—	—	1.8	V	$T_j = 25^\circ\text{C}$, $\text{I}_{\text{S}} = 4.5\text{A}$, $\text{V}_{\text{GS}} = 0\text{V}$ ④
t_{rr}	Reverse Recovery Time	—	—	240	ns	$T_j = 25^\circ\text{C}$, $\text{I}_{\text{F}} = 4.5\text{A}$, $\text{dI}/\text{dt} \leq 100\text{A}/\mu\text{s}$ $\text{V}_{\text{DD}} \leq 50\text{V}$ ④
Q_{RR}	Reverse Recovery Charge	—	—	2.0	μC	
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $\text{L}_{\text{S}} + \text{L}_{\text{D}}$.				

Thermal Resistance


	Parameter	Min	Typ	Max	Units	Test Conditions
R_{thJC}	Junction to Case	—	—	8.93	$^\circ\text{C}/\text{W}$	
$\text{R}_{\text{thJ-PCB}}$	Junction to PC Board	—	—	26		Soldered to a copper clad PC board

Note: Corresponding Spice and Saber models are available on International Rectifier Website.


For footnotes refer to the last page

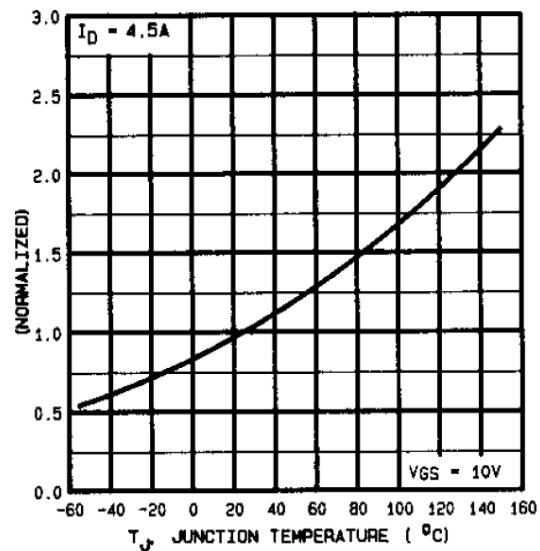

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance
 Vs. Temperature

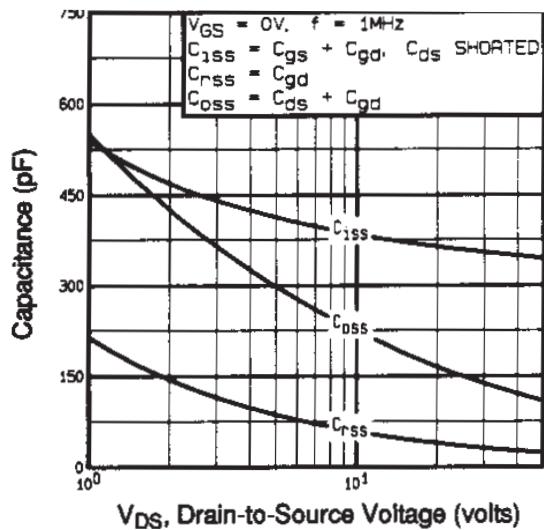


Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage

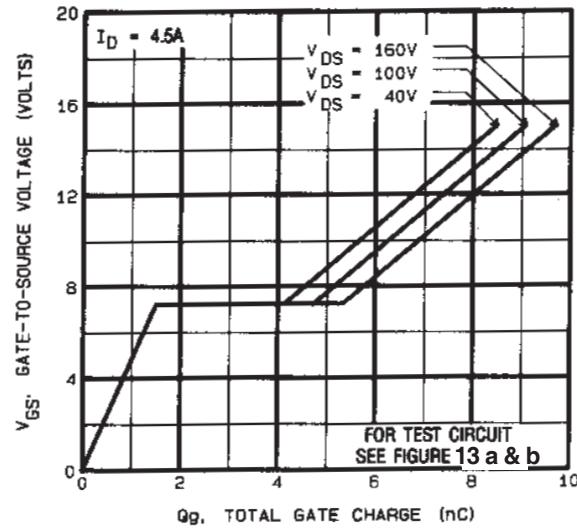


Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage

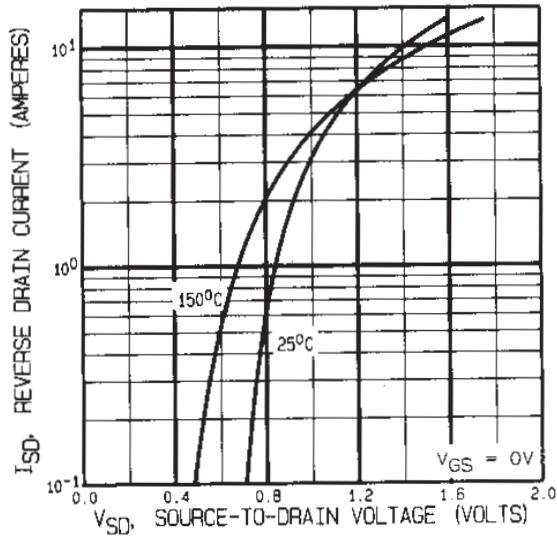
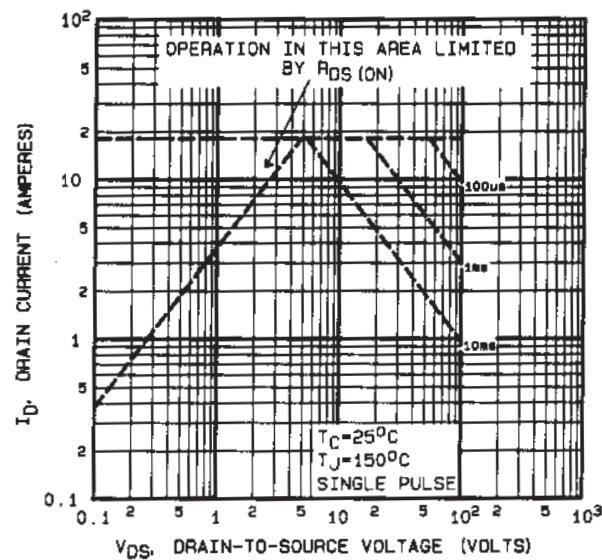
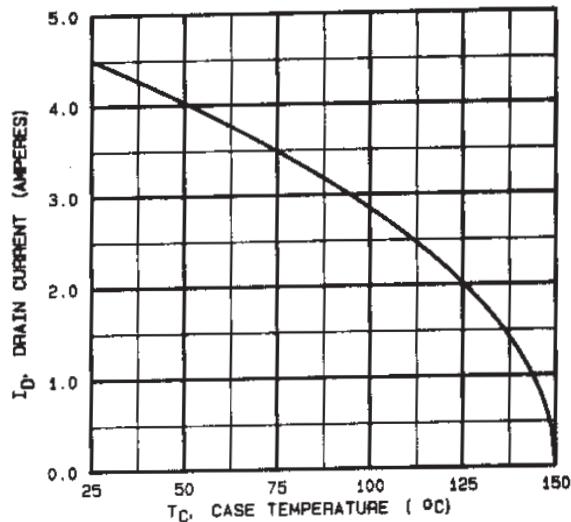
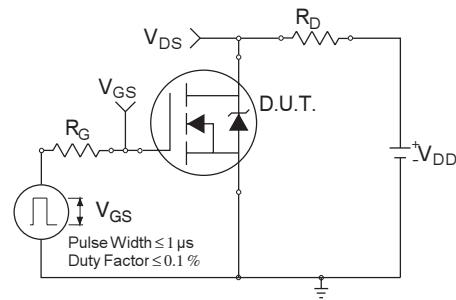
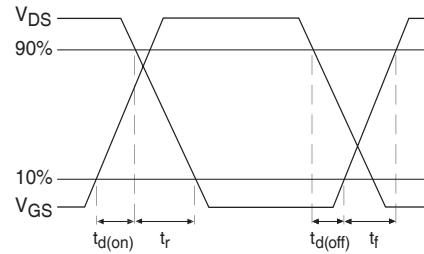


Fig 7. Typical Source-Drain Diode
Forward Voltage


Fig 8. Maximum Safe Operating Area

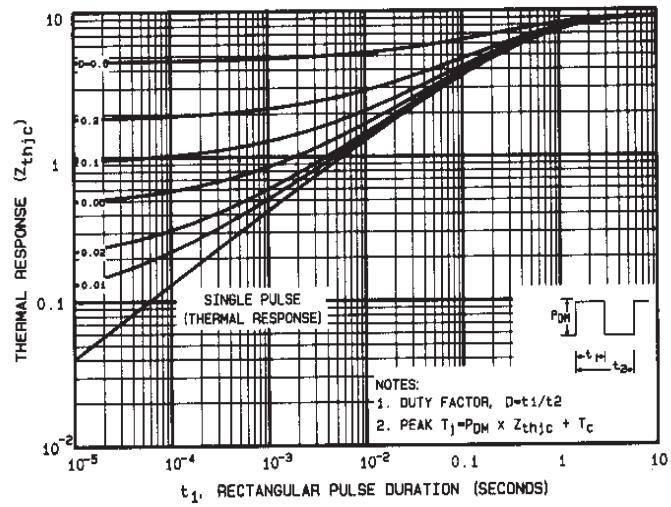

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

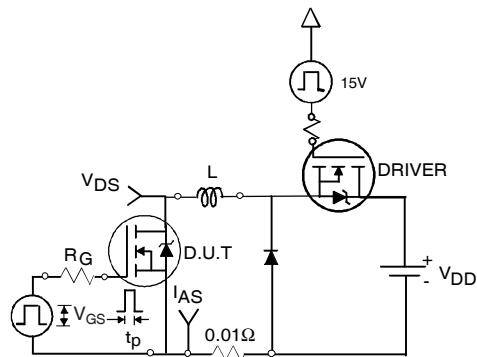


Fig 12a. Unclamped Inductive Test Circuit

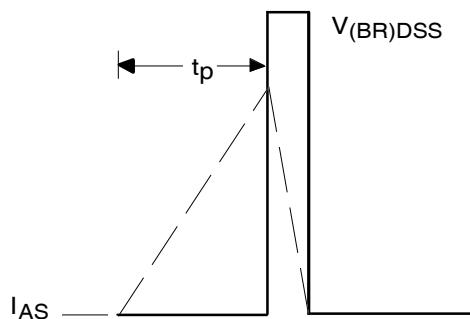


Fig 12b. Unclamped Inductive Waveforms

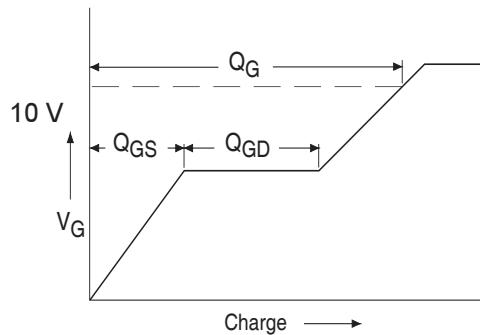


Fig 13a. Basic Gate Charge Waveform

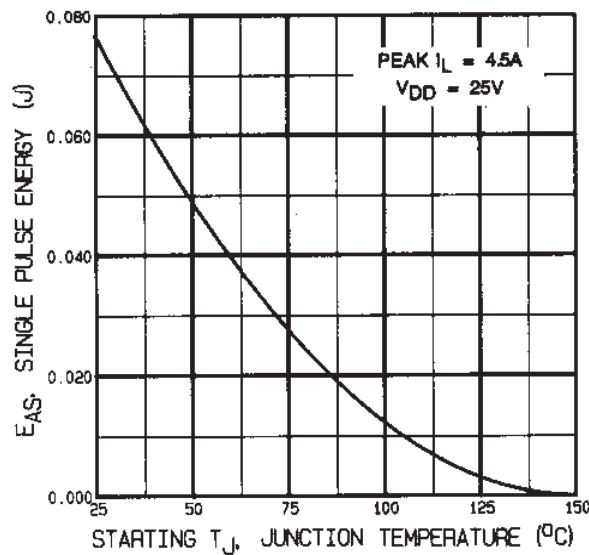


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

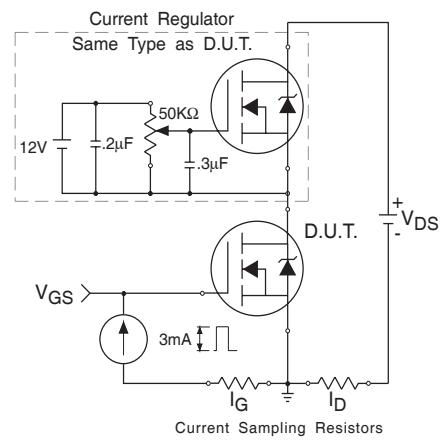
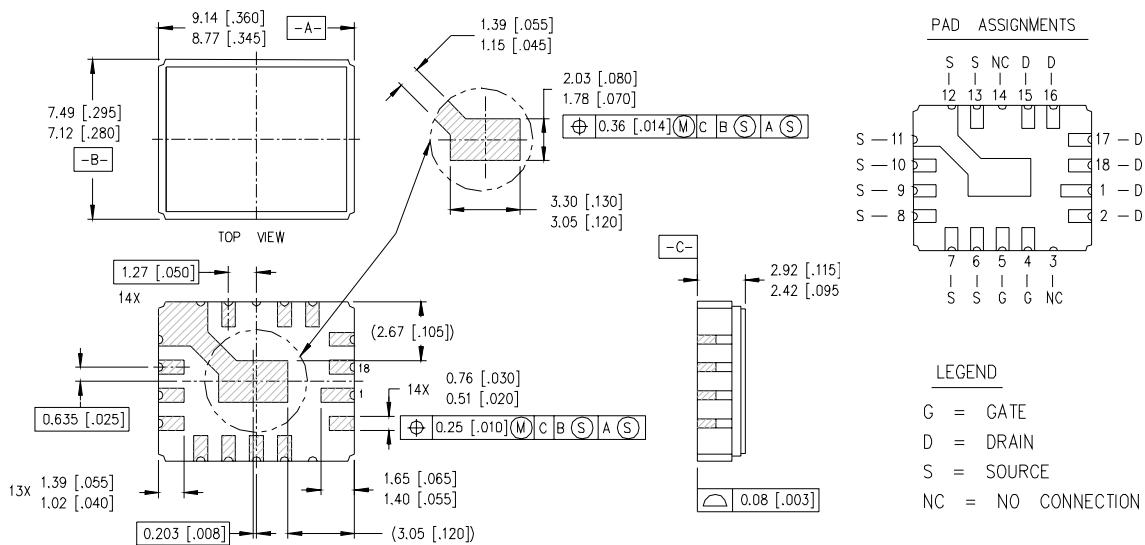


Fig 13b. Gate Charge Test Circuit

Foot Notes:


① Repetitive Rating; Pulse width limited by maximum junction temperature.

② $V_{DD} = 25V$, starting $T_J = 25^{\circ}C$,
Peak $I_L = 2.2A$, $L = 100\mu H$

③ $I_{SD} \leq 4.5A$, $di/dt \leq 110A/\mu s$, $V_{DD} \leq 100V$, $T_J \leq 150^{\circ}C$
Suggested $RG = 7.5 \Omega$

④ Pulse width $\leq 300 \mu s$; Duty Cycle $\leq 2\%$

Case Outline and Dimensions — LCC-18

NOTES:

1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 08/2007