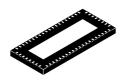
# 6-Channel Differential 1:2 Switch for PCle 2.0 and Display Port 1.1

The NCN2612B is a 6–Channel differential SPDT switch designed to route PCI Express Gen2 and/or DisplayPort 1.1a signals. Due to the ultra–low ON–state capacitance (2.1 pF typ) and resistance (8  $\Omega$  typ), this switch is ideal for switching high frequency signals up to a signal bit rate (BR) of 5 Gbps. This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space–saving  $5\mathrm{x}11\mathrm{x}0.75$  mm WQFN56 package. The NCN2612B uses 80% less quiescent power than other comparable PCIe switches.

#### **Features**

- BTX Pinout
- V<sub>DD</sub> Power Supply from 3 V to 3.6 V
- Low Supply Current: 250 μA typ
- 6 Differential Channels, 2:1 MUX/DEMUX
- Compatible with Display Port 1.1a & PCIe 2.0
- Data Rate: Supports 5 Gbps
- Low R<sub>ON</sub> Resistance: 8 Ω typ
- Low Con Capacitance: 2.1 pF
- Space Saving, Small WQFN-56 Package
- This is a Pb-Free Device


### **Typical Applications**

- Notebook Computers
- Desktop Computers
- Server/Storage Networks



### ON Semiconductor®

http://onsemi.com



#### MARKING DIAGRAM

NCN2612B AWLYYWWG

#### WQFN56 CASE 510AK

1

A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

#### ORDERING INFORMATION

| Device        | Package             | Shipping <sup>†</sup> |
|---------------|---------------------|-----------------------|
| NCN2612BMTTWG | WQFN56<br>(Pb-Free) | 2000 /<br>Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

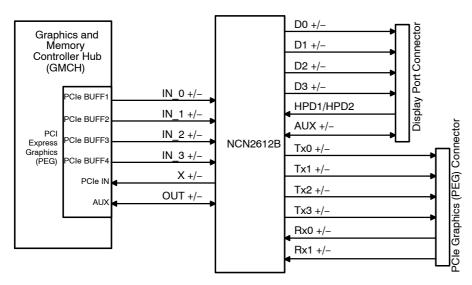



Figure 1. Application Schematic

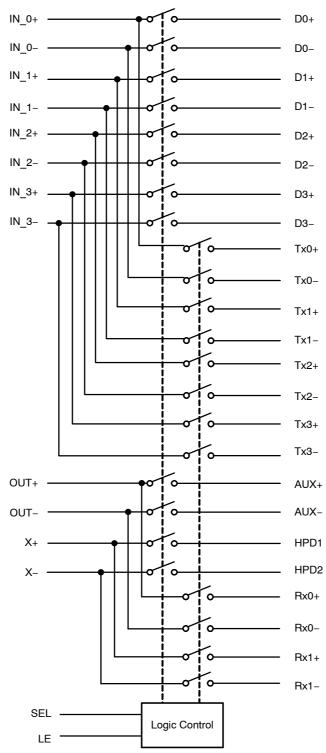



Figure 2. NCN2612B Block Diagram

### **TRUTH TABLE (SEL Control)**

| Function                                   | SEL |
|--------------------------------------------|-----|
| PCI Express Gen2 Path is Active (Tx, Rx)   | L   |
| Digital Video Port is Active (D, HPD, AUX) | Н   |

### **TRUTH TABLE (Latch Control)**

| LE | Internal Mux Select       |  |
|----|---------------------------|--|
| L  | Respond to Changes on SEL |  |
| Н  | Latched                   |  |

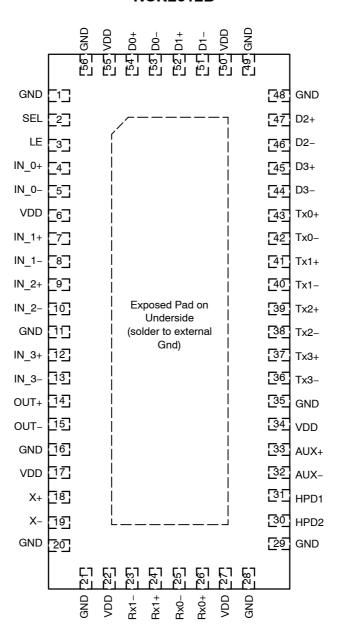



Figure 3. Pinout (Top View)

### PIN FUNCTION AND DESCRIPTION

| Pin                                             | Name       | Description                                                                                                                                                                                                                 |
|-------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6, 17, 22, 27,<br>34,50, 55                     | VDD        | DC Supply, 3.3 V ±10%                                                                                                                                                                                                       |
| 1, 11, 16, 20, 21,<br>28, 29, 35, 48,<br>49, 56 | GND        | Power Ground.                                                                                                                                                                                                               |
| Exposed Pad                                     | -          | The exposed pad on the backside of package is internally connected to Gnd. Externally the exposed pad should also be user-connected to GND.                                                                                 |
| 2                                               | SEL        | SEL controls the mux through a flow-through latch. Do not float this pin. SEL = 0 for PCIE Mode; SEL = 1 for DP Mode                                                                                                        |
| 3                                               | LE         | LE controls the latch gate. Do not float this pin.                                                                                                                                                                          |
| 4                                               | IN_0+      | Differential input from GMCH PCIE outputs. IN_0+ makes a differential pair with IN_0                                                                                                                                        |
| 5                                               | IN_0-      | Differential input from GMCH PCIE outputs. IN_0- makes a differential pair with IN_0+.                                                                                                                                      |
| 7                                               | IN_1+      | Differential input from GMCH PCIE outputs. IN_1+ makes a differential pair with IN_1                                                                                                                                        |
| 8                                               | IN_1-      | Differential input from GMCH PCIE outputs. IN_1- makes a differential pair with IN_1+.                                                                                                                                      |
| 9                                               | IN_2+      | Differential input from GMCH PCIE outputs. IN_2+ makes a differential pair with IN_2                                                                                                                                        |
| 10                                              | IN_2-      | Differential input from GMCH PCIE outputs. IN_2- makes a differential pair with IN_2+.                                                                                                                                      |
| 12                                              | IN_3+      | Differential input from GMCH PCIE outputs. IN_3+ makes a differential pair with IN_3                                                                                                                                        |
| 13                                              | IN_3-      | Differential input from GMCH PCIE outputs. IN_3- makes a differential pair with IN_3+.                                                                                                                                      |
| 14                                              | OUT+       | Pass-through output from AUX+ input when SEL = 1. Pass-through output from Rx0+ input when SEL = 0.                                                                                                                         |
| 15                                              | OUT-       | Pass–through output from AUX– input when SEL = 1. Pass–through output from Rx0– input when SEL = 0.                                                                                                                         |
| 18                                              | X+         | X+ is an analog pass-through output corresponding to Rx1+.                                                                                                                                                                  |
| 19                                              | X-         | X- is an analog pass-through output corresponding to the Rx1- input. The path from Rx1- to X- must be matched with the path from Rx1+ to X+. X+ and X- form a differential pair when the pass-through mux mode is selected. |
| 23                                              | Rx1-       | Differential input from PCIE connector or device. Rx1- makes a differential pair with Rx1+. Rx1- is passed through to the X- pin on the path that matches the Rx1+ to X+ pin.                                               |
| 24                                              | Rx1+       | Differential input from PCIE connector or device. Rx1+ makes a differential pair with Rx1 Rx1+ is passed through to the X+ pin when SEL = 0.                                                                                |
| 25                                              | Rx0-       | Differential input from PCIE connector or device. Rx0- makes a differential pair with Rx0+. Rx0- is passed through to the OUT- pin when SEL = 0.                                                                            |
| 26                                              | Rx0+       | Differential input from PCIE connector or device. Rx0+ makes a differential pair with Rx0 Rx0+ is passed through to the OUT+ pin when SEL = 0.                                                                              |
| 30                                              | HPD2       | Negative low frequency HPD input handshake protocol signal (normally not connected).                                                                                                                                        |
| 31                                              | HPD1       | Positive low frequency HPD input handshake protocol signal.                                                                                                                                                                 |
| 32                                              | AUX-       | Differential input from HDMI/DP connector. AUX- makes a differential pair with AUX+. AUX- is passed through to the OUT- pin when SEL = 1.                                                                                   |
| 33                                              | AUX+       | Differential input from HDMI/DP connector. AUX+ makes a differential pair with AUX AUX+ is passed through to the OUT+ pin when SEL = 1.                                                                                     |
| 37, 36                                          | Tx3+, Tx3- | Analog pass-through output#2 corresponding to IN_3+ and IN_3- when SEL = 0.                                                                                                                                                 |
| 39, 38                                          | Tx2+, Tx2- | Analog pass-through output#2 corresponding to IN_2+ and IN_2- when SEL = 0.                                                                                                                                                 |
| 41, 40                                          | Tx1+, Tx1- | Analog pass-through output#2 corresponding to IN_1+ and IN_1- when SEL = 0.                                                                                                                                                 |
| 43, 42                                          | Tx0+, Tx0- | Analog pass-through output#2 corresponding to IN_0+ and IN_0- when SEL = 0.                                                                                                                                                 |
| 45, 44                                          | D3+, D3-   | Analog pass-through output#1 corresponding to IN_3+ and IN_3-, when SEL = 1.                                                                                                                                                |
| 47, 46                                          | D2+, D2-   | Analog pass-through output#1 corresponding to IN_2+ and IN_2-, when SEL = 1.                                                                                                                                                |
| 52, 51                                          | D1+, D1-   | Analog pass-through output#1 corresponding to IN_1+ and IN_1-, when SEL = 1.                                                                                                                                                |
| 54, 53                                          | D0+, D0-   | Analog pass-through output#1 corresponding to IN_0+ and IN_0-, when SEL = 1.                                                                                                                                                |

#### **MAXIMUM RATINGS**

| Parameter                                                                   | Symbol           | Rating                        | Unit            |
|-----------------------------------------------------------------------------|------------------|-------------------------------|-----------------|
| Power Supply Voltage                                                        | $V_{DD}$         | -0.5 to 5.3                   | $V_{DC}$        |
| Input/Output Voltage Range of the Switch (Tx, Rx, D, HPD, AUX, IN_, OUT, X) | V <sub>IS</sub>  | -0.5 to V <sub>DD</sub> + 0.3 | V <sub>DC</sub> |
| Selection Pin Voltages (SEL and LE)                                         | V <sub>IN</sub>  | -0.5 to V <sub>DD</sub> + 0.3 | $V_{DC}$        |
| Continuous Current Through One Switch Channel                               | I <sub>IS</sub>  | ±120                          | mA              |
| Maximum Junction Temperature (Note 1)                                       | T <sub>J</sub>   | 150                           | °C              |
| Operating Ambient Temperature                                               | T <sub>A</sub>   | -40 to +85                    | °C              |
| Storage Temperature Range                                                   | T <sub>stg</sub> | -65 to +150                   | °C              |
| Thermal Resistance, Junction-to-Air (Note 2)                                | $R_{	hetaJA}$    | 37                            | °C/W            |
| Latch-up Current (Note 3)                                                   | I <sub>LU</sub>  | ±100                          | mA              |
| Human Body Model (HBM) ESD Rating (Note 4)                                  | ESD HBM          | 7000                          | V               |
| Machine Model (MM) ESD Rating (Note 4)                                      | ESD MM           | 400                           | V               |
| Moisture Sensitivity (Note 5)                                               | MSL              | Level 1                       | -               |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Power dissipation must be considered to ensure maximum junction temperature (T<sub>J</sub>) is not exceeded.
   This parameter is based on EIA/JEDEC 51-7 with a 4-layer PCB, 80 mm x 80 mm, two 1oz Cu material internal planes and top planes of
- Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78.
   This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22–A114 for all pins.

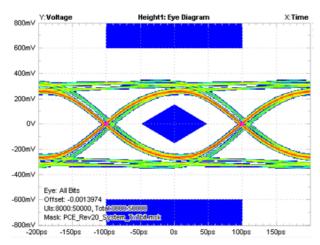
  Machine Model (MM) ±400 V per JEDEC standard: JESD22–A115 for all pins.

  5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J–STD–020A.

**ELECTRICAL CHARACTERISTICS** ( $V_{DD}$  = +3.3V ±10%,  $T_A$  = -40°C to +85°C, unless otherwise noted. All Typical values are at  $V_{DD}$  = +3.3 V,  $T_A$  = +25°C, unless otherwise noted.)

| Symbol                                                                       | Characteristics                                                                                                                                       | Conditions                                                                                                                                                                                                                                                                         | Min     | Тур                                                                                                            | Max                   | Unit                         |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|
| POWER S                                                                      | UPPLY                                                                                                                                                 |                                                                                                                                                                                                                                                                                    | •       |                                                                                                                | •                     |                              |
| $V_{DD}$                                                                     | Supply Voltage Range                                                                                                                                  |                                                                                                                                                                                                                                                                                    | 3.0     | 3.3                                                                                                            | 3.6                   | V                            |
| $I_{DD}$                                                                     | Power Supply Current                                                                                                                                  | $V_{DD}$ = 3.6 V, $V_{IN}$ = GND or $V_{DD}$                                                                                                                                                                                                                                       |         | 250                                                                                                            | 350                   | μΑ                           |
| DATA SWI                                                                     | TCH PERFORMANCE (for both PC                                                                                                                          | Cle and Display Port applications, unless otherwise                                                                                                                                                                                                                                | noted)  |                                                                                                                |                       |                              |
| V <sub>IS</sub>                                                              | Data Input/Output Voltage<br>Range                                                                                                                    |                                                                                                                                                                                                                                                                                    | 0       |                                                                                                                | 1.2                   | V                            |
| R <sub>ON</sub>                                                              | On Resistance (Tx, Rx)                                                                                                                                | $V_{DD} = 3 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V}, I_{IS} = 15 \text{ mA}$                                                                                                                                                                                             |         | 8.0                                                                                                            | 13                    | Ω                            |
| R <sub>ON</sub>                                                              | On Resistance (D, HPD, AUX)                                                                                                                           | $V_{DD} = 3 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V}, I_{IS} = 15 \text{ mA}$                                                                                                                                                                                             |         | 9.0                                                                                                            | 13                    | Ω                            |
| R <sub>ON(flat)</sub>                                                        | On Resistance Flatness                                                                                                                                | $V_{DD} = 3 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V}, I_{IS} = 15 \text{ mA}$ (Note 6)                                                                                                                                                                                    |         | 0.1                                                                                                            | 1.24                  | Ω                            |
| $\Delta R_{ON}$                                                              | On Resistance Matching (Tx, Rx)                                                                                                                       | $V_{DD} = 3 \text{ V}, V_{IS} = 0 \text{ V}, I_{IS} = 15 \text{ mA}$                                                                                                                                                                                                               |         | 0.35                                                                                                           |                       | Ω                            |
| $\Delta R_{ON}$                                                              | On Resistance Matching (D, HPD, AUX)                                                                                                                  | V <sub>DD</sub> = 3 V, V <sub>IS</sub> = 0 V, I <sub>IS</sub> = 15 mA                                                                                                                                                                                                              |         | 0.35                                                                                                           |                       | Ω                            |
| C <sub>ON</sub>                                                              | On Capacitance                                                                                                                                        | f = 1 MHz, Switch On, Open Output                                                                                                                                                                                                                                                  |         | 2.1                                                                                                            |                       | pF                           |
| C <sub>OFF</sub>                                                             | Off Capacitance                                                                                                                                       | f = 1 MHz, Switch Off                                                                                                                                                                                                                                                              |         | 1.6                                                                                                            |                       | pF                           |
| I <sub>ON</sub>                                                              | On Leakage Current<br>(IN_/ X/OUT)                                                                                                                    | $V_{DD}$ = 3.6 V, $V_{IN}$ = Vx = $V_{OUT}$ = 0 V, 1.2 V;<br>Switch On to D/HPD/AUX or Tx/Rx; outputs<br>unconnected                                                                                                                                                               | -1      |                                                                                                                | +1                    | μΑ                           |
| I <sub>OFF</sub>                                                             | Off Leakage Current<br>(D/Tx/HPD/Rx/AUX)                                                                                                              | $V_{DD} = 3.6 \text{ V}, V_{IN} = V_X = V_{OUT} = 0 \text{ V}, 1.2 \text{ V};$<br>Switch Off; $V_D = V_{HPD} = V_{AUX} \text{ or } V_D = V_{HPD} = V_{AUX} \text{ set to } 1.2 \text{ V}, 0 \text{ V}$                                                                             | -1      |                                                                                                                | +1                    | μΑ                           |
| CONTROL                                                                      | LOGIC CHARACTERISTICS (SE                                                                                                                             | L and LE pins)                                                                                                                                                                                                                                                                     | •       | •                                                                                                              | •                     |                              |
| V <sub>IL</sub>                                                              | Off voltage input                                                                                                                                     |                                                                                                                                                                                                                                                                                    | 0       |                                                                                                                | 0.8                   | V                            |
| V <sub>IH</sub>                                                              | Lligh voltage input                                                                                                                                   |                                                                                                                                                                                                                                                                                    |         |                                                                                                                |                       |                              |
| VIΗ                                                                          | High voltage input                                                                                                                                    |                                                                                                                                                                                                                                                                                    | 2       |                                                                                                                | $V_{DD}$              | V                            |
| I <sub>IN</sub>                                                              | Off voltage input                                                                                                                                     | V <sub>IN</sub> = 0 V or V <sub>DD</sub>                                                                                                                                                                                                                                           | 2<br>-1 |                                                                                                                | V <sub>DD</sub><br>+1 | V<br>μA                      |
|                                                                              |                                                                                                                                                       | $V_{IN} = 0 \text{ V or } V_{DD}$ $f = 1 \text{ MHz}$                                                                                                                                                                                                                              |         | 1                                                                                                              |                       |                              |
| I <sub>IN</sub><br>C <sub>IN</sub>                                           | Off voltage input                                                                                                                                     | *** ===                                                                                                                                                                                                                                                                            |         | 1                                                                                                              |                       | μΑ                           |
| I <sub>IN</sub><br>C <sub>IN</sub>                                           | Off voltage input High voltage input                                                                                                                  | *** ===                                                                                                                                                                                                                                                                            |         | 1 5                                                                                                            |                       | μA<br>pF                     |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC                                      | Off voltage input High voltage input CHARACTERISTICS                                                                                                  | *** ===                                                                                                                                                                                                                                                                            |         |                                                                                                                |                       | μA<br>pF                     |
| I <sub>IN</sub> C <sub>IN</sub> <b>DYNAMIC</b> BR                            | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate                                                                                 | f = 1 MHz                                                                                                                                                                                                                                                                          |         | 5                                                                                                              |                       | μA<br>pF<br>Gbps             |
| I <sub>IN</sub> C <sub>IN</sub> <b>DYNAMIC</b> BR                            | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate                                                                                 | f = 1 MHz                                                                                                                                                                                                                                                                          |         | 5<br>-0.7                                                                                                      |                       | μA<br>pF<br>Gbps             |
| I <sub>IN</sub> C <sub>IN</sub> <b>DYNAMIC</b> BR                            | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate                                                                                 | f = 1 MHz<br>f = 100 MHz<br>f = 1.35 GHz                                                                                                                                                                                                                                           |         | 5<br>-0.7<br>-1.3                                                                                              |                       | μA<br>pF<br>Gbps             |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate                                                                                 | f = 1 MHz<br>f = 100 MHz<br>f = 1.35 GHz<br>f = 2.5 GHz                                                                                                                                                                                                                            |         | 5<br>-0.7<br>-1.3<br>-1.9                                                                                      |                       | μA<br>pF<br>Gbps             |
| I <sub>IN</sub> C <sub>IN</sub> <b>DYNAMIC</b> BR                            | Off voltage input High voltage input  CHARACTERISTICS  Signal Data Rate  Differential Insertion Loss                                                  | f = 1 MHz<br>f = 100 MHz<br>f = 1.35 GHz<br>f = 2.5 GHz<br>f = 3.0 GHz                                                                                                                                                                                                             |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9                                                                              |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input  CHARACTERISTICS  Signal Data Rate  Differential Insertion Loss                                                  | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz                                                                                                                                                                                                        |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9                                                                              |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input  CHARACTERISTICS  Signal Data Rate  Differential Insertion Loss                                                  | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz                                                                                                                                                                                          |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30                                                                |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input  CHARACTERISTICS  Signal Data Rate  Differential Insertion Loss                                                  | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz                                                                                                                                                                             |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24                                                         |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input  CHARACTERISTICS  Signal Data Rate  Differential Insertion Loss                                                  | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz                                                                                                                                                                |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22                                                  |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation                         | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 3.0 GHz                                                                                                                         |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17                                           |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation                         | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 5.0 GHz  f = 100 MHz                                                                                                           |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50                                    |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation                         | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 1.35 GHz  f = 1.35 GHz  f = 3.0 GHz  f = 5.0 GHz  f = 100 MHz  f = 1.35 GHz                                                                                            |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50<br>-32                             |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation                         | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 1.35 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 5.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 1.35 GHz                                                     |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50<br>-32<br>-27                      |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub> D <sub>ISO</sub> | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation                         | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 1.35 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 5.0 GHz  f = 5.0 GHz  f = 1.35 GHz  f = 1.35 GHz  f = 1.35 GHz                                                    |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50<br>-32<br>-27<br>-25               |                       | μA<br>pF<br>Gbps<br>dB       |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub>                  | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation  Differential Crosstalk | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 5.0 GHz  f = 1.35 GHz  f = 1.35 GHz                                                                  |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50<br>-32<br>-27<br>-25<br>-25        |                       | μA pF Gbps dB dB             |
| I <sub>IN</sub> C <sub>IN</sub> DYNAMIC  BR D <sub>IL</sub> D <sub>ISO</sub> | Off voltage input High voltage input CHARACTERISTICS Signal Data Rate Differential Insertion Loss  Differential Off Isolation  Differential Crosstalk | f = 1 MHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 100 MHz  f = 1.35 GHz  f = 1.35 GHz  f = 1.35 GHz  f = 2.5 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 3.0 GHz  f = 5.0 GHz  f = 100 MHz |         | 5<br>-0.7<br>-1.3<br>-1.9<br>-1.9<br>-54<br>-30<br>-24<br>-22<br>-17<br>-50<br>-32<br>-27<br>-25<br>-25<br>-20 |                       | μA<br>pF<br>Gbps<br>dB<br>dB |

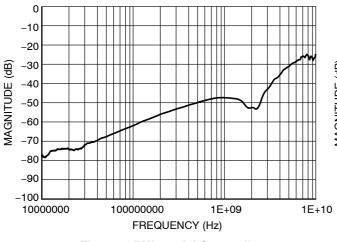
<sup>6.</sup> Guaranteed by characterization and/or design.


## **SWITCHING CHARACTERISTICS** ( $V_{DD}$ = +3.3 V, $T_A$ = 25°C, unless otherwise specified)

| Symbol             | Characteristics         | Conditions                        |  | Тур | Max | Unit |
|--------------------|-------------------------|-----------------------------------|--|-----|-----|------|
| t <sub>b-b</sub>   | Bit-to-bit skew         | Within the same differential pair |  | 7   |     | ps   |
| t <sub>ch-ch</sub> | Channel-to-channel skew | Maximum skew between all channels |  | 55  |     | ps   |

### **SELECTION PINS SWITCHING CHARACTERISTICS** ( $V_{DD}$ = +3.3 V, $T_A$ = 25°C, unless otherwise specified)

| Symbol              | Characteristics             | Conditions                                                                 | Min | Тур | Max | Unit |
|---------------------|-----------------------------|----------------------------------------------------------------------------|-----|-----|-----|------|
| T <sub>SELON</sub>  | SEL to Switch turn ON time  | $V_{IS}$ = 1 V, $R_L$ = 50 $\Omega$ , $V_{LE}$ = $V_{DD}$ , $C_L$ = 100 pF |     | 9.5 |     | ns   |
| T <sub>SELOFF</sub> | SEL to Switch turn OFF time | $V_{IS}$ = 1 V, $R_L$ = 50 $\Omega$ , $V_{LE}$ = $V_{DD}$ , $C_L$ = 100pF  |     | 5   |     | ns   |
| T <sub>SET</sub>    | LE setup time SEL to LE     | $V_{IS}$ = 1 V, $R_L$ = 50 $\Omega$ , $V_{LE}$ = $V_{DD}$ , $C_L$ = 100 pF |     | 1   |     | ns   |
| T <sub>HOLD</sub>   | LE hold time LE to SEL      | $V_{IS}$ = 1 V, $R_L$ = 50 $\Omega$ , $V_{LE}$ = $V_{DD}$ , $C_L$ = 100 pF |     | 1   |     | ns   |


#### TYPICAL OPERATING CHARACTERISTICS



Y:Voltage Height1: Eye Diagram X:Time
300mV
200mV
-100mV
-200mV
Eye: All Bits
Offset: -0.00055134
Us: 6998:26998, Total 6998-26998
Us: 6998:26998, Total 6998-26998
-300mV
Mask: HBR 0dB SRC\_400.msk
-300ps -200ps -100ps 0s 100ps 200ps 300ps

Figure 4. Eye Diagram for PCI Express at 5 Gbps, 800 mVpp Differential Swing (Minimum Case)

Figure 5. Eye Diagram for DisplayPort at 2.7 Gbps, 340 mVpp Differential Swing (Minimum Case)



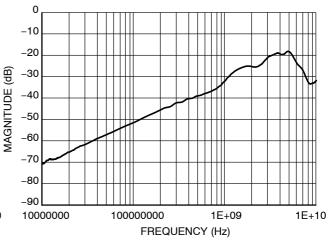
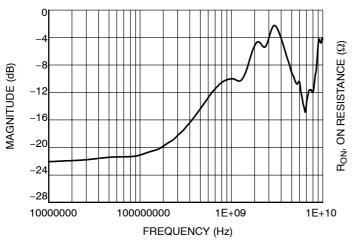




Figure 6. Differential Crosstalk

Figure 7. Differential Off Isolation



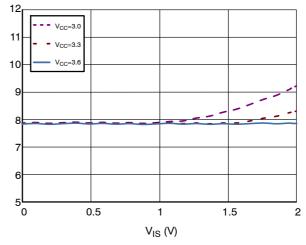



Figure 8. Differential Return Loss

Figure 9.  $R_{ON}$  vs.  $V_{IS}$ 

#### PARAMETER MEASUREMENT INFORMATION

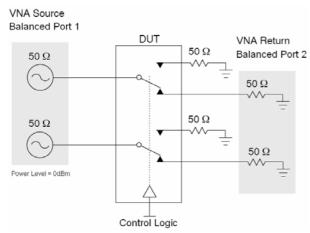
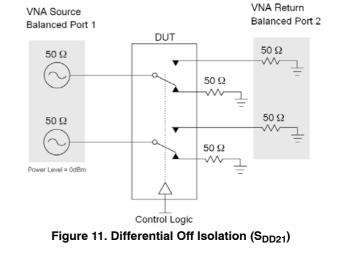




Figure 10. Differential Insertion Loss (S<sub>DD21</sub>) and Differential Return Loss (S<sub>DD11</sub>)



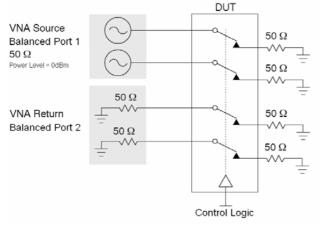



Figure 12. Differential Crosstalk (S<sub>DD21</sub>)

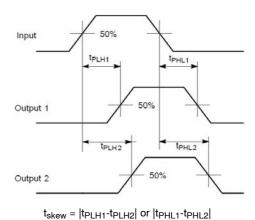
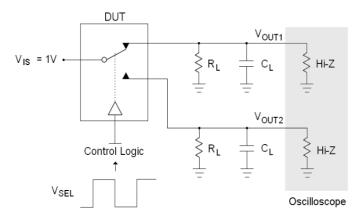




Figure 13. Bit-to-Bit and Channel-to-Channel Skew



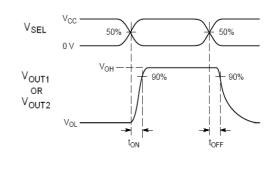



Figure 14. t<sub>ON</sub> and t<sub>OFF</sub>

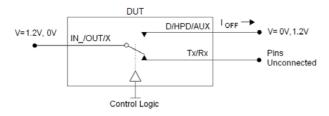



Figure 15. Off State Leakage

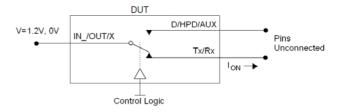
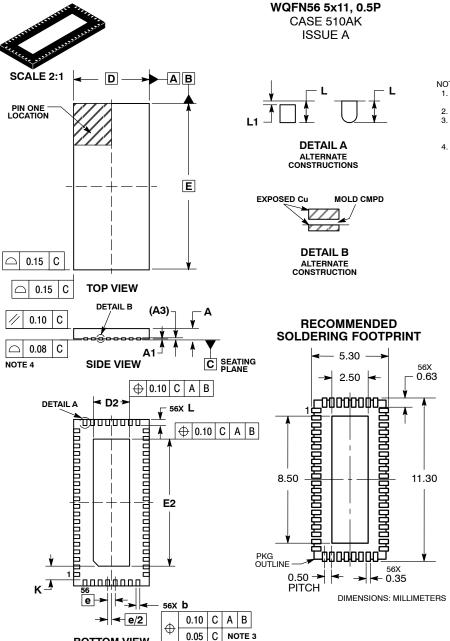




Figure 16. On State Leakage





0.05

**DATE 02 MAR 2010** 

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  CONTROLLING DIMENSIONS: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED
  TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

|     | MILLIMETERS |      |  |  |  |
|-----|-------------|------|--|--|--|
| DIM | MIN         | MAX  |  |  |  |
| Α   | 0.70        | 0.80 |  |  |  |
| A1  |             | 0.05 |  |  |  |
| А3  | 0.20        | REF  |  |  |  |
| b   | 0.20        | 0.30 |  |  |  |
| D   | 5.00 BSC    |      |  |  |  |
| D2  | 2.30        | 2.50 |  |  |  |
| Е   | 11.00       | BSC  |  |  |  |
| E2  | 8.30        | 8.50 |  |  |  |
| е   | 0.50 BSC    |      |  |  |  |
| K   | 0.20 MIN    |      |  |  |  |
| Г   | 0.30        | 0.50 |  |  |  |
| L1  | 0.15        |      |  |  |  |

#### **GENERIC** MARKING DIAGRAM\*

XXXXXXX XXXXXXX **AWLYYWWG** 

XXXXX = Specific Device Code

= Assembly Location

WL = Wafer Lot = Year

WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

| DOCUMENT NUMBER: | 98AON45390E       | N45390E Electronic versions are uncontrolled except when accessed directly from the Document Reposement Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | WQFN56 5x11, 0.5P |                                                                                                                                                                                         | PAGE 1 OF 1 |  |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

**BOTTOM VIEW** 

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.org/www.onsemi.or

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

