

CGHV31500F

500 W, 2700 - 3100 MHz, 50-Ohm Input/Output
Matched, GaN HEMT for S-Band Radar Systems

Description

Wolfspeed's CGHV31500F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV31500F ideal for 2.7 - 3.1 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange package, type 440226.

Package Types: 440226
PN's: CGHV31500F

Features

- 2.7 - 3.1 GHz operation
- 650 W typical output power
- 12 dB power gain
- 65% typical drain efficiency
- 50 Ohm internally matched
- <0.3 dB pulsed amplitude droop

Typical Performance Over 2.7-3.1 GHz ($T_c = 25^\circ\text{C}$) of Demonstration Amplifier

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	Units
Output Power	630	725	630	W
Gain	12.1	12.5	11.8	dB
Drain Efficiency	70	68	58	%

Note:

Measured in the CGHV31500F-AMP application circuit, under 100 μs pulse width, 10% duty cycle, $P_{\text{IN}} = 46 \text{ dBm}$.

Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	500	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V_{DSS}	150	Volts	25 °C
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	25 °C
Storage Temperature	T_{STG}	-65, +150	°C	
Operating Junction Temperature	T_J	225	°C	
Maximum Forward Gate Current	I_{GMAX}	80	mA	25 °C
Maximum Drain Current ¹	I_{DMAX}	24	A	25 °C
Soldering Temperature ²	T_S	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	$R_{θJC}$	0.22	°C/W	100 μsec, 10%, 85 °C, $P_{DISS} = 376$ W
Case Operating Temperature	T_c	-40, +125	°C	

Notes:

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering at www.wolfspeed.com/rf/document-library

Electrical Characteristics

Characteristics	Symbol	Min.	Typ.	Max.	Units	Conditions
DC Characteristics ¹ ($T_c = 25$ °C)						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V_{DC}	$V_{DS} = 10$ V, $I_D = 83.6$ mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V_{DC}	$V_{DS} = 50$ V, $I_D = 0.5$ A
Saturated Drain Current ²	I_{DS}	62.7	75.5	-	A	$V_{DS} = 6.0$ V, $V_{GS} = 2.0$ V
Drain-Source Breakdown Voltage	V_{BR}	125	-	-	V_{DC}	$V_{GS} = -8$ V, $I_D = 83.6$ mA
RF Characteristics ³ ($T_c = 25$ °C, $F_0 = 2.7$ - 3.1 GHz Unless Otherwise Noted)						
Output Power at 2.7 GHz	P_{OUT1}	473	630	-	W	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Output Power at 2.9 GHz	P_{OUT2}	555	725	-	W	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Output Power at 3.1 GHz	P_{OUT3}	473	630	-	W	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Gain at 2.7 GHz	G_{P1}	-	12.1	-	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Gain at 2.9 GHz	G_{P2}	-	12.5	-	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Gain at 3.1 GHz	G_{P3}	-	11.8	-	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Drain Efficiency at 2.7 GHz	D_{E1}	57	68	-	%	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Drain Efficiency at 2.9 GHz	D_{E2}	54	67	-	%	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Drain Efficiency at 3.1 GHz	D_{E3}	50	62	-	%	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Small Signal Gain	$S21$	11.25	14.5	-	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 10$ dBm
Input Return Loss	$S11$	-	-15	-5.25	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 10$ dBm
Output Return Loss	$S22$	-	-5	-3	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 10$ dBm
Amplitude Droop	D	-	-0.3	-	dB	$V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm
Output Stress Match	VSWR	-	5.1	-	Ψ	No Damage at All Phase Angles, $V_{DD} = 50$ V, $I_{DQ} = 500$ mA, $P_{IN} = 46$ dBm Pulsed

Notes:

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

³ Measured in CGHV31500F-AMP. Pulse width = 100 μs, duty cycle = 10%.

Typical Performance

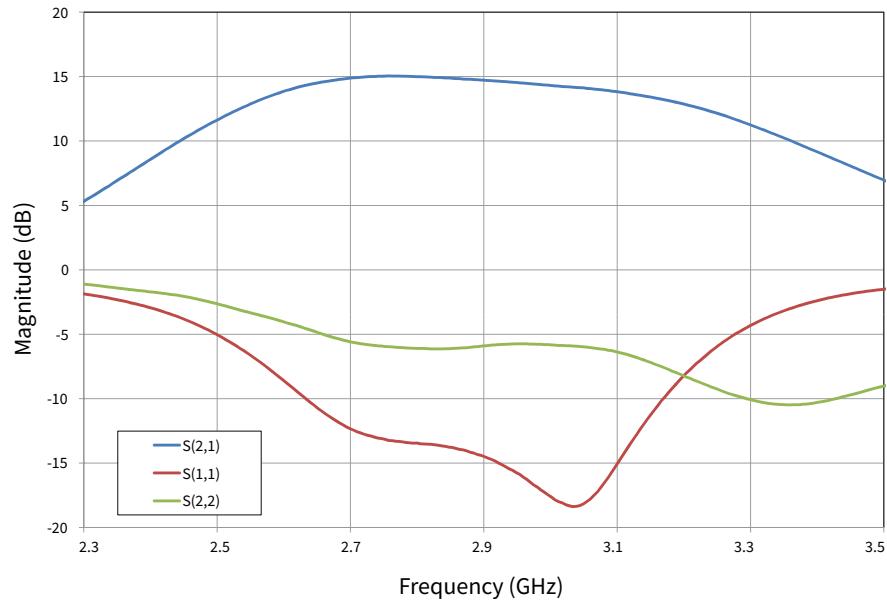


Figure 1. CGHV31500F S-Parameters $V_{DD} = 50$ V, $I_{DQ} = 0.5$ A

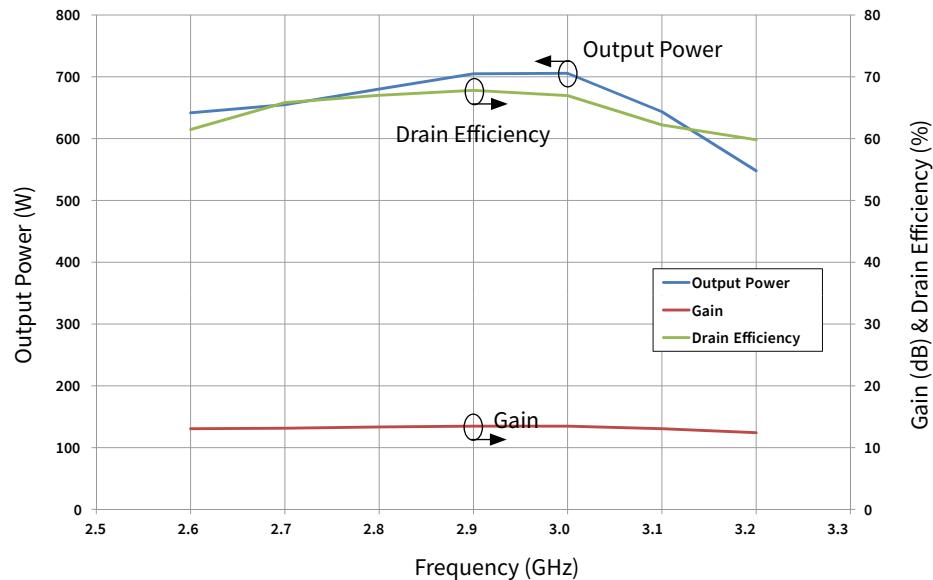
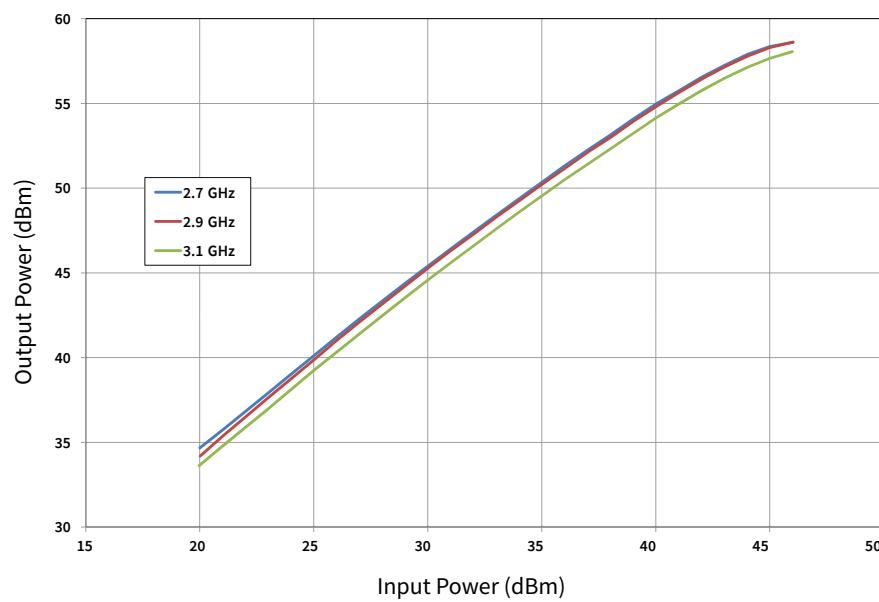
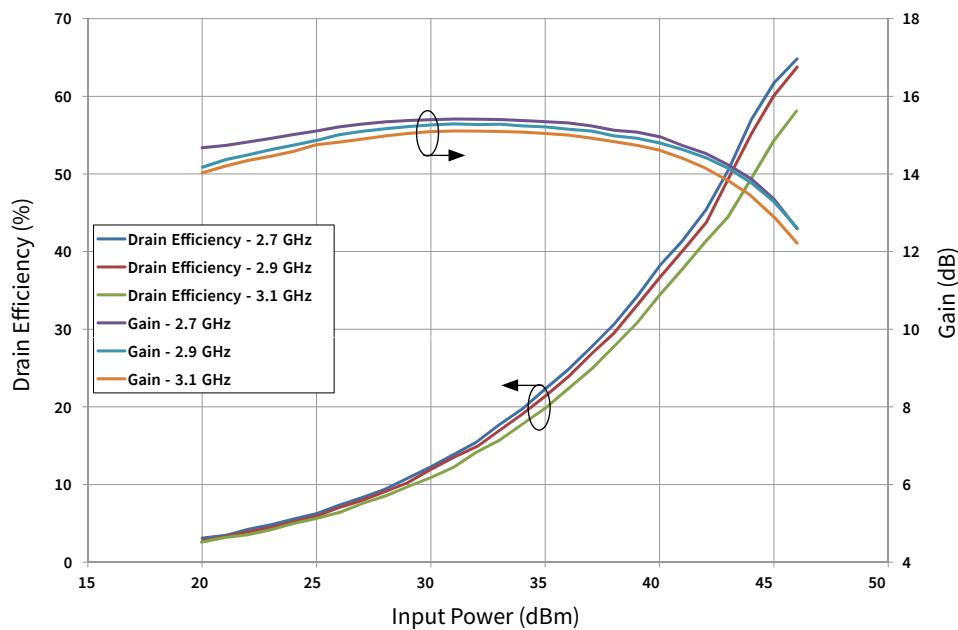
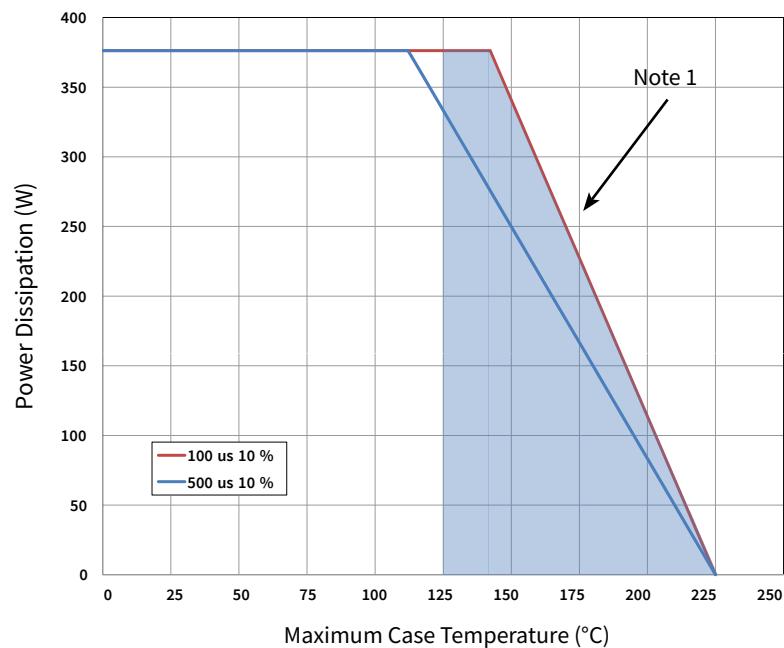
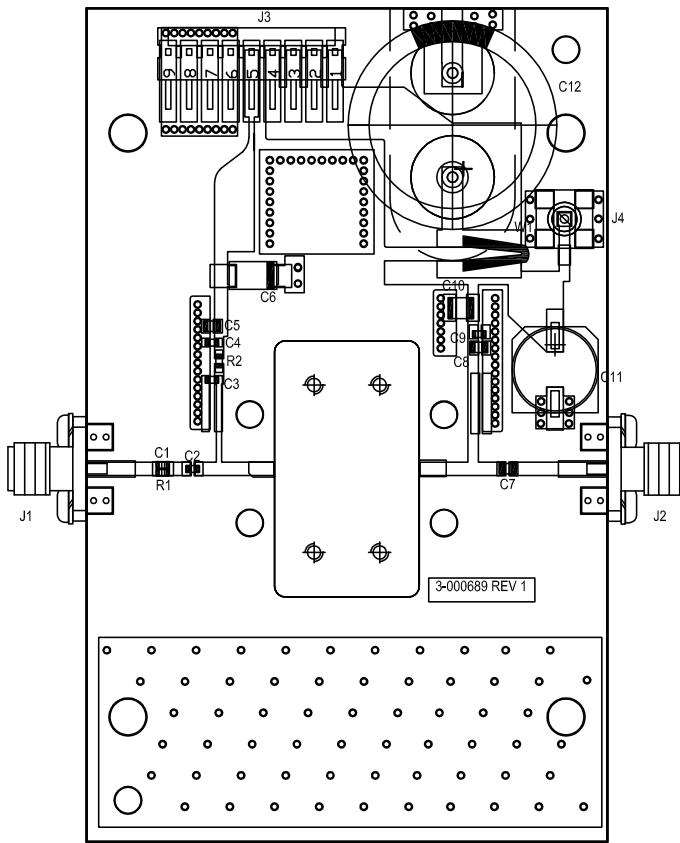




Figure 2. CGHV31500F Output Power and Drain Efficiency vs Frequency
 $V_{DD} = 50$ V, $I_{DQ} = 0.5$ A, $P_{IN} = 46$ dBm, Pulse Width = 100 μ s, Duty Cycle = 10%, $T_{CASE} = 25$ °C

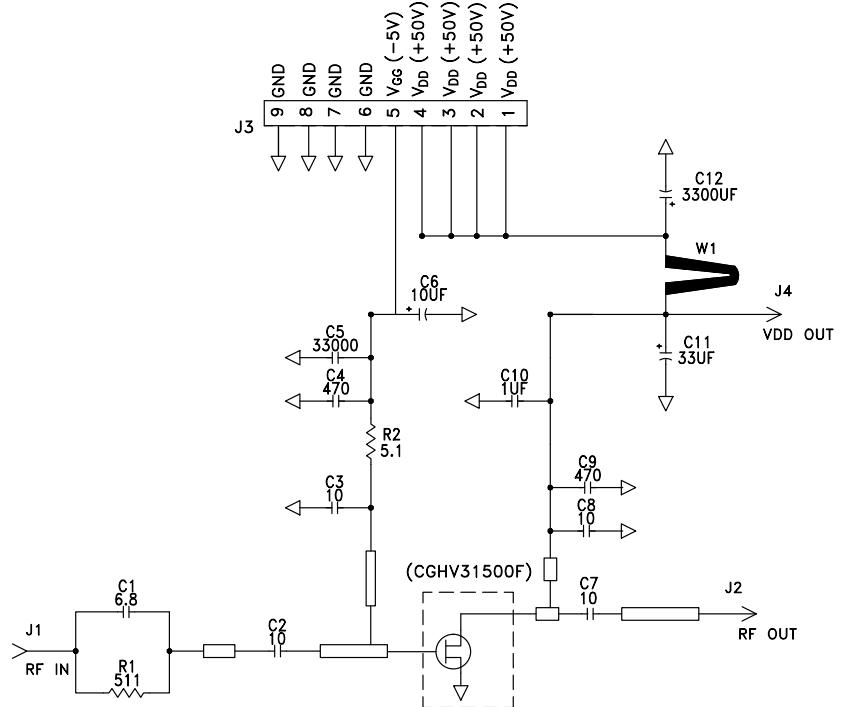
Typical Performance



CGHV31500F-AMP Application Circuit Bill of Materials

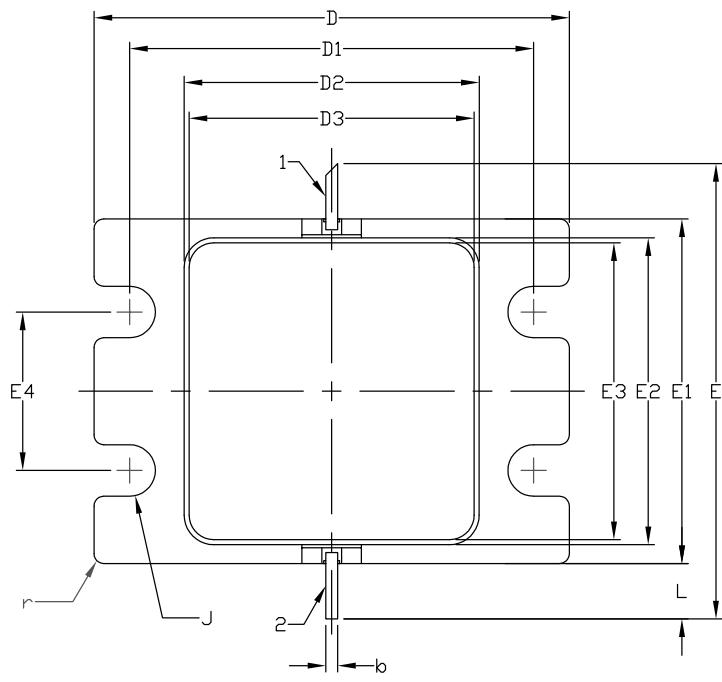

Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16 W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16 W, 0603	1
C1	CAP, 6.8 pF, +/-0.25%, 250 V, 0603	1
C2, C7, C8	CAP, 10.0 pF, +/-1%, 250 V, 0805	3
C3	CAP, 10.0 pF, +/-5%, 250 V, 0603	1
C4, C9	CAP, 470 pF, 5%, 100 V, 0603, X	2
C5	CAP, 33000 pF, 0805, 100 V, X7R	1
C6	CAP, 10 uF 16 V TANTALUM	1
C10	CAP, 1.0 uF, 100 V, 10%, X7R, 1210	1
C11	CAP, 33 uF, 20%, G CASE	1
C12	CAP, 3300 uF, +/-20%, 100 V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1 CEN LK 9 POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV31500F	1

CGHV31500F Power Dissipation De-rating Curve



Note 1. Area exceeds maximum case operating temperature (See page 2).

CGHV31500F-AMP Application Circuit Outline


CGHV31500F-AMP Application Circuit Schematic

Product Dimensions CGHV31500F (Package Type – 440226)

NOTES: (UNLESS OTHERWISE SPECIFIED)

1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
4. ALL PLATED SURFACES ARE GOLD OVER NICKEL


1. GATE
2. DRAIN

DIM	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.185	0.201	4.70	5.11	
A1	0.088	0.100	2.24	2.54	2x
A2	0.049	0.061	1.24	1.55	
b	0.022	0.026	0.56	0.66	2x
c	0.003	0.006	0.08	0.15	
D	0.935	0.955	23.75	24.26	
D1	0.797	0.809	20.24	20.55	2x
D2	0.581	0.593	14.76	15.06	
D3	0.565	0.571	14.35	14.50	
E	0.906		23.01		REF
E1	0.679	0.691	17.25	17.55	
E2	0.604	0.616	15.34	15.65	
E3	0.588	0.594	14.93	15.09	
E4	0.309	0.321	7.85	8.15	2x
J	Ø0.097	Ø0.107	Ø2.46	Ø2.72	4x
L	0.090	0.130	2.29	3.30	2x
r	0.02	TYP	0.51	TYP	12x

Part Number System

CGHV31500F

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.1	GHz
Power Output	500	W
Package	Flange	-

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Parameter	Value
A	0
B	1
C	2
D	3
E	4
F	5
G	6
H	7
J	8
K	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV31500F	GaN HEMT	Each	
CGHV31500F-AMP	Test Board with GaN HEMT Installed	Each	

For more information, please contact:

4600 Silicon Drive
Durham, NC 27703 USA
Tel: +1.919.313.5300
www.wolfspeed.com/RF

Sales Contact
RFSales@wolfspeed.com

RF Product Marketing Contact
RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2015-2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.
PATENT: <https://www.wolfspeed.com/legal/patents>

The information in this document is subject to change without notice.