

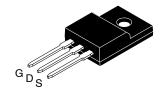
MOSFET - N-Channel, POWERTRENCH®

150 V, 15 A, 40 m Ω

FDPF390N15A

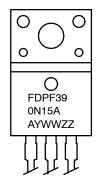
Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.


Features

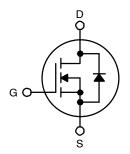
- $R_{DS(on)} = 31 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$
- Fast Switching Speed
- Low Gate Charge, $Q_G = 14.3 \text{ nC (Typ.)}$
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications


- Consumer Appliances
- LED TV
- Synchronous Rectification
- Uninterruptible Power Supply
- Motor Solar Inverter

V _{DSS}	R _{DS(on)} MAX	I _D MAX	
150 V	40 mΩ @ 10 V	15 A	

TO-220 Fullpack, 3-Lead / TO-220F-3SG CASE 221AT


MARKING DIAGRAM

FDPF390N15A = Specific Device Code
A = Assembly Location
YWW = Date Code (Year & Week)

ZZ = Assembly Lot

N-CHANNEL MOSFET

ORDERING INFORMATION

Part Number	Package	Shipping
FDPF390N15A	TO-220F	1000 Units / Tube

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$, unless otherwise noted)

Symbol	Para	FDPF390N15A	Unit	
V_{DSS}	Drain to Source Voltage		150	V
V_{GSS}	Gate to Source Voltage		±20	V
I _D	Drain Current	– Continuous (T _C = 25°C, Silicon Limited)	15	Α
		- Continuous (T _C = 100°C, Silicon Limited)	10	
I _{DM}	Drain Current	- Pulsed (Note 1)	60	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		78	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
P _D	Power Dissipation	(T _C = 25°C)	22	W
		– Derate Above 25°C	0.18	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. Starting $T_J = 25^{\circ}C$, L = 3 mH, $I_{SD} = 7.2$ A
3. $I_{SD} \le 15$ A, $di/dt \le 200$ A/µs, $V_{DD} \le BV_{DSS}$, starting $T_J = 25^{\circ}C$.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDPF390N15A	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS		•			
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150	_	-	V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.1	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V	-	-	1	μΑ
		V _{DS} = 120 V, T _C = 125°C	-	-	500	
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	_	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 15 A	-	31	40	mΩ
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 15 A	-	32	-	S
DYNAMIC (CHARACTERISTICS		•			
C _{iss}	Input Capacitance	V _{DS} = 75 V, V _{GS} = 0 V, f = 1 MHz	_	965	1285	pF
C _{oss}	Output Capacitance	1	_	96	130	pF
C _{rss}	Reverse Transfer Capacitance	1	_	5.8	-	pF
C _{oss(er)}	Energy Related Output Capacitance	V _{DS} = 75 V, V _{GS} = 0 V	-	169	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 75 V, I _D = 27 A, V _{GS} = 10 V (Note 4)	-	14.3	18.6	nC
Q _{gs}	Gate to Source Gate Charge		_	5.0	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	1		2.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	_	3.5	-	nC
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	-	1.4	-	Ω
SWITCHING	CHARACTERISTICS	•				
t _{d(on)}	Turn-On Delay Time	V _{DD} = 75 V, I _D = 27 A,	_	14	38	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_G = 4.7 \Omega \text{ (Note 4)}$	_	10	30	ns
t _{d(off)}	Turn-Off Delay Time	1	-	20	50	ns
t _f	Turn-Off Fall Time	1	-	5	20	ns
DRAIN-SO	JRCE DIODE CHARACTERISTICS	•		•		
I _S	Maximum Continuous Drain to Source Diode Forward Current		_	_	15	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	64	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 15 A	_	-	1.25	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 27 A,	_	63	_	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	131	1	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

ID, Drain Current (A)

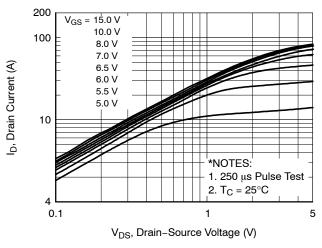


Figure 1. On-Region Characteristics

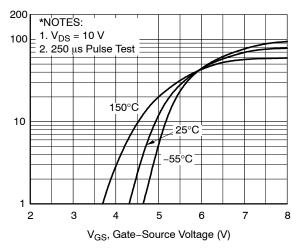


Figure 2. Transfer Characteristics

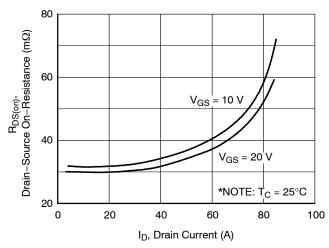


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

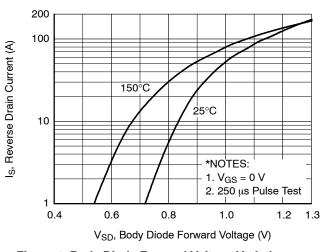


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

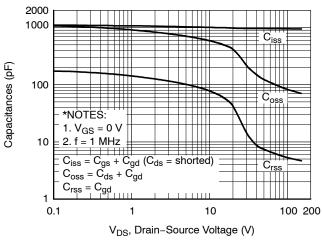


Figure 5. Capacitance Characteristics

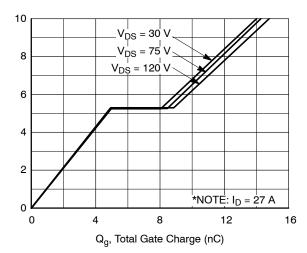


Figure 6. Gate Charge Characteristics

V_{GS}, Gate-Source Voltage (V)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

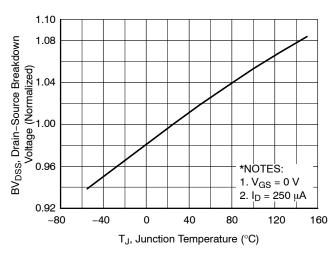


Figure 7. Breakdown Voltage Variation vs. Temperature

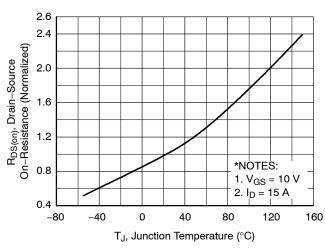


Figure 8. On-Resistance Variation vs. Temperature

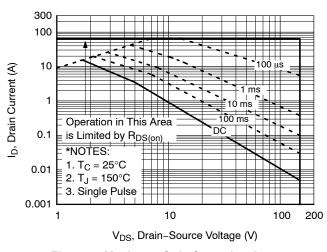


Figure 9. Maximum Safe Operating Area

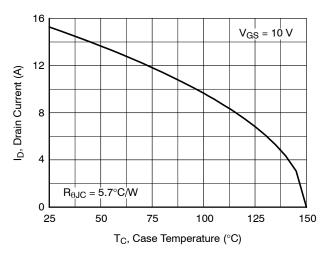


Figure 10. Maximum Drain Current vs. Case Temperature

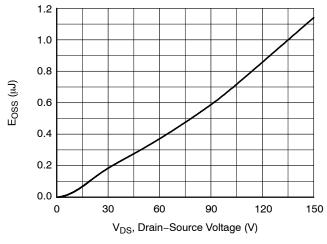


Figure 11. E_{OSS} vs. Drain to Source Voltage

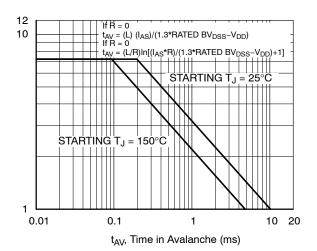


Figure 12. Unclamped Inductive Switching Capability

I_{AS}, Avalanche Current (A)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

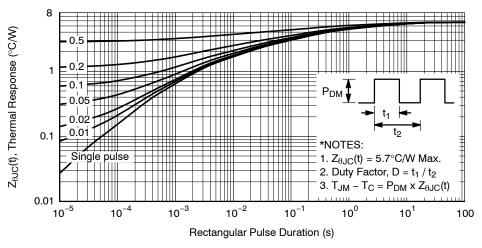


Figure 13. Transient Thermal Response Curve

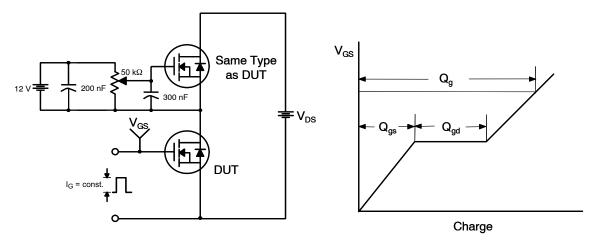


Figure 14. Gate Charge Test Circuit & Waveform

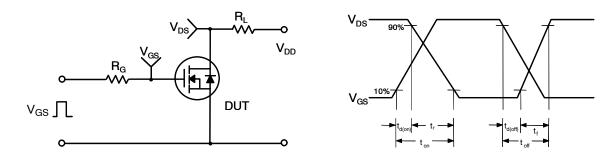


Figure 15. Resistive Switching Test Circuit & Waveforms

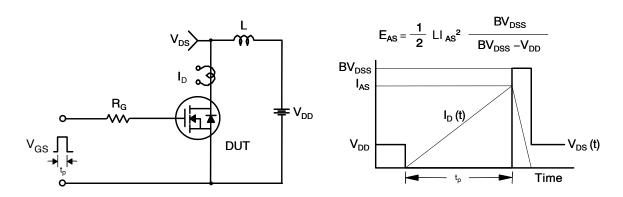
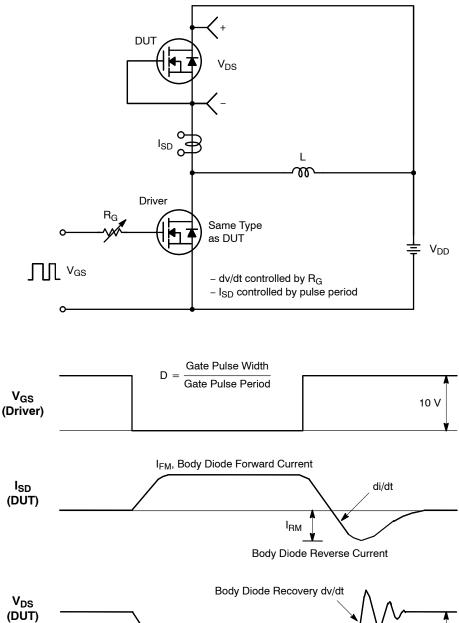
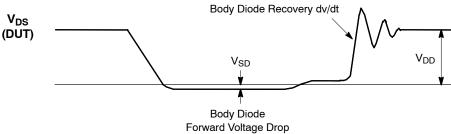
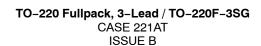
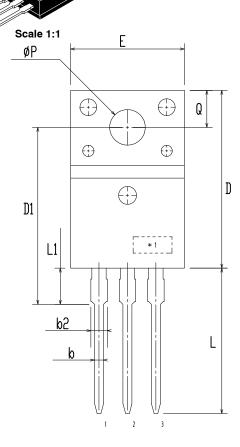
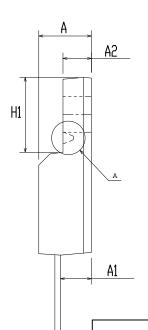
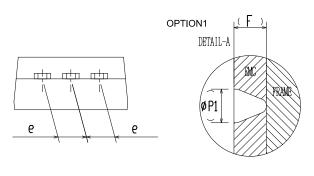



Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms


Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



DATE 19 JAN 2021

DIM	MILLIMITERS		
ויונע	MIN	NDM	MAX
Α	4.50	4.70	4.90
A1	2.56	2.76	2.96
A2	2.34	2.54	2.74
b	0.70	0.80	0.90
b2	*	2	1.47
С	0.45	0.50	0.60
D	15.67	15.87	16.07
D1	15.60	15.80	16.00
E	9.96	10.16	10.36
е	2.34	2.54	2.74
F	2	0.84	2
H1	6.48	6.68	6.88
L	12.78	12.98	13.18
L1	3.03	3.23	3.43
ØΡ	2.98	3.18	3.38
ø P1	~	1.00	~
Q	3,20	3.30	3.40

NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C

C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER:		Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ON: TO-220 FULLPACK, 3-LEAD / TO-220F-3SG		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

