UM10277_1

TED-Kit 2 Programmer's Manual

Rev. 1.29 — 22 June 2011 User manual

Document information

Info Content
Keywords TED-Kit 2, Programmer’s Manual
Abstract This document describes step-by-step how to write software for the TED-

Kit 2 and its components using the API Library.

. -
P |

Downloaded from AFFOW.COM.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 2 of 132

Downloaded from AFFOW.COM.


http://www.nxp.com/
mailto:salesaddresses@nxp.com
http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

1. Document Purpose

DOC-091497

1.1

The purpose of this document is to describe how to write software which uses the TED-
Kit 2 and its components including base stations and transponders. The intended au-
diences are software engineers planning to create their own custom software incorporat-
ing the TED-Kit 2.

All examples shown in this manual are written in C, C++ or C#. Although not tested, no
problems are expected to use other programming languages capable of using functionali-
ty dynamically linked (DLL) during run-time. Such languages are Obijective-C, Java, Vis-
ual Basic or even scripting languages like Perl.

The development environment used to develop and run the examples is Microsoft Visual
C++ 2005 Express. It is available from Microsoft free of charge. Nevertheless, any other
development environment for C++ running on Windows is expected to work because no
features specific to that development software are used.

What this Document is Not

This document will not explain how NXP’s immobilizers, Remote- or Passive Keyless
Entry transponders and LF- or UHF base station products work. For a detailed explana-
tion about e.g. the configuration settings, state machines or timings refer to the appropri-
ate data sheet.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 3 0f 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

2. Introduction

DOC-091497

21

This section will explain the software and hardware required to program and run software
for the TED-Kit 2 as well as the basic concepts of the API Library usage.

Requirements

The following ingredients are required to write and later run the software for the TED-
Kit 2 system:

Table 1. Required Ingredients

Item Description Type
Compiling
tk2.lib The API library stub, required to compile the software. SW

C/C++ Header Files The header files containing the class and function declarations SW
of the TED-Kit 2 Library (for C and C++ programming).

TED-Kit 2 APLcs C# library wrapper (for C# programming). SwW
Executing
tk2.dll The TED-Kit 2 library, required to run the software. SW
ftd2xx.dll The FTDI driver library, required to run the software. SW
FTDI Driver The FTDI driver (installed on the host system). SW
TED-Kit 2 The TED-Kit 2 hardware including an XBoard (e.g. an ABIC1).  HW
Transponder The transponder to communicate with. HW
tk2.dll The TED-Kit 2 library, required to run the software. SW

The search path for the include-files of the C/C++ compiler needs an entry pointing to the
root of the include file/folder structure. The C/C++ linker needs to be configured to link
the DLL-stub tk2.lib to the software.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 4 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

3. “Hello World” in C

DOC-091497

31

3.2

3.21

This section will explain a fully working example written in C to illustrate the basic steps
required to make use of the TED-Kit 2 library functionality. To be specific, this sample
application will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices
2. Open a single device and retrieve detailed information.
3. Read and show the firmware version of that TED-Kit 2 device.
4. Clean-up and close the device.
All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\example.c

Epilog

The epilog of this C example program is rather simple. It includes all the declarations ne-
cessary to access the TED-Kit 2 library:

#include "intfs\IphcsApiInt\inc\phIcsApiInt.h"
#include "types\phTedKitStatus.h"
#include "types\phTedKitCommands.h"

Initialization

The actual functionality will be found in the main function of the example. The very first
step is to declare a handle to the TED-Kit2 Library to actually be able to use its
functionality:

void *api = phcsApilnt_Alloc();

To exchange data between this application and the TED-Kit 2 library, an instance each of
the data structures is required:

phTedKit_IoData_t ioData;

phTedKit_BaseData_t baseData;

Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber
(see section 10.7, page 44) of the API's I/O layer is called. To do that, the ioData struc-
ture is prepared by assigning the function’s ID to the Function attribute of the structure.

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

phcsApiInt_Run(api, PHTEDKITCOMPID_ IO, &ioData);

The first parameter is the handle of the API instance. The second parameter indicates an
I/O layer call and the third parameter is the reference to the data structure. If successful,
the user is informed about the number of devices found by printing the content of the
DeviceNum attribute of the ioData structure:

printf("Number of devices found: %d.\n\n", ioData.DeviceNum);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 5 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

To ensure proper operation of the software, it will stop if no devices were found.
3.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are
actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product
ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices
found for all further actions. To find that device, a loop over all available devices is
created.

To actually retrieve the device details, the API function named GetDevicelnfoDetail (see
section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared
accordingly:

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of
them. The loop’s body will set the device/port number and than actually call the run
method with the proper parameters:

for (i = 0; i < (int) ioData.DeviceNum; i++) {
ioData.Port = i;
phcsApiInt_Run(api, PHTEDKITCOMPID_ IO, &ioData);

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.
Depending on the result, either the device information or an error message is shown. In
case of success, the device information is printed by just listing all the items which are

available:
printf ("Number Co%d\n", i)
printf("Flags : %d\n", ioData.Flags);
printf (" -> opened=%s\n",

((iobData.Flags & 1) ? "yes" : "no"));

printf("Type © %d\n", ioData.Type);
printf("DevicelD © Ox8X\n", ioData.ID);
printf("LocId : %d\n", ioData.lLocId);
printf("SerialNumber : %s\n", ioData.SerialNumber);
printf("Description : %s\n", ioData.Description);

After showing the device information, the vendor-and-product-ID is compared with the
one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for
further processing.

if ((ioData.ID == PHTEDKITUSB_VIDPID) && (index == -1)) {

}

After the loop has finished, the device being used is shown. If no proper device was
found, the software shows an error message and aborts. Now, the application knows
what devices are detected and which one to use for the remaining steps.

3.2.3 Open Device

The final step of the initialization section is to open the device for sending and receiving
data:

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 6 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

ioData.Port = index;

ioData.Function = PHTEDKITIOFKT_OPEN;
ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI
device number gets the value of the first NXP TED-Kit 2 device found. The function
called is Open (see section 10.10, page 47) and the OpenMode is set to normal
(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in
case of failure, a message is printed and the application is aborted.

3.3 Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out
of the BaseApi. The instance of phTedKit BaseData_t is populated with the proper
data required for the call. In case of this simple function, only the function name needs to
be set:

baseData.Function = PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-
sage is shown. In case of success, the returned values stored in the same instance of
the baseData structure are processed:

printf("Firmware Code : %d\n", baseData.RxDatal);
printf("Firmware Version : %d.%d\n",
baseData.RxData2, baseData.RxData3);

3.4 Clean-Up

After executing all the functions required, the device in use shall be closed by calling the
API function Close (see section 10.1, page 36):

ioData.Function = PHTEDKITIOFKT_CLOSE;
phcsApiInt_Run(api, PHTEDKITCOMPID_ IO, &ioData);

The ioData structure is properly populated and the Run function is called. After evaluat-
ing the StatusCode (and eventually showing an error message), the final step — freeing
the resources — is done.

phcsApilInt_Destroy(api);

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 7 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

4. “Hello World” in C++

DOC-091497

4.1

4.2

421

The C++ interface of the TED-Kit 2 library as described in this document is obsolete and
shall not be used anymore. Instead, the TED-Kit 2 Foundation Classes library shall be
used.

This is a class library build on top of the TED-Kit 2 library and greatly simplifies the pro-
gramming of the TED-Kit 2. It is available from the same source as this TED-Kit 2 soft-
ware package.

This section will explain a fully working example written in C++ to illustrate the basic
steps required to make use of the API Library functionality. To be specific, this sample
application will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices
2. Open a single device and retrieve detailed information.
3. Read and show the firmware version of that TED-Kit 2 device.
4. Clean-up and close the device.
All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\example.cpp

Epilog

As any C++ program, this one also has an epilog section including function- and constant
declarations:

#include "comps\phcsApiInt\inc\phcsApiInt.hpp"
#include "types\phTedKitStatus.h"
#include "types\phTedKitCommands.h"

Initialization

The actual functionality will be found in the main function of this example program. The
very first step is to define an instance of the API Library to actually be able to use its
functionality:

phcs_TedKit2::Apilnt api;

To exchange data between this application and API Library, an instance of the data
structure specified for that purpose is required:

phcs_TedKit2::phTedKit_IoData_t ioData;

Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber
(see section 10.7, page 44) of the API's I/O layer is called. To do that, the ioData struc-
ture is prepared by assigning the function’s ID to the Function attribute of the structure.

joData.Function = phcs_TedKit2::PHTEDKITIOFKT GET DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 8 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

api.Run(PHTEDKITCOMPID_IO, &ioData);

The first parameter indicates an 1/O layer call; the second parameter is the address of the
data structure. If successful, the user is informed about the number of devices found by
printing the content of the DeviceNum attribute of the ioData structure:

std::cout << "Number of devices found: " << ioData.DeviceNum << "
<< std::endl << std::endl;

To ensure proper operation of the software, it will stop if no device were found.
4.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are
actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product
ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices
found for all further actions. To find that device, a loop over all available devices is
created.

To actually retrieve the device details, the API function named GetDevicelnfoDetail (see
section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared
accordingly:

ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of
them. The loop’s body will set the device/port humber and than actually call the run
method with the proper parameters:

for (int i = 0; i < static_cast<int>(ioData.DeviceNum); i++) ({
ioData.Port = i;
api.Run(PHTEDKITCOMPID_IO, &ioData);

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.
Depending on the result, either the device information or an error message is shown. In
case of success, the device information is printed by just listing all the items which are

available:
std::cout
<< "Number " << i << std::endl
<< "Flags : " << ioData.Flags << std::endl
<< " -> opened="
<< ((ioData.Flags & 1) ? "yes" : "no") << std::endl
<< "Type . " << ioData.Type << std::endl
<< "DevicelD © Ox" << std::hex << std::uppercase << ioData.ID
<< std::dec << std::endl
<< "Locld . " << ijoData.Locld << std::endl
<< "SerialNumber : " << ioData.SerialNumber << std::endl
<< "Description : " << ioData.Description << std::endl
<< std::endl;

After showing the device information, the vendor-and-product-ID is compared with the
one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for
further processing.

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 9 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

4.2.3

4.3

4.4

Programmer's Manual

if ((ioData.ID == PHTEDKITUSB_VIDPID) && (index == -1)) {

}

After the loop is finished, the device being used is shown. If no proper device was found,
the software shows an error message and aborts. Now, the application knows what de-
vices are detected and which one to use for the remaining steps.

Open Device

The final step of the initialization section is to open the device for sending and receiving
data:

ioData.Port = index;

ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_OPEN;
ioData.OpenMode = phcs_TedKit2::PHTEDKITIOFKT_NORMAL_OPERATION;
api.Run(PHTEDKITCOMPID IO, &ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI
device number gets the value of the first NXP TED-Kit 2 device found. The function
called is Open (see section 10.10, page 47) and the OpenMode is set to normal
(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in
case of failure, a message is printed and the application is aborted.

Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out
of the BaseApi. To achieve this, an instance of the proper data structure for BaseApi
calls is required:

phcs_TedKit2::phTedKit_BaseData_t baseData;

Now, that instance can be populated with the proper data required for the call. In case of
this simple function, only the function name needs to be set:

baseData.Function = phcs_TedKit2::PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

api.Run(PHTEDKITCOMPID_BASEAPI, &baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-
sage is shown. In case of success, the returned values stored in the same instance of
the baseData structure are processed:

std::cout
<< "Firmware Code . " << baseData.RxDatal << std::endl
<< "Firmware Version : " << baseData.RxData2 << "."

<< baseData.RxData3 << std::endl;

Clean-Up

After executing all the functions required, the device in use shall be closed by calling the
API function Close (see section 10.1, page 36):

[
ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_CLOSE;

api.Run(PHTEDKITCOMPID IO, &ioData);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 10 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

The ioData structure is properly populated and the Run function is called. After evaluat-
ing the StatusCode (and eventually showing an error message), the application is
closed. This will trigger the destructor of the API class which releases all resources used
for the TED-Kit 2.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 11 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

5. “Hello World” in C#

DOC-091497

5.1

5.2

5.2.1

This section will explain a fully working example written C# to illustrate the basic steps
required to make use of the API Library functionality. To be specific, this sample applica-
tion will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices
2. Open a single device and retrieve detailed information.
3. Read and show the firmware version of that TED-Kit 2 device.
4. Clean-up and close the device.
All explanations refer to the example code in:
[TED-Kit 2 installation]\Development\API\doc\examples\example.cpp

In contrast to the C and C++ examples shown in the previous sections, C# cannot direct-
ly access the library functions and definitions. To be able to write software in C#, a wrap-
per class is required. It is provided as part of the installation of this software:

[TED-Kit 2 installation]\Development\API\doc\examples\TED-Kit 2 APLcs

This class is required to run all examples shown in this manual.

Epilog

The epilog of this C# example program is rather simple. The use of the System and the
phcs_TedKit2 namespaces is declared. The example class itself is put into its own
namespace:

using System;
using phcs_TedKit2;

namespace com.nxp.cai.tedkit2 {

}

Initialization

The actual functionality will be found in the main function of the class Example. The very
first step is to declare a handle to the TED-Kit 2 Library to actually be able to use its
functionality:

API api = null;

api = new API();

To exchange data between this application and the TED-Kit 2 library, an instance of the
data structure specified for that purpose is required:

API.IoData ioData = new API.IoData();

In this case, it's an instance of the I/O data structure because that is needed first.

Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber
(see section 10.7, page 44) of the API's I/O layer is called. To do that, the ioData struc-
ture is prepared by assigning the function’s ID to the Function attribute of the structure.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 12 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

ioData.Function = API.Function.PHTEDKITIOFKT_GET_DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

api.Run(API.Layer .PHTEDKITCOMPID_IO, ioData);

The first parameter indicates an I/O layer call and the second parameter is the reference
to the data structure. If successful, the user is informed about the number of devices
found by printing the content of the DeviceNum attribute of the ioData structure:

Console.WriteLine("Number of devices found: "
+ joData.DeviceNum + "\n");

To ensure proper operation of the software, it will stop if no devices were found.
5.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are
actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product
ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices
found for all further actions. To find that device, a loop over all available devices is
created.

To actually retrieve the device details, the API function named GetDevicelnfoDetail (see
section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared
accordingly:

ioData.Function = API.Function.PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of
them. The loop’s body will set the device/port number and than actually call the run
method with the proper parameters:

for (ushort i = 0; i < ioData.DeviceNum; i++) {
ioData.Port = 1i;
api.Run(API.Layer.PHTEDKITCOMPID_ IO, ioData);

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.
Depending on the result, either the device information or an error message is shown. In
case of success, the device information is printed by just listing all the items which are

available:
Console.WritelLine("No ey, 1)
Console.WriteLine("Flags : {0}", ioData.Flags);
Console.WriteLine("Type : {0}", ioData.Type);
Console.WritelLine("DeviceID o {0:X}", ioData.ID);
Console.WritelLine("LocID : {0}", ioData.lLocId);

Console.WritelLine("SerialNumber : {0}",
API.toString(ioData.SerialNumber));
Console.WritelLine("Description = {0}",
API.toString(ioData.Description));

After showing the device information, the vendor-and-product-ID is compared with the
one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for
further processing.

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 13 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

5.2.3

5.3

54

Programmer's Manual

if ((ioData.ID == API.PHTEDKITUSB_VIDPID) && !found) ({

}

After the loop is finished, the device being used is shown. If no proper device was found,
the software shows an error message and aborts. Now, the application knows what de-
vices are detected and which one to use for the remaining steps.

Open Device

The final step of the initialization section is to open the device for sending and receiving
data:

ioData.Port = index;

ioData.Function = API.Function.PHTEDKITIOFKT_OPEN;
ioData.OpenMode = API.PHTEDKITIOFKT_NORMAL_OPERATION;
api.Run(API.Layer.PHTEDKITCOMPID_ IO, ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI
device number gets the value of the first NXP TED-Kit 2 device found. The function
called is Open (see section 10.10, page 47) and the OpenMode is set to normal
(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in
case of failure, a message is printed and the application is aborted.

Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out
of the BaseApi. To achieve this, an instance of the proper data structure for BaseApi
calls is required:

API.BaseData baseData = new API.BaseData();

Now, that instance can be populated with the proper data required for the call. In case of
this simple function, only the function name needs to be set:

baseData.Function = API.Function.PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

api.Run(API.Layer.PHTEDKITCOMPID_BASEAPI, baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-
sage is shown. In case of success, the returned values stored in the same instance of
the baseData structure are processed:

Console.WritelLine("Firmware Code : {0}", baseData.RxDatal);
Console.WriteLine("Firmware Version : {0}.{1}",
baseData.RxData2, baseData.RxData3);

Clean-Up

After executing all the functions required, the device in use shall be closed by calling the
API function Close (see section 10.1, page 36):

[
ioData.Function = API.Function.PHTEDKITIOFKT_CLOSE;

api.Run(API.Layer.PHTEDKITCOMPID_ IO, ioData);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 14 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

The ioData structure is properly populated and the Run function is called. After evaluat-
ing the StatusCode (and eventually showing an error message), all resources are re-
leased:

129 api.dispose();

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 15 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

6. Handling Multiple Devices

DOC-091497

6.1

6.2

The whole software system is able to handle multiple connected TED-Kit 2 devices at the
same time. This chapter will illustrate how this shall be handled by custom software writ-
ten in C. The strategy shown here can be applied to all other languages as well.

One-after-Another

The key to handle multiple devices one-after-another is to open and close each of the
devices for using. The example code explained in section 3: “Hello World” in C uses only
the very first TED-Kit 2 device found. The extensions necessary to handle all TED-Kit 2
devices connected are illustrated below.

Instead of opening just one device, the code will open each TED-Kit 2 device, ask for the
firmware and close it. Thus, the open and close function calls are now inside the loop:

for (int i = @; i < (int) ioData.DeviceNum; i++) {
if (ioData.ID == PHTEDKITUSB_VIDPID) {

ioData.Port = 1i;

ioData.Function = PHTEDKITIOFKT_OPEN;
ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;
phcsApiInt_Run(api, PHTEDKITCOMPID_ IO, &ioData);

ioData.Function = PHTEDKITIOFKT_CLOSE;
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

}

The pointer api points to the TED-Kit 2 specified during the opening process. With the
loop above, the example application ripples through all the TED-Kit 2 devices available,
one per loop cycle.

In Parallel

If an application shall be able to handle multiple TED-Kit 2 devices in parallel, the sample
shown in section 6.1 is of no use. The key to handle multiple devices in parallel is to
create multiple instances of the TED-Kit 2 API library. For each device a new instance is
created and an open-use-close cycle can be used independent from the other instances.

For the initial analysis of the connected devices one instance is required. After retrieving
the number of devices, each device asks for the details and if it is a TED-Kit 2 device
stored for later use:

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 16 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

UM10277_1

Programmer's Manual

void** tedKit2List = malloc(..);

if (ioData.ID == PHTEDKITUSB_VIDPID) {
/* create a new instance of the Apilnt class */
void* tedKit2 = phcsApiInt_Alloc();

/* open the device */

ioData.Port = i;

ioData.Function = PHTEDKITIOFKT_OPEN;
ioData.OpenMode PHTEDKITIOFKT_NORMAL_OPERATION;
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

/* store reference in the 1list */
tedKit2List[i] = tedKit2;
}

through the array index:

Afterwards, each device can be operated independent from each other by accessing it

phcsApiInt_Run(tedKit2List[i], PHTEDKITCOMPID_BASEAPI, &baseData);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

17 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

7. Interaction with a Transponder

DOC-091497

71

This section will show detail how to setup and execute a communication sequence with a
HITAG2-Extended (PCF7937EA) transponder. The following steps are executed and ex-
plained:

1. Finding a TED-Kit 2 with an ABIC1 on the USB

Enabling the TED-Kit 2

Configuring the ABIC1 XBoard

Configuring the data transmission (from ABIC1 to HITAG2-Extended)
Configuring the data reception (from HITAG2-Extended to ABIC1)
Reading the XMA configuration of the transponder.

Executing an authentication in ciphered mode (default secret key)

® N o o bk w0

Selecting an appropriate XMA segment and block
9. Reading all pages from the block.
10. Writing a page of a block.
11. Read that page back.
12. Shut down.
All explanations refer to the example code in:
[TED-Kit 2 installation]\Development\API\doc\examples\PCF7937-in-out.c

In order to run this example, a TED-Kit 2 with an ABIC1 XBoard as well as a HITAG2-
Extended transponder (PCF7937AS) has to be available. The transponder must be con-
figured for ciphered authentication with the default secret key. The equalizer mode must
be set to normal, The XMA configuration must contain at least 2 segments where the
second segment is accessible in ciphered mode (read/write).

For details about the configuration, refer to the data sheet of the transponder.

Finding a TED-Kit 2 with an ABIC1

Finding a TED-Kit 2 with an ABIC1 on the USB is done similar to the previous examples.
First, a TED-Kit 2 API is created:

api = phcsApilnt_Alloc();

Second, the number of FTDI/TED-Kit 2 devices is determined:

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;
phcsApiInt_Run(api, PHTEDKITCOMPID_ IO, &ioData);

Third, a loop over all devices is defined:

for (i = 0; i < (int) ioData.DeviceNum; i++) {

}

Inside that loop, the device details for each FTDI device are read and evaluated to find
the actual TED-Kit 2s using function GetDevicelnfoDetail (see section 10.6, page 42):

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 18 of 132



http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

7.2

7.3

Programmer's Manual

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

ioData.Port = 1i;
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

if (ioData.ID == PHTEDKITUSB_VIDPID) {

}

For each TED-Kit 2, the XSlot information is read in order to find a proper ABIC1 XBoard:

baseData.Function = PHTEDKITBASEAPIFKT GETXSLOTINFO;
phcsApiInt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);

For each XBoard, it is checked whether it is an ABIC1 with an LF-Antenna connected:

if ( (baseData.RxDatal == PHTEDKITXBOARD_ABIC1)
&& ((baseData.RxData5 & PHTEDKITXBOARD_FEAT_LF) != 0)
&& (xSlotPort == -1)) {
xSlotPort = 0;
}

The first ABIC1 is used for the rest of the program. The TED-Kit 2 port ID is stored in
tedKit2Port; the XSlot ID is stored in xS1lotPort.

Enabling the TED-Kit 2

One the TED-Kit 2 and XBoard being used for the rest of the program has been deter-
mined; it can be finally opened for normal operation:

ioData.Port = tedkit2Port;

ioData.Function = PHTEDKITIOFKT_OPEN;
ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;
phcsApiInt_Run(api, PHTEDKITCOMPID IO, &ioData);

After successfully opened, the TED-Kit 2 tick time has to be retrieved to be able to cor-
rectly set all the timings afterwards. This is achieved using BaseApi function GetDeviceS-
tatus (see section 11.8, page 59):

baseData.Function = PHTEDKITBASEAPIFKT_GETDEVICESTATUS;
phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

frequency = bytesTolLong(baseData.RxBufl, 6);
tickTime = 1000000.0 / frequency;

The bytes 6 to 9 of RxBuf1l contain the frequency of the TED-Kit 2's pc in Hertz. The
variable tickTime contains now the timing reference suitable for timings given in ps.

Configuring the ABIC1 XBoard

The configuration of the XBoard is done using the BaseApi’'s function SetXBoardConfig
(see section 11.22, page 81):

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 19 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

baseData.Function = PHTEDKITBASEAPIFKT_SETXBOARDCONFIG;
baseData.Device = PHTEDKITEXTAPIDEVICE ABIC1;
baseData.TxDatal = xSlotPort;

baseData.TxData2 0;

baseData.TxData3 = 13;

The XBoard used for communication is an ABIC1 and thus, all 14 configuration elements
(0...13) will be set at once. The following values taken from [UM10278 1] are set:

Table 2. ABIC1 XBoard Configuration

Parameter Value
Interface and Mode Non-Filtered
Data Rate 10 ps
Demodulator Sampling Phase 44
Antenna Phase 0
Diagnosis 0
ABIC1 Configuration Register 0...3 7,0,0,0
Test Mode Off

For a detailed description of the meaning of these fields (ABIC1 Configuration Registers
in particular), refer to the ABIC1 data sheet. The actual values are taken from the AB-
IC1’s data sheet and filled in the baseData structure:

baseData.TxBufl[0] = 0;

longToBytes((long) (10 / tickTime), baseData.TxBufl, 1);

baseData.TxBufl[5] = Ox2c;

baseData.TxBufl[6] = 0;
baseData.TxBufl[7] = 0;
baseData.TxBufl[8] = 7;
baseData.TxBufl[9] = 0;
baseData.TxBufl[10] = O;
baseData.TxBufl[11l] = O;

baseData.TxBufl[12] = 0;
phcsApilInt_Run(api, PHTEDKITCOMPID EXTAPI, &baseData);

7.4 Configuring the Data Transmission

The data transmission parameters are configured using the BaseApi’s function Set-
TransmissionParams (see section 11.20, page 78). The general configuration is shown in
Table 3.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 20 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

Programmer's Manual

Table 3. HITAG2-Extended Tx Parameter
Parameter Value

Global Inversion Off
Preamble Length 0
Preamble Symbol Duration 0
Header Length 0
Header Symbol Duration 0
Trailer Length 0
Trailer Symbol Duration 0
Idle Level 0
Body Encoding BPLM

Thuise 48us
Body Encoding Parameters TLogo 160ps

Tiog 224us

Tstop 288us

The actual values are taken from the transponder's data sheet and filled

baseData structure:

in the

401  baseData.Function = PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS;
402  baseData.TxDatal = xSlotPort;

403 /* Global Inversion -> off */

404  baseData.TxData2 = 0;

405 /* PreamblelLength */

406  baseData.TxData3 = 0;

407 /* PreambleSymbolDuration */

408 baseData.TxTimel = 0;

409 /* HeaderLength */

410  baseData.TxDatad = 0;

411 /* HeaderSymbolDuration */

412  baseData.TxTime2 = 0;

413 /* TrailerLength */

414  baseData.TxData5 = 0;

415 /* TrailerSymbolDuration */

416  baseData.TxTime3 = 0;

417 /* IdlelLevel */

418 baseData.TxData6 = 0;

419 /* Tx Data Coding Type -> BPLM */

420  baseData.TxData7 = PHTEDKITCODING_BPLM;

421 /* T_Pulse -> 48us */

422 longToBytes((long) (48 / tickTime), baseData.TxBufl, 0);
423 /* T_Logb -> 160us */

424 longToBytes((long) (160 / tickTime), baseData.TxBufl, 4);
425 /* T_Logl -> 224ps */

426 longToBytes((long) (224 / tickTime), baseData.TxBufl, 8);
427 /* T_Stop -> 288us */

428 longToBytes((long) (288 / tickTime), baseData.TxBufl, 12);
429  phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

21 of 132



http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

7.5 Configuring the Data Reception

7.6

The data reception parameters are configured using the BaseApi's function
SetReceptionParams (see section 11.19, page 76). The general configuration is
shown in Table 4:

Table 4. HITAG2-Extended R Parameter

Parameter Value
Synchronization Mode Time based
Synchronization Delay 1.33ms
Global Inversion Off
Header Length 10 half bits
Header Pattern 0101010101pin
Header Symbol Duration 128us
Body Encoding Manchester
Body Encoding Parameters Symbol Duration Tynit 128us

The actual values are taken from the transponder's data sheet and filled in the
baseData structure:

baseData.Function = PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS;
baseData.TxDatal = xSlotPort;

baseData.TxData2

1;

baseData.TxTimel = (uint32_t) (1330 / tickTime);

baseData.TxData3 0;
baseData.TxDatad4 = 10;

baseData.TxTime2 = (uint32_t) (128 / tickTime);
baseData.TxData5 = PHTEDKITCODING_MANCHESTER;

longToBytes((long) (128 / tickTime), baseData.TxBufl, 0);
baseData.TxBuf2[0] = 0x55;

baseData.TxBuf2[1] = 0x40;
phcsApiInt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);

The HITAG2-Extended can handle two different header patterns: the default pattern 5
bits long (11111,;,) and the modified pattern 7 bits long (1111110;,). The patterns are
always Manchester encoded regardless of the encoding scheme for the payload. The
length and the waveform of the pattern must be given already encoded as Manchester.
Thus, the header length for the default pattern is set to 10 (10 half bits = 5 bits) in
TxData4. The pattern in TxBuf2 conforms to five One’s encoded as Manchester
(5540pex = 01010101014;,). The value is left aligned and thus, the last 4 of the 16 bits are
ignored.

Reading the XMA Configuration

To read the transponder's XMA configuration, two steps are necessary. First, the trans-
ponder has to be set into XMA/CFG state. Second, the memory configuration has to be
read for each segment.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 22 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

7.6.1

7.6.2

Programmer's Manual

Entering XMA/CFG

To enter the XMA/CFG state, the PHTEDKITHITAG2CMD_ XMACFG command executed
using TransmitReceive (see section 12.2.1, page 98) is used.

This command can be executed in the transponder's WAIT state only. To ensure the
transponder is indeed in WAIT state, a hard-reset (125 kHz field off/on) is configured.
Such a hard reset can be issued at any time by setting TxTimel and TxTime2 of the
baseData structure to proper values (other than zero):

baseData.TxTimel = (uint32_t) (5000 / tickTime);

baseData.TxTime2 = (uint32_t) (6640 / tickTime);
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,
PHTEDKITHITAG2CMD XMACFG, &baseData);

The t|m|ngS set Correspond to TRESET, DURATION=DMS (TXT1 mel) and TRESET, SETUP=6.64mS
(TxTime2) of the PCF7937AS data sheet.

An alternative to the hard (field-) reset is the use of the command
PHTEDKITHITAG2CMD_SOFTRESET as explained in section 7.7.1, page 24.

After successful execution, the transponder is in XMA/CFG state. To prevent a hard reset
during the next ExtApi transmit-receive sequence, the two timing parameters have to be
reset to O:

baseData.TxTimel = 0;
baseData.TxTime2 = 0;

Reading the Configuration

The second step is to actually read the XMA configuration from the transponder. The
transponder has 8 segments, for each of them; the appropriate commands have to be
issued. A loop is defined first:

for (i = 0; i < 8; i++) {

}

To read the configuration for a segment, the segment number has to be given in TxBuf1l
followed by the execution of the function TransmitReceive (see section 12.2.1, page
98) with command PHTEDKITHITAG2CMD_READCFG in state
PHTEDKITHITAG2STATE_XMACFG:

baseData.TxBufl[0] = i;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMACFG,
PHTEDKITHITAG2CMD_READCFG, &baseData);

After successful execution, the segment configuration is stored in RxBuf 1. The first entry
contains the segment’s access mode; the second entry contains the size (number of
blocks):

printf(
"segment #%1 configuration: mode=0x%02X, size=%i blocks.\n",
i, (baseData.RxBufl[0@] & OxOF), (baseData.RxBufl[1l] & OxOF));

For a detailed description of RxBuf1’s layout, refer to [1].

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 23 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

1.7

7.71

7.7.2

7.7.3

Programmer's Manual

Executing a Ciphered Authentication

An authentication for a HITAG2-Extended is a two-step process. First, the init sequence
is executed returning the transponder’s IDE. Second, the actual authentication (either
password or ciphered) is carried out.

Preparation

To successfully authenticate, the transponder commands have to be executed in the
WAIT state of the transponder. From the previous section, the transponder is still in
XMACFG state. To bring it back to the WAIT state, the function TransmitReceive (see
section 12.21, page 98) is executed with transponder = command
PHTEDKITHITAG2CMD_SOFTRESET in transponder state
PHTEDKITHITAG2STATE_XMACFG:

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMACFG,
PHTEDKITHITAG2CMD_SOFTRESET, &baseData);

After the reset, the transponder needs some time to initialize itself. The timing Ty state Of @
PCF7937AS is specified with 6.32ms. Before sending any other command to the trans-
ponder, we have to wait that time to ensure the transponder is listening again.

To delay, the build-in function Delay (see section 11.1, page 50) of the TED-Kit 2 is used.
The timing value TxTimel is first converted to ps (6.32ms = 6320us) and then converted
in TED-Kit 2 system ticks (as the TED-Kit 2 requires it):

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

baseData.TxTimel = (uint32_t) (6320 / tickTime);
phcsApiInt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);

Because the TxTimel attribute of baseData is used as field reset configuration, it must
be reset to 0 to prevent any field reset during the next transmit-receive sequence:

baseData.TxTimel = 0;

Authentication Initialization

The first step of the authentication is the initialization returning the transponder’s IDE.
This is achieved using the function TransmitReceive (see section 12.2.1, page 98)
with command PHTEDKITHITAG2CMD_STARTAUTH in state
PHTEDKITHITAG2STATE_WAIT. To indicate the first part of the authentication se-
quence, TxBufl is set to O:

baseData.TxBufl[0] = 0;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,
PHTEDKITHITAG2CMD_STARTAUTH, &baseData);

The returned IDE is stored in RxBuf1 and is printed on the screen:

ide = bytesTolLong(baseData.RxBufl, 0);
printf("transponder IDE: Ox%08X\n", ide);

Authentication Execution

The second step of the authentication is the exchange of the secure items. To indicate
that now the second step is executed, TxBuf1 is set to 2 - indicating crypto mode:

\
baseData.TxBufl[0] = 2;

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 24 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

7.8

7.9

Programmer's Manual

Besides that, TxBuf1 is also filled with the IDE, the challenge (0 in this example) and the
secret key (the default value in this example):

longToBytes(ide, baseData.TxBufl, 1);

baseData.TxBufl[5] =
baseData.TxBufl[6] =
baseData.TxBufl[7] =
baseData.TxBufl[8] =

[l o o)

baseData.TxBufl[9] = 'M';
baseData.TxBufl[10] = '
baseData.TxBufl[11l] =
baseData.TxBufl[12] =
baseData.TxBufl[13] =
baseData.TxBufl[14] =

=Z 0O W X H

For details about the layout of TxBuf1, refer to [1]. To execute the second step, the func-
tion TransmitReceive (see section 12.2.1, page 98) with command
PHTEDKITHITAG2CMD_STARTAUTH in state PHTEDKITHITAG2STATE_WAIT is used:

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,
PHTEDKITHITAG2CMD_STARTAUTH, &baseData);

If successful, RxBufl contains the transponder password which can be used by the
base station to ensure the intended transponder is authenticated:

printf("transponder password: Ox%06X\n",
(bytesToLong(baseData.RxBufl, 0) & OxQOFFFFFF));

Selecting a XMA Segment and Block

In order to access the HITAG2-Extended’s memory, the transponder has to move from
the AUTHENT state in the XMA state. This is achieved using the function
TransmitReceive (see section 12.2.1, page 98) with transponder command
PHTEDKITHITAG2CMD_XMA in transponder state
PHTEDKITHITAG2STATE _AUTHORIZED. This command also selects the desired seg-
ment (#1 in this example given in TxBuf1):

baseData.TxBufl[0] = 1;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_AUTHORIZED,
PHTEDKITHITAG2CMD_XMA, &baseData);

Selecting a block of the segment, the function TransmitReceive (see section 12.2.1,
page 98) with transponder command PHTEDKITHITAG2CMD_SELBLOCK in state
PHTEDKITHITAG2STATE_XMA is executed. The desired block is given in TxBuf 1:

baseData.TxBufl[0] = 0;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,
PHTEDKITHITAG2CMD_SELBLOCK, &baseData);

Reading all Pages from a Block

Each block has 8 pages of 32-bit values. To read them, an appropriate loop is defined:

\
for (i = 0; i < 8; i++) {

)

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 25 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

710

7.1

Programmer's Manual

Inside the loop, each of the 8 pages is read one after another using function
TransmitReceive (see section 12.2.1, page 98) with transponder command
PHTEDKITHITAG2CMD READPAGE in transponder state PHTEDKITHITAG2STATE XMA
(the transponder is still in XMA state):

baseData.TxBufl[0] = 1i;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,
PHTEDKITHITAG2CMD_READPAGE, &baseData);

After successful reading, the value returned in RxBuf1 from the TED-Kit 2 is printed on
the screen:

printf("page #%1 = O0x%08X\n", i, bytesToLong(baseData.RxBufl, 0));

Writing a Page of a Block

To write a page, the page number and its value have to be given in TxBuf1 (page 7 and
a value of 76543210, are used in this example):

baseData.TxBufl[0] = 7;

longToBytes(0x76543210, baseData.TxBufl, 1);

The function TransmitReceive (see section 12.2.1, page 98) is executed with trans-
ponder command PHTEDKITHITAG2CMD_WRITEPAGE in transponder state
PHTEDKITHITAG2STATE_XMA (the transponder is still in XMA state):

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,
PHTEDKITHITAG2CMD_WRITEPAGE, &baseData);

The transponder needs some time to actually carry out the memory write operation. The
timing Tprog of @ PCF7937AS is specified with 4.92ms. Before sending any other com-
mand to the transponder, we have to wait that time to ensure the transponder is listening
again.

To delay, the build-in function Delay (see section 11.1, page 50) of the TED-Kit 2 is used.
The timing value TxTimel is first converted to ys (4.92ms = 4920us) and then converted
in TED-Kit 2 system ticks (as the TED-Kit 2 requires it):

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

baseData.TxTimel = (uint32_t) (4920 / tickTime);
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);

Because the TxTimel attribute of baseData is used as field reset configuration, it must
be reset to 0 to prevent any field reset during the next transmit-receive sequence:

baseData.TxTimel = 0;

Read that Page Back

To read that page 7 just written back from the transponder and e.g. check for correct-
ness, the function TransmitReceive (see section 12.2.1, page 98) is executed with
transponder command PHTEDKITHITAG2CMD_READPAGE in transponder state
PHTEDKITHITAG2STATE_XMA (the transponder is still in XMA state):

\
baseData.TxBufl[0] = 7;
transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 26 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

726 PHTEDKITHITAG2CMD_READPAGE, &baseData);

The result is stored in RxBuf1 and printed on the screen:

733 printf("page #7 := 0x%08X\n", bytesToLong(baseData.RxBufl, 0));

7.12 Shut Down

To properly shut down the application, the following steps are necessary. First, the TED-
Kit 2 device is closed:

741  ioData.Function = PHTEDKITIOFKT_CLOSE;
742 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);
743 if (ioData.StatusCode != PHTEDKITSTATUS_OK) {

744 printf("Unable to close device.\n");
745 return EXIT_FAILURE;
746}

Second, the TED-Kit 2 library API resources are freed.

749 phcsApilnt_Destroy(api);

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 27 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

8. Transmit/Receive Logging

DOC-091497

8.1

All functions dealing with transmission and reception (see Table 5, page 28) of data to
and from transponders log the actual bits send or received. These logging data can be
used to visualize the data stream or analyze it for debugging purposes.

Table 5. Functions for Tx/Rx

Function API Layer Page

TransmitReceive Base API 83

TransmitReceive Extension API 98

PkeAuthent Extension API 104
PkePollEnable Extension API 106
PkePollIde Extension API 107
PkePollMute Extension API 109
PkeReadEeprom Extension API 111
PkeReadVbat Extension API 113
PkeRssiAll Extension API 115
PkeRssiSingle Extension API 117
PkeWriteEeprom Extension API 119

In case of a ciphered communication, the bits logged are already encrypted or not yet
decrypted.

In case of communication failures, the logging buffers still may contain data. For example
if a 10 bit answer was expected but only 9 bits received, the nine bits are in the logging
buffer (RxBuf 3 in this case).

Storage and Format

The logging data are stored in TxBuf3 and RxBuf3 of the baseData structure. The da-
ta are stored separately for transmitted and received bits. For each transmit/receive se-
quence, a data record is stored in both TxBuf3 (containing the transmission part) and
RxBuf3 (containing the received part).

Because there are several transponder commands with more than one transmit/receive
sequence (e.g. authentication, page writing etc), the data are stored in a way to handle
an arbitrary number of sequences.

Table 6, page 29 illustrates how the data are stored. The format applies to both buffers,
TxBuf3 and RxBuf3.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 28 of 132


http://www.arrow.com

NXP Semiconductors

Table 6. Logging Data Storage Format
0 1 2 3

Number of Number of bits 1% 1*' data byte of ...

Byte of buffer
Description

records record 1 sequence
MSB LSB
Bit 76543210
Order Send/Received 12345678

UM10277_1

Programmer's Manual

X x+1 X+2
Number of bits 2" 1% data byte of ...
record 2 sequence
MSB LSB

76543210
12345678

The first byte always contains the number of records following. Each record consists of a
two byte header containing the number of bits followed by the necessary number of bytes

to represent the bits transmitted/received.

The data section of the record is always byte-a

ligned even if e.g. only 5 bits are transmit-

ted; the next record starts at the next byte of the buffer.

For each transmit record in TxBuf3, a corres

ponding receive record exists in RxBuf3.

This is the case even if any of them is empty (e.g. the write page command has two

transmit and only one receive part).

8.2 Printing the data
The code below illustrates how to print the actual bits transmitted and received on the
screen:
void logMessage(
const char* const prefix, const uint8_t* buf, const uint8_t idx) {
uintlée_t offset = 1;
uintlé_t bitcount;
int 1i;
uint8_t mask;
for (i = 0; i < idx; i++) {
bitcount = ((buf[offset] << 8) | buf[offset + 1])
offset += 2 + ((bitcount / 8) + (bitcount % 8 == 0 ? 0 : 1));
}
bitcount = ((buf[offset] << 8) | bufl[offset + 1]);
printf("%s %i bits\n", prefix, bitcount);
if (bitcount > 0) {
for (i = 0; i < bitcount; i++) {
mask = (1 << (7 - (1 % 8)));
printf("%c", ((buf[2 + offset + (i / 8)] & mask) ? 'I1' 0'));
}
printf("\n");
}
}
void logAllMessages(const phTedKit_BaseData_t* const baseData) {
int txCnt = 0;
int rxCnt = 0;
while ((txCnt < baseData->TxBuf3[0]) || (rxCnt < baseData->RxBuf3[0])) {
if (txCnt < baseData->TxBuf3[0]) {

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011

Downloaded from AFFOW.Ccom.

29 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

logMessage("Transmit", baseData->TxBuf3, txCnt);
txCnt++;

if (rxCnt < baseData->RxBuf3[0]) {
logMessage("Receive", baseData->RxBuf3, rxCnt);
rxCnt++;
}
b
}

The function 1TogAl1Messages can be called right after the execution of an appropriate
Tx/Rx command. It will loop through both buffers and print the bits transmitted (first) and
received (second).

Adding those two functions to the example shown in section 7, page 18 and calling
logAl1Messages right after the write page command:

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

baseData.TxTimel = (uint32_t) (4920 / tickTime);
phcsApiInt_Run(api, PHTEDKITCOMPID BASEAPI, &baseData);
logAllMessages (&baseData);

if (baseData.StatusCode != PHTEDKITSTATUS_OK) ({

}

produces the following output:

Transmit 10 bits

0000010010

Receive 10 bits

0001110110

Transmit 32 bits
10010001010000011000111111101000
Receive 0 bits

This is exactly how the transmit/receive sequence for the write page command of the
HITAG2-Extended transponder is defined. The data shown are the actual data transmit-
ted/received and thus, are encrypted.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 30 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

9. API Reference - Overview

DOC-091497

9.1

9.11

9.1.2

This and the following sections give a detailed description of all the functions offered by
the API and all the functionality which can be accessed through this API.

Functions

The API gives access to the functionality of the TED-Kit 2. This is achieved by using only
a few functions. Depending on the programming language, the names and parameters
differ a bit. Each application using the TED-Kit 2 and its API will go through three parts:

1. Initialize the AP| and the TED-Kit 2 software and hardware.
2. Execute one or more functions of the TED-Kit 2
3. Clean-up the APl and TED-Kit 2 library and resources.

For each of the three steps, the API offers one function. There naming and parameters
differ a bit as well as the location of the declaration depending on the used programming
language.

Initialization

This function must be called before any other interaction with the API can take place.
Each of the three functions returns a (language specific) handle to an instance of the
API. Calling it multiple times will create different, independent instances of the API (e.g.
required to interact with multiple TED-Kit 2 devices at once).

Table 7. API Initialization Function

Programming Method Signature
Language
Interface
C void* phcsApilInt_Alloc()
C++ phcs_TedKit2::Apilnt()
C# phcs_TedKit2::API()
Execution

To execute actual TED-Kit 2 functions, the following method must be used:

Table 8. APl Execution Function

Programming Method Signature
Language
Interface
C PHTEDKITSTATUS phcsApiInt_Run(
void* instance, uintl6_t comp, void* param)
C++ phcs_TedKit2::PHTEDKITSTATUS
phcs_TedKit2::ApiInt.Run(uintl6_t comp, void* param)
C# phcs_TedKit2::API.Run(ushort comp, Object param)

For C the first parameter is always the handle of the desired API/TED-Kit 2. For C++ and
C#, the handle is an instance of the ApiInt class and its method Run can be called di-
rectly on this instance.

The parameter comp defines the layer to which the desired function belongs (see Table
11, page 35; Table 14, page 49 and Table 18, page 85).

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 31 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

9.1.3

9.2

9.21

9.2.2

9.2.3

Programmer's Manual

The last parameter is a pointer (or reference in C#) to a structure (or class in C#). De-
pending on the API layer, one of two structures types needs to be used (see Table 11,
page 35; Table 14, page 49 and Table 18, page 85).

All parameters for a TED-Kit 2 function and all return values created by the TED-Kit 2
function are passed through this structure.

Clean-Up

To clean-up all the resources used by the software, the following method shall be called.
Once this is done, the handle cannot be used anymore!

Table 9. API Destruction Function

Programming Method Signature
Language
Interface
C void phcsApiInt _Destroy(void* instance)
C++ phcs_TedKit2::~Apilnt()
C# void phcs TedKit2::API.dispose()

Common Attributes

There are several attributes of the parameter structure which are shared between some
or all functions. These attributes are explained in detail in the following sections.

Function ID

The attribute Function is required for each function call. It contains the function’s ID
intended to call. It must be one of the IDs shown in Table 10, page 35; Table 13, page 49
and Table 17, page 85.

Status Code

Each function of the API returns a status code stored in the attribute StatusCode. In
case the function executed successfully, the return code will always be
PHTEDKITSTATUS_OK. In case of a problem, the status code will be one of the codes
listed in Table 28, page 122.

Trace Buffer

All  functions of the Ext- (PHTEDKITCOMPID EXTAPI) and the Base-
(PHTEDKITCOMPID_BASEAPI) APl are capable of returning the debug trace data
eventually created by the firmware. This feature is not available for functions of the 1/0
layer (PHTEDKITCOMPID I0).

The debug trace data are nothing but a NULL terminated, human readable ASCII charac-
ter string. It contains text which allows analyzing the firmware’s program flow. This text is
usually available only if the debug version of the firmware is running at the TED-Kit 2’s
pController.

The trace is stored in the attribute TraceBuf of the structure phTedKit_BaseData_t.
To print it, any character string printing function can be used, e.g.

std::cout << dataStructure.TraceBuf << std::endl;

Or

printf(“%s\n”, dataStructure.TraceBuf);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 32 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

9.24

9.3

Programmer's Manual

To determine whether some debug trace data are available, the size of the text string
stored in TraceBuf shall be determined. If it's greater zero, debug trace data are availa-
ble:

if (strlen(dataStructure.TraceBuf) > 0) {

}

It is guaranteed that the TraceBuf attribute of the structure in use is NULL terminated. In
case the debug trace information is empty, NULL will be the first and only content of the
TraceBuf.

Timings
All timing parameters set or returned are specified as so called ticks. Each tick
represents a certain amount of time which depends on the clock cycle of the TED-Kit 2’s

pController. This simplifies the time handling inside the firmware dramatically but creates
some overhead for the API user.

To use the correct timing information, one has to determine the yControllers clock fre-
quency by calling GetDeviceStatus (see section 11.8, page 59) and evaluating the 4"
element of the returned RxBuf1:

long frequency;
baseData.Function = phcs_TedKit2::PHTEDKITBASEAPIFKT_GETDEVICESTATUS;

phcsApilInt_Run(api, PHTEDKITCOMPID_ BASEAPI, &baseData);
if (evalStatus(baseData.StatusCode)) {
frequency = ( (baseData.RxBufl[6] << 24) | (baseData.RxBufl[7] << 16)
| (baseData.RxBufl[8] << 8) | baseData.RxBufl[9]);

}

Now, the software can create the proper API timing values out of the natural timings (in
seconds) given by the user, e.g.:

double headerSymbolDuration_s = 0.000128;

The user specifies e.g. the header symbol duration as 128 pys (0.000128 seconds). The
tick time is than the natural time multiplied with the frequency in Hz:

int headerSymbolDuration_tick = headerSymbolDuration_s * frequency;

The result depends on the value of frequency, for a yController running at e.g. 48 MHz,
the tick time value is 6144 and for a yController running at 24 MHz it is 3072. This value
than shall be used during the API call of e.g. SetReceptionParams (see section 11.19,
page 76) or GetReceptionParams (see section 11.11, page 63) .

All natural timing values need to be converted to the system specific tick time and vice
versa. The user shall never see these tick times. In the user interface only timings in
seconds (or the proper sub units like ys or ms) shall be used.

Common Example Code

All example code in the following sections is written in plain C and will run if compiled
together with the code section shown below.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 33 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 9-1. Preamble for Example Code

Programmer's Manual

#include "intfs\IphcsApiInt\inc\phIcsApiInt.h"
#include "types\phTedKitCommands.h"
#include "types\phTedKitStatus.h"

#include <stdio.h>

void* getTEDKit2API() {
phTedKit_IoData_t data;

void* api = phcsApiInt_Alloc();

data.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;
phcsApilnt_Run(api, PHTEDKITCOMPID IO, &data);
printf("FTDI devices found: %i\n", data.DeviceNum);

data.Function = PHTEDKITIOFKT_OPEN;
data.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;
data.Port = 0;

phcsApilnt_Run(api, PHTEDKITCOMPID IO, &data);

return api;

void copy(const uint32_t value, uint8_t* const dest, const int offset) {

dest[offset + 0] = (uint8_t) ((value >> 24) & OxFF);
dest[offset + 1] (uint8_t) ((value >> 16) & OxFF);
dest[offset + 2] = (uint8_t) ((value >> 8) & OxFF);
dest[offset + 3] = (uint8_t) ((value >> 0) & OxFF);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

34 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

10. API Reference - I/O Functions

The functions of the I/O library component provide access to the major functions of the
FTDI driver library. These functions are mainly used for maintenance of the TED-Kit 2
and do not deliver any functionality regarding NXP’s base station or transponder compo-
nents.

The functions of this group do not interact with the TED-Kit 2 uC firmware. They only talk
to either the device driver or to the FTDI hardware of the TED-Kit 2 system.

The 1/O layer offers the following functions:

Table 10. Function Codes - 1/O Layer
Note: All values are prefixed with PHTEDKITIOFKT _

Value Description Page
CLOSE Close a FTDI/TED-Kit 2 device. 36
EE_UAREAD Reads the TED-Kit 2’'s FTDI EEPROM. 37
EE_UASIZE Returns the TED-Kit 2’s FTDI EEPROM size. 39
EE_UAWRITE Writes the TED-Kit 2’'s FTDI EEPROM. 40
GET_API_VERSION Returns the TED-Kit 2 API library version. 41
GET_DEVICE INFODETAIL Returns details abouta FTD/TED-Kit 2 device. 42
GET_DEVICE_NUMBER Returns the number of FTDI devices on the USB. 44
GET_DRIVER_VERSION Returns the FTDI/TED-Kit 2 device driver version. 45
GET_LIBRARY_VERSION Returns the FTDI library version. 46
OPEN Opens a FTDI/TED-Kit 2 device. 47

All functions explained in this section use the following APl Run-method parameters:

Table 11. Parameters of Method Run - 1/O layer

Parameter Value
Component ID PHTEDKITCOMPID_IO
Structure Type phTedKit_IoData_t
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 35 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

10.1 Close

This function closes the connection to a previously opened TED-Kit 2 device.

See section 10.10, page 47 for the corresponding Open command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute

Input
Function PHTEDKITIOFKT_CLOSE
Output
StatusCode see Table 28, page 122 The status code information about success or failure.

Example 10-1: Close

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITIOFKT_CLOSE;

/* call the API’s run(..) method */
phcsApilInt_Run(api, PHTEDKITCOMPID IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 36 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

10.2 EEUARead

This function reads the content of the TED-Kit 2's FTDI IC EEPROM user area. The max-
imum size of that memory is determined by calling function EEUASize (section 10.3,
page 39). If the input attribute EESize exceeds this number, the behavior is undefined.

See section 10.4, page 40 for the corresponding EEUAWr i te command.

For the meaning of each of the EEData’s values (the memory layout), see Table 12,
page 37.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_ _EE_UAREAD
EESize unsigned 32 Bit The number of bytes being read, maximum can
be retrieved with call of EEUASize.
Output
StatusCode see Table 28, page 122 The status code information about success or
failure.
EEData 0...EESi ze of unsigned 8 bit The bytes being read.
Table 12. FTDI EEPROM layout
Address Value Description
0 The hardware version of the TED-Kit 2 main board. Currently, the values 0, 1
and 2 (for the board revisions 0, 1 and 2) are in use.
1..13 The TED-Kit 2’s custom name. 12 ASCII characters in the range from 20nex to
TEnex (all printable US-ASCII characters).
14..23 Currently not used.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 37 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Example 10-2: EEUARead

int main() {
phTedKit_IoData_t data;
int 1;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* determine user area size */
const uint32_t EEPROM_SIZE = 22; /* the default UAEE size */
/* populate data structure */
data.Function = PHTEDKITIOFKT_EE_UAREAD;
data.EESize = EEPROM_SIZE;
/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

/* print the user area content */

for (i = 0; i < data.EESize; i++) {

printf ("%02X\n", (int) data.EEDatal[i]);

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 38 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

10.3 EEUASIze

Programmer's Manual

This function returns the number of bytes of the TED-Kit 2’s FTDI IC EEPROM user area.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_EE_UASIZE
Output
StatusCode see Table 28, page 122 The status code information about success or
failure.
EEEsize unsigned 32 bit The size of the user area in bytes.

Example 10-3: EEUASIize

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITIOFKT_EE_UASIZE;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
/* print the user area content */
printf("User EE size=%i bytes\n", data.EESize);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

39 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

10.4 EEUAWTrite

This function writes the content of the TED-Kit 2’s FTDI IC EEPROM user area. The
maximum size of that memory is determined by calling function EEUAS1i ze (section 10.3,
page 39). If the input attribute EES1ize exceeds this number, the behavior is undefined.

See section 10.2, page 37 for the corresponding EEUARead command.

For the meaning of each of the EEData’s values (the memory layout), see Table 12,

page 37.
Data Structure Attributes Used
Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_EE_UAWRITE
EESize 0...PHTEDKITIO BUFSIZE of The number of bytes being written.
unsigned 8 bit.
EEData Array of unsigned 8 bit with The bytes being written (always starts at EE-
EESize of valid data. PROM address 0).
Output
StatusCode see Table 28, page 122 The status code informing about success or
failure.

Example 10-4: EEUAWTrite

int main() {
phTedKit_IoData_t data;

int 1;

void* api = getTEDKit2API();

data.Function = PHTEDKITIOFKT_EE_UAWRITE;

data.EESize = 10;
for (i = 0; i < 10; i++) {
data.EEData[i] = 1i;

}

phcsApilInt_Run(api, PHTEDKITCOMPID_ IO, &data);

if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

}
}

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 40 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

10.5 GetAPIVersion

This function returns the version of the API library currently in use.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_GET_API_VERSION
Output
StatusCode see Table 28, page 122 The status code informing about success
or failure.
ID 32 bit unsigned The version information.
Bits 0..7 The micro part of the version.
Bits 8..15 The minor part of the version
Bits 16..23 The major part of the version.

Example 10-5: GetAPIVersion

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITIOFKT_GET_API_VERSION;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
printf("TED-Kit 2 API Version: %i.%i.%i\n",
((data.ID >> 16) & 255),

((data.ID >> 8) & 255),
((data.ID >> 0) & 255));

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 41 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

10.6 GetDevicelnfoDetail

This function returns configuration details of an FTDI device (which might be a TED-

Kit 2).

UM10277_1

Programmer's Manual

This function can be called without opening the device in advance. The function
GetDeviceNumber (see section 10.7, page 44) must be called in advance to allow the

device driver to properly determine the device details.

Data Structure Attributes Used

Structure
Attribute

Function
Port

StatusCode

Flags

Type
ID

LocID

SerialNumber

Description

Value(s)

Input
PHTEDKITIOFKT_GET_DEVICE_INFODETAIL

0..126

Output

see Table 28, page 122

unsigned 32 bit

unsigned 32 bit
unsigned 32 bit

unsigned 32 bit

NULL terminated character string, length is 1..16

(incl. NULL)

NULL terminated character string, length 1..64

(incl. NULL)

Description

The port (index) of the TED-
Kit 2 box of interest.

The status code informing
about success or failure.

Bit 0 indicates whether this
port is open (1) or closed (0).
All other bits are reserved and
have no purpose at this time.
unknown

The hardware’s product and
vendor ID. For the TED-Kit 2,
always

PHTEDKITUSB_VIDPID.
unknown

The TED-Kit 2’s unique serial
number.

The description of the TED-
Kit2 device from the USB
point of view, always TED-
Kit 2.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

42 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 10-6: GetDevicelnfoDetail

Programmer's Manual

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */

data.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

data.Port = 0;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

printf("FTDI device details:\n");

printf("TED-Kit 2 : %s\n",
(data.ID == PHTEDKITUSB_VIDPID ? "yes" : "no"));
printf("Port © %d\n", data.Port);
printf("Flags : %d\n", data.Flags);
printf (" -> opened=%s\n", ((data.Flags & 1) ? "yes" : "no"));
printf("Type : %d\n", data.Type);
printf("DevicelD © Ox%08X\n", data.ID);
printf("LocId : %d\n", data.Locld);

printf("SerialNumber : %s\n", data.SerialNumber);

printf("Description : %s\n", data.Description);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

43 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

10.7 GetDeviceNumber

This function returns the number of FTDI devices found on the USB.

A FTDI device is not necessarily a TED-Kit 2 device (FTDI chips can be found in many
products). To ensure an FTDI device is actually a TED-Kit 2 device, check for the ven-
dor- and product code returned by GetDeviceInfoDetail (see section 10.6, page 42).

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_GET_DEVICE_NUMBER
Output
StatusCode see Table 28, page 122 The status code informing about suc-
cess or failure.
DeviceNum 0..126 The number of FTDI devices found
on the USB.

Example 10-7: GetDeviceNumber

int main() {
phTedKit_IoData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
} else {
printf("FTDI devices found: %i\n", data.DeviceNum);
}
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 44 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

10.8 GetDriverVersion
This function returns the version of the FTDI device driver currently in use.

In order to get a valid result, at least one FTDI device must be currently opened (see
Open, section 10.10, page 47).

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_GET_DRIVER_VERSION
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
ID 32 bit unsigned The version information as.
major.minor.micro.
Bits 0..7 The micro part of the version.
Bits 8..15 The minor part of the version
Bits 16..23 The major part of the version.

Example 10-8: GetDriverVersion

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* OPEN AT LEAST ONE DEVICE .. */

/* populate data structure */
data.Function = PHTEDKITIOFKT_GET_DRIVER_VERSION;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID_ IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
printf("FTDI Driver Version: %i.%i.%i\n",
((data.ID >> 16) & 255),
((data.ID >> 8) & 255),
((data.ID >> 0) & 255));

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 45 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

10.9 GetLibraryVersion

This function returns the version of the (FTDI-) library currently in use.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITIOFKT_GET_LIBRARY_VERSION
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
ID 32 bit unsigned The version information as.
major.minor.micro
Bits 0..7 The micro part of the version.
Bits 8..15 The minor part of the version
Bits 16..23 The major part of the version.

Example 10-9: GetLibraryVersion

int main() {
phTedKit_IoData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITIOFKT_GET_LIBRARY_VERSION;

/* call the API’s run(..) method */
phcsApilInt_Run(api, PHTEDKITCOMPID IO, &data);
/* evaluate status code returned */

if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */
printf("failure %04X\n", data.StatusCode);

} else {
printf("FTDI Library Version: %i.%1.%i\n",
((data.ID >> 16) & 255),
((data.ID >> 8) & 255),
((data.ID >> 0) & 255));

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 46 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

Programmer's Manual

10.10 Open

This function opens a FTDI/TED-Kit 2 device. Calling this function is required to work
with a device or to update its firmware (see input parameter).

If the device is not longer used, it shall be closed using the appropriate API function

Close (see section 10.1, page 36).

Data Structure Attributes Used

Structure Value(s)
Attribute
Input
Function PHTEDKITIOFKT_OPEN
OpenMode PHTEDKITIOFKT_NORMAL_OPERATION
PHTEDKITIOFKT_FIRMWARE_UPDATE
Port 0..n
FileInfo String
Output
StatusCode see Table 28, page 122

Description

The TED-Kit 2 will operate in normal
mode.

The TED-Kit 2 will be ready to load a
new firmware (update).

The device/port number of the TED-
Kit 2 desired to be opened. This num-
ber is retrieved from the result of call-
ing GetDeviceInfoDetail

The path and name of the HEX file
containing the firmware to be up-
loaded. Used only if OpenMode is set
to

PHTEDKITIOFKT_FIRMWARE_UPDATE

The status code informing about suc-
cess or failure.

Example 10-10: Open (Normal Operation)

int main() {
void* api

getTEDKit2API();

phTedKit_IoData_t data;

data.Function PHTEDKITIOFKT_OPEN;
data.OpenMode
data.Port 0;

phcsApilInt_Run(api, PHTEDKITCOMPID IO, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}

}

PHTEDKITIOFKT_NORMAL_OPERATION;

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011

Downloaded from AFFOW.Ccom.

47 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Example 10-11: Open (Firmware Update)

int main() {
void* api = getTEDKit2API();

/* populate the data structure */
phTedKit_IoData_t data;
data.Function = PHTEDKITIOFKT_OPEN;
data.OpenMode = PHTEDKITIOFKT_FIRMWARE_UPDATE;
data.Port = 0;
data.FileInfo = "C:\\foo\\tedkit2.hex";
/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID IO, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

}

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 48 of 132

Downloaded from AFFOW.COM.


http://www.arrow.com

NXP Semiconductors

UM10277_1

Programmer's Manual

11. APl Reference - Base Functions

DOC-091497

The base API functions represent a direct access to the functionality provided by the
TED-Kit 2 system (hardware with firmware running on the uC).

The base layer offers the following functions:

Table 13. Function Codes - Base Layer
Note: All values are prefixed with PHTEDKITBASEFKT _

Value
DELAY
DESELECTXSLOT
DISABLECONTRECEPTION
EDITGPIOPIN
ENABLECONTRECEPTION
GETBUTTONSTATES
GETCONTRECEIVEDDATA
GETDEVICESTATUS
GETFWVERSION
GETLEDSTATES
GETRECEPTIONPARAMS
GETTRANSMISSIONPARAMS
GETWORDSIZE
GETXBOARDCONFIG
GETXSLOTINFO
RESETMAINBOARD
RESETXBOARD
SETLEDSTATES
SETRECEPTIONPARAMS
SETTRANSMISSIONPARAMS
SETWORDSIZE
SETXBOARDCONFIG
TRANSMITRECEIVE

Description
Delays processing of the next TED-Kit 2 command.
Deselects the given XSlot/XBoard.
Disables continuous data reception.
Read/Write the TED-Kit 2’s yC GPIO pins.
Enables continuous data reception.
Returns the status of the TED-Kit 2 buttons.
Returns the continuously received data.
Returns status information from the TED-Kit 2.
Returns the firmware version running on a TED-Kit 2.
Returns the status (on/off) of the TED-Kit 2 LEDs.
Returns the reception parameters for an XBoard.
Returns the transmission parameters for an XBoard.
Returns the word size of the given XBoard.

Returns the configuration of an XBoard.

Returns information about the 4 XSlots of a TED-Kit 2.

Resets the TED-Kit 2 main board (incl. uC)
Resets the given XBoard.

Sets the state (on/off) of the TED-Kit 2’s LEDs.
Sets the reception parameters of an XBoard.
Sets the transmission parameters of an XBoard.
Sets the word size for the given XBoards

Sets the configuration of an XBoard.

Transmits/Receives data as configured.

Page
50
51
52
53
55
56
57
59
61
62
63
65
67
68
70
73
74
75
76
78
80
81
83

All functions explained in this section use the following APl Run-method parameters:

Table 14. Parameters of Method Run — base layer

Parameter

Value

ComponentID  PHTEDKITCOMPID_BASEAPI
Structure Type phTedKit_BaseData_t

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

49 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

11.1 Delay

This function requests the TED-Kit 2 to delay processing of the next command for the
given number of system ticks.

The duration of one tick is the time of one clock cycle of the TED-Kit 2 uController. To
retrieve the pController's clock frequency, call GetDeviceStatus (see section 11.8, page

59).
Data Structure Attributes Used
Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT _DELAY
TxTimel unsigned 32 bit The number of ticks any further
processing is delayed.
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 0..PHTEDKITTRACE_BUFSIZE ASCIlI The human readable debug trace
characters, NULL terminated. created by the firmware for each
call.

Example 11-1: Delay

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_DELAY;

if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}

}

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011

Downloaded from AFFOW.Ccom.

50 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.2 DeselectXSlot

This function deselects the currently selected XSlot of the TED-Kit 2. An XSlot becomes
selected automatically if used (by the appropriate commands).

This command shall be executed before calling EditGPIOPIn (see section 11.4, page 53).

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT DESELECTXSLOT
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE BUFSIZE ASCIlI cha- The human readable debug trace
racters, NULL terminated. created by the firmware for each
call.

Example 11-2: DeselectXSlot

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_DESELECTXSLOT;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

}
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 51 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

11.3 DisableContReception

This function stops the continuous data reception and discards all received data. See
section 11.5, page 55 for the corresponding EnableContReception command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_DISABLECONTRECEPTION
Output
StatusCode see Table 28, page 122 The status code inform-
ing about success or
failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIl characters, The human readable
NULL terminated. debug trace created by
the firmware for each
call.

Example 11-3: DisableContReception

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_DISABLECONTRECEPTION;

phcsApiInt_Run(api, PHTEDKITCOMPID_ BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

}
}

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 52 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

11.4 EditGPIOPin

UM10277_1

Programmer's Manual

Sets the directions and values of the GPIO pins of the yController on the TED-Kit 2 main
board and returns immediately the new pin directions and values.

In order to make this command work properly, the currently selected XBoard needs to be
deselected (see command DeselectXSlot, section 11.2, page 51).

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input

Function PHTEDKITBASEAPIFKT_EDITGPIOPIN

TxDatal PinDirection, 0..65535 Bits 0...15 correspond to the GPIO pins 0...15. 0 sets the cor-
responding GPIO pin to input and 1 to output.

TxData2 PinDirectionMask, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. When a bit is
“1”, the direction of the corresponding GPIO pin will be set ac-
cording to the corresponding bit of PinDirection; when a bit is
“0”, the direction of the corresponding GPIO pin remains un-
changed.

TxData3 PinValue, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. Output GPIO
pins will be set accordingly if the corresponding bits of PinVal-
Mask are “1”.

TxData4 PinValueMask, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. The bits that
correspond to input GPIO pins are ignored. For the rest bits,
when it is “1”, the corresponding output GPIO pin will be set
according to the corresponding bit of PinValue; when a bit is “0”,
the corresponding output GPIO pin remains unchanged.

Output

StatusCode see Table 28, page 122 The status code informing about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIlI The human readable debug trace created by the firmware for

characters, NULL terminated. each call.

RxDatal PinDirection, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. If a bit is “0”,
the corresponding GPIO pin is currently set as input; otherwise,
the pin is set as output.

RxData2 PinValue, 0..65535 Bits 0 to 15 correspond to the values of GPIO pins 0 to 15.

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 53 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 11-4: EditGPIOPin

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_EDITGPIOPIN;

/* set pins to reading (input) */

data.TxDatal = 0;

/* pin direction valid only for pins @ and 1 */
data.TxData2 = 0x03;

/* call the API’s run(..) method */

phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
/* do something with the data retreived. */
printf("%X\n", (data.RxData2 & data.RxDatal));

}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

54 of 132


http://www.arrow.com

NXP Semiconductors

11.5 EnableContReception

UM10277_1

Programmer's Manual

This function starts continuous data reception using the XBoard in the designated XSlot.

Only one XBoard can receive continuous data at a time.

To actually get the data received, repetitive calls to function GetContReceivedData

(see section 11.7, page 57) are necessary.

To stop continuous reception of data, use function DisableContReception (see sec-

tion 11.3, page 52).

Data Structure Attributes Used

Structure Value(s)
Attribute
Input
Function PHTEDKITBASEAPIFKT_ENABLECONTRECEPTION
TxDatal See Table 29, page 124.
TxData2 RxMaxLength, 0..65535
Output
StatusCode see Table 28, page 122
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIl characters,

NULL terminated.

Description

Specifies the target XSlot
to be selected.

The maximum data frame
size to be received, in
words.

The status code informing
about success or failure.

The human readable de-
bug trace created by the
firmware for each call.

Example 11-5: EnableContReception

int main() {
phTedKit_BaseData_t data;

int 1;

void* api = getTEDKit2API();

data.Function =
data.TxDatal
data.TxData2

PHTEDKITBASEAPIFKT_ENABLECONTRECEPTION;
PHTEDKITXBOARD_XSLOT_O;
500;

phcsApilnt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}

}

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011

Downloaded from AFFOW.Ccom.

55 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

11.6 GetButtonStates

This function returns the state of the 2 buttons at the TED-Kit 2 box. These buttons can
be freely used to interact with the user.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_GETBUTTONSTATES
Output
StatusCode see Table 28, page 122 The status code informing about

success or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac- The human readable debug trace

ters, NULL terminated. created by the firmware for each
call.
RxDatal Button states, only bits 0 and 1 relevant. The button state (bit 0 for button

1, bit 1 for button 2), 1 indicates
pressed, 0 indicates released.

Example 11-6: GetButtonStates

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_GETBUTTONSTATES;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

} else {
printf("Button #1: %s\n",
(data.RxDatal & 1 ? "pressed" : "released"));
printf("Button #1: %s\n",
(data.RxDatal & 2 ? "pressed" : "released"));
}
}
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 56 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.7 GetContReceivedData

This function is used to retrieve the next available chunk of data during continuous data
reception.

Continuous data reception has to be enabled first using function
EnableContReception (see section 11.5, page 55).

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT _GETCONTRECEIVEDDATA
Output
StatusCode see Table 28, page 122 The status code informing
about success or failure.
TraceBuf 1..PHTEDKITTRACE BUFSIZE ASCIl characters, The human readable de-
NULL terminated. bug trace created by the
firmware for each call.
RxDatal RxLength, 16 Bit The length of received
response data frame in
word.
RxData2 Overrun, 8 Bit, true/false information Reception of frames is
contiguous.
RxBuf1l RxData The received data frame.
RxBuf2 Timestamp, 8 Byte The timestamp of the re-

ceived data frame

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 57 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 11-7: GetContReceivedData

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

int 1;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* CONFIGURE AND ENABLE CONTINOUS RECEPTION.. */

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_GETCONTRECEIVEDDATA;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
if (data.RxDatal != 0) {
printf("data loss\n");
} else {
printf("received %i bytes:\n", data.RxDatal);
for (i = 0; i < data.RxDatal; i++) {
printf("%02X\n", data.RxBufl[0]);

}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

58 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

11.8 GetDeviceStatus

This function returns status information of the TED-Kit 2 device.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function

StatusCode

TraceBuf

RxBufl

Value(s)

Input

PHTEDKITBASEAPIFKT_GETDEVICESTATUS
Output

see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

Byte array with 10 entries representing 4
numbers, each number is stored in big endian

(highest byte first)
[0..1]

[2..3]

[4..5]

[6..9]

Description

The status code informing about
success or failure.

The human readable debug trace
created by the firmware for each
call.

The number of bytes available in
the pController’'s memory.

The number of bytes of the larg-
est continuous block in the
pController's memory.

The supply voltage in multiples of
0.03255V.

The frequency of the pController
clock in Hz.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

59 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 11-8: GetDeviceStatus

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_GETDEVICESTATUS;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

printf("uC memory free : %i bytes\n",
((data.RxBufl[0] << 8) | data.RxBufl[1]));

printf("uc memory largest block free: %i bytes\n",
((data.RxBufl[2] << 8) | data.RxBufl[3]));

printf("Supply Voltage o %f Vin",
((data.RxBufl[4] << 8) | data.RxBufl[5]) * 0.03255f)

printf("pC clock frequency : %i Hz\n",
( (data.RxBufl[6] << 24) | (data.RxBufl[7] << 16)
| (data.RxBufl[8] << 8) | data.RxBufl[9]));

»

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

60 of 132



http://www.arrow.com

NXP Semiconductors

11.9 GetFWVersion

UM10277_1

Programmer's Manual

This function returns the code and version of the firmware currently running at the TED-

Kit 2 board.
Data Structure Attributes Used
Structure Value(s)
Attribute
Input
Function PHTEDKITBASEAPIFKT_GETFWVERSION
Output

StatusCode see Table 28, page 122

TraceBuf 1..PHTEDKITTRACE BUFSIZE ASCIlI charac-
ters, NULL terminated.

RxDatal unsigned 16 bit
RxData2 unsigned 16 bit
RxData3 unsigned 16 bit

Description

The status code informing
about success or failure.

The human readable debug
trace created by the firmware
for each call.

Firmware code number. For
TED-Kit 2 always 0.

The major version number.

The minor version number.

Example 11-9: GetFWVersion

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_GETFWVERSION;

phcsApilInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
} else {

printf("TED-Kit 2 Firmware Version: %i.%i\n",
data.RxData2, data.RxData3);

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011

Downloaded from AFFOW.Ccom.

61 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

11.10 GetLEDStates
This function returns the status (on/off) of the 4 LEDs at the front of the TED-Kit 2 box.

See section 11.18 , page 75 for the corresponding SetLEDStates command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_GETLEDSTATES
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha- The human readable debug trace
racters, NULL terminated. created by the firmware for each
call.
RxDatal Bits 0..3 of RxDatal. Each bit indicates the status of one

LED (0 off, 1 on).

Example 11-10: GetLEDStates

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_GETLEDSTATES;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

} else {
printf("LED #1:%s, #2:%s, #3:%s, #4:%s\n",
(data.RxDatal & 1 ? "on" : "off"),
(data.RxDatal & 2 ? "on" : "off"));
(data.RxDatal & 4 ? "on" : "off"),
(data.RxDatal & 8 ? "on" : "off"));
}
}
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 62 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

Structure
Attribute

Function
TxDatal

StatusCode

TraceBuf

RxDatal

RxData2

RxData3

RxData4d
RxDatab
RxTimel

RxTime2

RxBufl

RxBuf?2

11.11 GetReceptionParams

UM10277_1

Programmer's Manual

This function returns the reception parameters for the XBoard in the given XSlot.

See section 11.19, page 76 for the corresponding SetReceptionParams command.

Data Structure Attributes Used
Value(s)

Input
PHTEDKITBASEAPIFKT_GETRECEPTIONPARAMS
See Table 29, page 124.

Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII
NULL terminated.

Global Inversion, only bit O relevant.

characters,

Synchronization mode, only bit 0 relevant:
0 — pattern based
1 — time based

HeaderLength; 10 — standard, 14 - extended

DataWordSize
BodyDataCoding

SyncTime; depends on the transponder type, refer
to transponder documentation [3], [4] and [5] — look
for twarr Tr.

HeaderSymbolDuration; depends on the trans-
ponder type, refer to transponder documentation
[3], [4] and [5] — look for Tuynit.

DataCodingParams; one value, encoded as big
endian. The value depends on the transponder
type, refer to transponder documentation [3], [4]
and [5]

[0..3]
HeaderPattern; 10 or 14 Bits

Description

The XSlot of the XBoard of interest.

The status code informing about success or failure.

The human readable debug trace created by the
firmware for each call.

Indicates whether the electrical voltage levels of the
signals sent by the transponder are plain (0) or in-
verted (1).

Always 1, indicates time-based synchronization of the
communication between transponder and base sta-
tion.

The number of the half-bits the signal header con-
tains of.

See Table 31, page 125.

See Table 31, page 125.

Time in ticks between end of transmit from base sta-
tion and start of receiving data from transponder.

Duration in ticks for one symbol of the header.

Timing information

Tunit

The coded header bits, value depends on DataCo-
dingType and HeaderLength.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

63 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 11-11: GetReceptionParams

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_GETRECEPTIONPARAMS;
data.TxDatal = PHTEDKITXBOARD_XSLOT_O;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

} else {
printf("Global Inversion Flag : %s\n",
(data.RxDatal ? "on" : "off"));
printf("Synchronization Mode : %s based\n",
(data.RxData2 ? "time" : "pattern"));
printf("Header Length : %1 bits\n", data.RxData3);
printf("Word Size . %1 bits\n", data.RxData4);
printf("Body Data Coding : %s\n",
(data.RxData5 ? "CDP" : "Manchester"));
printf("Synchronizaton Time : %1 system ticks\n", data.RxTimel);
printf("Header Symbol Duration: %i system ticks\n", data.RxTime2);
printf("Data Coding Params o Ox%OX, Ox%OX, O0x%Ox, ...\n",
data.RxBufl[0], data.RxBufl[1l], data.RxBufl[2]);
printf("Header Pattern T Ox%OX%OX\n",

data.RxBuf2[0], data.RxBuf2[1l]);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

64 of 132



http://www.arrow.com

UM10277_1

Programmer's Manual

NXP Semiconductors

11.12 GetTransmissionParams
Returns the transmission parameters set for the XBoard in the given XSlot.
See section 11.20, page 78 for the corresponding SetTransmissionParams com-
mand.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_GETTRANSMISSIONPARAMS
TxDatal See Table 29, page 124. The XSlot of the XBoard of interest.

Output

StatusCode see Table 28, page 122 The status code informing about success or

failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIlI characters, NULL The human readable debug trace created by
terminated. the firmware for each call.
RxDatal Invert, bit 0 Indicates whether the electrical voltage levels
of the signals sent by the base station are
plain (0) or inverted (1).
RxData2 PreambleLength
RxData3 HeaderLength
RxData4d TrailerLength
RxDatab IdleLevel The electrical level of energy (0 or 1) between
base station and transponder if no communi-
cation happens (to ensure the transponder is
still provided with energy).
RxData6 DataWordSize See Table 31, page 125.
RxData7 BodyDataCoding See Table 31, page 125.
RxTimel PreambleSymbolDuration
RxTime2 HeaderSymbolDuration
RxTime3 TrailerSymbolDuration
RxBufl DataCodingParams, array of 16 bytes, each value en- Timing information
coded as big endian. The values depend on the trans-
ponder type, refer to transponder documentation [3], [4]
and [5]
[0..3] Touse (in ticks)
[4..7] To (in ticks)
[8..11] T4 (in ticks)
[12..15] Tstop (in ticks)
RxBuf2 HeaderPattern not used
RxBuf3 TrailerPattern not used

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

65 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 11-12: GetTransmissionParams

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_GETTRANSMISSIONPARAMS;
data.TxDatal = PHTEDKITXBOARD_XSLOT_O;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

} else {

printf("Global Inversion Flag : %s\n",

(data.RxDatal ? "on" : "off"));
printf("Preamble Length %1 bits\n", data.RxData2);
printf("Header Length © %1 bits\n", data.RxData3);
printf("Trailer Length %1 bits\n", data.RxData4);
printf("Idle Level : %s\n",

(data.RxData5 ? "high" : "low"));
printf("Word Size . %1 bits\n", data.RxData6) ;

printf("Body Data Coding : %i\n", data.RxData7);

printf("Preamble Symbol Duration: %i system ticks\n", data.RxTimel);
printf("Header Symbol Duration : %i system ticks\n", data.RxTime2);
printf("Trailer Symbol Duration : %i system ticks\n", data.RxTime3);

printf("Data Coding Params T OX%OX, Ox%OX, Ox%OX,
data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2]);

Y o

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

66 of 132



http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.13 GetWordSize

This function gets the word size for the different coding types. The word size is directly
stored in the API.

One word represents the number of bits carried per symbol of the selected coding
scheme. See Table 31, page 125 for an overview of value combinations.

See section 11.21, page 80 for the corresponding SetWordSize command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_GETWORDSIZE
TxDatal See Table 29, page 124. The XSlot of the XBoard of interest
TxData2 DataDirection, Transmit or Receive direction
O=Transmission, 1=Reception
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha- The human readable debug trace
racters, NULL terminated. created by the firmware for each
call.
RxDatal Word size See Table 31, page 125.

Example 11-13: GetWordSize

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_ GETWORDSIZE;
data.TxDatal PHTEDKITXBOARD_XSLOT_O;
data.TxData2 0;

phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);

} else {
printf("Current word size of XSlot #%i (%s): %i bit(s)\n",
data.TxDatal, (data.TxData2 ? "Rx" : "Tx"), data.RxDatal);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 67 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

11.14 GetXBoardConfig

This function returns the configuration of the XBoard in the given XSlot. The configuration
data are device (XBoard) specific. The stream of bytes received needs to be interpreted
according to the specification of the XBoard device (e.g. ABIC1 or LoPSTer).

UM10277_1

Programmer's Manual

See section 11.22, page 81 for the corresponding SetXBoardConfig command.

Data Structure Attributes Used

Structure
Attribute

Function
TxDatal

TxData2

TxData3

StatusCode

TraceBuf

RxBufl

Value(s)

Input

PHTEDKITBASEAPIFKT_GETXBOARDCONFIG

See Table 29, page 124.

Offset

Length

Output

see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

alternative 1:

ConfigData for ABIC1 Xboard
see [UM10278_1

alternative 2:

ConfigData for LoPSTer Xboard
see [UM10278 1

Description

The XSlot of the XBoard of inter-
est.

The offset in the ConfigData ar-
ray.

The length of the ConfigData ar-
ray.

The status code informing about
success or failure.

The human readable debug trace
created by the firmware for each
call.

The configuration data for ABIC1
being set.

The configuration data for LoP-
STer being set.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

68 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 11-14: GetXBoardConfig

int main() {
phTedKit_BaseData_t data;

int 1;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure to receive the configuraton

for an ABIC1 XBoard. */
data.Function = PHTEDKITBASEAPIFKT_GETXBOARDCONFIG;
data.TxDatal = PHTEDKITXBOARD_XSLOT_O;
/* request all data starting at configuration 0 */
data.TxData2 = 0;

/* request all data (13 bytes) */
data.TxData3 = 13;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
printf("Configuration for ABIC1 in XSlot #%i:\n", data.TxDatal);
for (i = 0; i < data.TxData3; i++) {
printf("0x%02X ", data.RxBufl[il);

}
printf("\n");

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

69 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

11.15 GetXSlotinfo

This function returns information about the 4 XSlots of a TED-Kit 2 box.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function

StatusCode

TraceBuf

RxDatal
RxData2
RxData3
RxData4d
RxDatab
RxData6
RXdata7
RxData8

Value(s)

Input
PHTEDKITBASEAPIFKT_GETXSLOTINFO
Output
see Table 28, page 122

1..PHTEDKITTRACE BUFSIZE ASCII charac-
ters, NULL terminated.

See Table 15, page 70.
See Table 15, page 70.
See Table 15, page 70.
See Table 15, page 70.
See Table 16, page 70.
See Table 16, page 70.
See Table 16, page 70.
See Table 16, page 70.

Description

The status code informing about
success or failure.

The human readable debug
trace created by the firmware
for each call.

Type of XBoard in XSlot 0.
Type of XBoard in XSlot 1.
Type of XBoard in XSlot 2.
Type of XBoard in XSlot 3.
Features of XBoard in XSlot 0.
Features of XBoard in XSlot 1.
Features of XBoard in XSlot 2.
Features of XBoard in XSlot 3.

Table 15. XBoard Type Code Values

Value Description
PHTEDKITXBOARD_SELFTESTING future use
PHTEDKITXBOARD_EXPERIMENT Indicates an experimental XBoard.
PHTEDKITXBOARD_UAA3220 future use
PHTEDKITXBOARD_CRYPTO future use

PHTEDKITXBOARD_LOBSTER
PHTEDKITXBOARD_ABIC1
PHTEDKITXBOARD_ABIC2
PHTEDKITXBOARD_NONE

Indicates a LoPSTer XBoard.
Indicates an ABIC-1 XBoard.
Indicates an ABIC-2 XBoard

Indicates no XBoard present.

Table 16. XBoard Feature Code Values

PHTEDKITXBOARD_FEAT_LF
PHTEDKITXBOARD_FEAT_UHF
PHTEDKITXBOARD_FEAT_SPI
PHTEDKITXBOARD_FEAT_I2C
PHTEDKITXBOARD_FEAT_GPIO
PHTEDKITXBOARD_FEAT_LIN
PHTEDKITXBOARD_FEAT_INT
PHTEDKITXBOARD_FEAT_AIN

Value Description

XBoard has LF antenna.

XBoard has UHF antenna.

XBoard communicates via SPI interface.
XBoard communicates via 12C interface.
XBoard communicates via GPIO interface.
XBoard communicates via LIN.

XBoard has Interrupt output.

XBoard has analog input.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

70 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Value Description
PHTEDKITXBOARD_FEAT_AOUT XBoard has analog output.
PHTEDKITXBOARD_FEAT_TX XBoard is able to transmit data.
PHTEDKITXBOARD_FEAT_RX XBoard is able to receive data.
PHTEDKITXBOARD_FEAT_CONFIGTXRX XBoard can be configured while transmitting or receiv-
ing data.
PHTEDKITXBOARD_FEAT_DISABLED XBoard is disabled due to a conflicting XBoard configu-
ration.
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 71 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

Example 11-15: GetXSlotinfo

void printXSlotInfo(
const int slot, const uintl6_t type, const uintl6_t features) {
printf("XBoard in XSlot #%i:\n", slot);
printf(" Type: ");
switch (type) {
case PHTEDKITXBOARD_SELFTESTING:
printf("Selftesting\n"); break;
case PHTEDKITXBOARD_ EXPERIMENT:
printf("Experiment\n"); break;
case PHTEDKITXBOARD_UAA3220:
printf("UAA 3220\n"); break;
case PHTEDKITXBOARD_CRYPTO:
printf("Crypto\n"); break;
case PHTEDKITXBOARD_LOPSTER:
printf("LoPSTer\n"); break;
case PHTEDKITXBOARD_ABIC1:
printf ("ABIC-1\n"); break;
case PHTEDKITXBOARD_ABIC2:
printf ("ABIC-2\n"); break;
case PHTEDKITXBOARD_NONE:
printf("None\n"); return;

default:
printf("Unknown (%02X)\n", type); return;
}
printf(" Features: LF(%s), UHF(%s), SPI(%s), I2C(%s), GPIO(%s), LIN(%s),\n",
(features & PHTEDKITXBOARD_FEAT_LF ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_UHF ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_SPI ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_I2C ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_GPIO ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_LIN ? "yes" : "no"));
printf (" Interrupt(%s), Analog In(%s), Analog Out(%s), Tx(%s),\n",
(features & PHTEDKITXBOARD_FEAT_INT ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_AIN ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_AOUT ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_TX ? "yes" : "no"));
printf (" Rx(%s), Configure Tx/Rx(%s), Disabled(%s)\n",
(features & PHTEDKITXBOARD_FEAT_RX ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_CONFIGTXRX ? "yes" : "no"),
(features & PHTEDKITXBOARD_FEAT_DISABLED ? "yes" : "no"));

}

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_GETXSLOTINFO;

/* call the API’s run(..) method */

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

/* evaluate status code returned */

if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);

} else {
printXSltotInfo(PHTEDKITXBOARD_XSLOT_O, data.RxDatal, data.RxData5);
printXSlotInfo(PHTEDKITXBOARD_XSLOT_1, data.RxData2, data.RxData6);
printXSltotInfo(PHTEDKITXBOARD_XSLOT_2, data.RxData3, data.RxData7);
printXSlotInfo(PHTEDKITXBOARD_XSLOT_3, data.RxData4, data.RxData8);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011 72 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.16 ResetMainBoard

This function resets the main board. After the reset, all four LEDs on the TED-Kit 2 main
board are switched off and all GPIO pins are set to input pins.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_RESETMAINBOARD
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac- The human readable debug
ters, NULL terminated trace created by the firmware
for each call.

Example 11-16: ResetMainBoard

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure */
data.Function = PHTEDKITBASEAPIFKT_RESETMAINBOARD;

/* call the API’s run(..) method */
phcsApilInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */
printf("failure %04X\n", data.StatusCode);

}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 73 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.17 ResetXBoard

This function resets the XBoard in the given XSlot. The state will be the same as after the
device initialization, i.e. all parameters of the XBoard are back to default.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_RESETXBOARD
TxDatal See Table 29, page 124. The XSlot of the XBoard being reset.
Output
StatusCode see Table 28, page 122 The status code informing about suc-
cess or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIl The human readable debug trace
characters, NULL terminated. eventually created by the firmware
for each call.

Example 11-17: ResetXBoard

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_RESETXBOARD;
data.TxDatal = PHTEDKITXBOARD_XSLOT_O;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 74 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

11.18 SetLEDStates
This function turns the 4 status LEDs at the TED-Kit 2 box on or off.

To retrieve the status of the LEDs, use command GetLEDStates (see section 11.10,

UM10277_1

Programmer's Manual

page 62).
Data Structure Attributes Used
Structure Value(s)
Attribute
Input
Function PHTEDKITBASEAPIFKT _SETLEDSTATES
TxDatal States, 0..15
TxData2 Mask, 0..15
Output

StatusCode see Table 28, page 122

TraceBuf

ters, NULL terminated.

1..PHTEDKITTRACE_BUFSIZE ASCII charac-

Description

The LED states, 0 — off, 1 — on.
The bits 0 to 3 correspond with
the LEDs 1 to 4. To leave a
state unchanged, use the
second argument (mask).

Masks the LED modifications, 0
— ignore modification, 1 — apply
modification. The bits 0 to 3
correspond with the LEDs 1 to
4.

The status code informing about
success or failure.

The human readable debug
trace created by the firmware
for each call.

Example 11-18: SetLEDStates

}

int main() {

phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_SETLEDSTATES;

data.TxDatal = OxFF;

data.TxData2

0x02;

phcsApilnt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

75 of 132


http://www.arrow.com

NXP Semiconductors

Structure
Attribute

Function
TxDatal
TxData2

TxData3

TxData4

TxData5b
TxTimel

TxTime?2

TxBufl

TxBuf2

StatusCode

TraceBuf

11.19 SetReceptionParams

UM10277_1

Programmer's Manual

This function sets the reception parameters for the XBoard in the given XSlot.

See section 11.11, page 63 for the corresponding GetReceptionParams command.

Data Structure Attributes Used
Value(s)

Input
PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS
See Table 29, page 124.

SyncMode

Invert

HeaderLength; 10 — standard, 14 - extended

BodyDataCoding

SyncTime; depends on the transponder type, refer
to transponder documentation [3], [4] and [5] — look
for twarr Tr.

HeaderSymbolDuration; depends on the trans-
ponder type, refer to transponder documentation
[3], [4] and [5] — look for Tuynit.

DataCodingParams; one value, encoded as big
endian. The value depends on the transponder
type, refer to transponder documentation [3], [4]
and [5]

[0..3]
HeaderPattern; 10 or 14 Bits

Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII
NULL terminated.

characters,

Description

The XSlot of the XBoard of interest.

Always 1, indicates time-based synchronization of the
communication between transponder and base sta-
tion.

Indicates whether the electrical voltage levels of the
signals sent by the transponder are plain (0) or in-
verted (1).

The number of the half-bits the signal header con-
tains of.

See Table 31, page 125.

Time in ticks between end of transmit from base sta-
tion and start of receiving data from transponder.

Duration in ticks for one symbol of the header.

Timing information

Tunit

The coded header bits, value depends on DataCo-
dingType and HeaderLength.

The status code informing about success or failure.

The human readable debug trace created by the
firmware for each call.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

76 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 11-19: SetReceptionParams

int main() {
phTedKit_BaseData_t data;

/* tick time for the default puC of 48 MHz */
float tickTime = 0.0208333;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure to receive data from a HITAG2 via XSlot #0 */

data.Function = PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS;

data.TxDatal PHTEDKITXBOARD_XSLOT_O;

data.TxData2 1; /* time based synchronization */

data.TxTimel (uint32_t) (1330 / tickTime); /* SyncbDelay 1330ps */

data.TxData3 0; /* global inversion off */

data.TxData4 10; /* Header Length 10 bit */

data.TxTime2 (uint32_t) (128 / tickTime); /* Header Symbol Duration 128pus
*/

data.TxData5 = PHTEDKITCODING_MANCHESTER;

/* populate the data coding params (for Machester encoding): */
/* Tunit = 128us */
copy ((uint32_t) (128 / tickTime), data.TxBufl, 0);

/* Header Pattern for Manchester/EQ -> 5540hex */
data.TxBuf2[0] = 0x55;

data.TxBuf2[1] = 0x40;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011 77 of 132


http://www.arrow.com

NXP Semiconductors

11.20 SetTransmissionParams

UM10277_1

Programmer's Manual

This function sets the transmission parameters for the XBoard in the given XSlot.

See section 11.12, page 65 for the corresponding GetTransmissionParams com-

mand.

Data Structure Attributes Used

Structure
Attribute

Function
TxDatal
TxData2

TxData3
TxDatad
TxData5
TxData6

TxData7
TxTimel
TxTime2
TxTime3
TxBufl

TxBuf2
TxBuf3

StatusCode

TraceBuf

Value(s)

Input

PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS

See Table 29, page 124.
Invert, bit 0

PreambleLength
HeaderLength
TrailerLength

IdleLevel

BodyDataCoding
PreambleSymbolDuration
HeaderSymbolDuration

TrailerSymbolDuration

DataCodingParams, array of 16 bytes, each value en-
coded as big endian. The values depend on the trans-
ponder type, refer to transponder documentation [3], [4]

and [5]
[0..3]
[4..7]
[8..11]
[12..15]
HeaderPattern
TrailerPattern
Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII characters, NULL

terminated.

Description

The XSlot of the XBoard of interest.

Indicates whether the electrical voltage levels of
the signals sent by the base station are plain (0)
orinverted (1).

Specifies the preamble pattern length in symbols.
Specifies the header pattern length in plain bit.
Specifies the trailer pattern length in plain bit.

The electrical level of energy (0 or 1) between
base station and transponder if no communication
happens (to ensure the transponder is still pro-
vided with energy).

See Table 31, page 125.

Duration in ticks for one symbol of the preamble.
Duration in ticks for one symbol of the header.
Duration in ticks for one symbol of the trailer

Timing information

Touise (in ticks)

To (in ticks)

T+ (in ticks)

Tstop (in ticks)

Specifies the header pattern in plain bits.

Specifies the trailer pattern in plain bits.

The status code informing about success or fail-
ure.

The human readable debug trace created by the
firmware for each call.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

78 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

Example 11-20: GetTransmissionParams

int main() {
phTedKit_BaseData_t data;
/* tick time for the default puC of 48 MHz */
float tickTime = 0.0208333;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure to transmit to a HITAG2 transponder via XSlot 0*/
data.Function = PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS;

data.TxDatal PHTEDKITXBOARD_XSLOT_O;

data.TxData2 Q; /* Invert -> no */

data.TxData3 O; /* PreamblelLength */

data.TxTimel @; /* PreambleSymbolDuration */

data.TxData4 0; /* HeaderLength */

data.TxTime2 @; /* HeaderSymbolDuration */

data.TxData5 0; /* TrailerLength */

data.TxTime3 @; /* TrailerSymbolDuration */

data.TxData6 0
data.TxData7 P

; /* IdlelLevel */
HTEDKITCODING_BPLM; /* Data Coding Type -> BPLM */

/* populate the data coding params (for Machester encoding): */
/* T_Pulse -> 48pus */

copy((uint32_t) (48 / tickTime), data.TxBufl, 0);

/* T _Log® -> 160us */

copy((uint32_t) (160 / tickTime), data.TxBufl, 4);

/* T_Logl -> 224us */

copy((uint32_t) (224 / tickTime), data.TxBufl, 8);

/* T_Stop -> 288us */

copy((uint32_t) (288 / tickTime), data.TxBufl, 12);

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011 79 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

11.21 SetWordSize

This function sets the word size for the different coding types. The word size is directly
stored in the API.

One word represents the number of bits carried per symbol of the selected coding
scheme. See Table 31, page 125 for an overview of value combinations.

See section 11.13, page 67 for the corresponding GetWordSize command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITBASEAPIFKT_SETWORDSIZE
TxDatal See Table 29, page 124. The XSlot of the XBoard of interest
TxData2 DataDirection, Transmit or Receive direction
O0=Transmission, 1=Reception
TxData3 Word size See Table 31, page 125.
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE _BUFSIZE ASCII cha- The human readable debug trace
racters, NULL terminated. created by the firmware for each
call.

Example 11-21: SetWordSize

int main() {
phTedKit_BaseData_t data;

void* api = getTEDKit2API();

data.Function = PHTEDKITBASEAPIFKT_ SETWORDSIZE;
data.TxDatal PHTEDKITXBOARD_XSLOT_O;
data.TxData2 0;

phcsApiInt_Run(api, PHTEDKITCOMPID BASEAPI, &data):
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %04X\n", data.StatusCode);
}
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 80 of 132


http://www.arrow.com

NXP Semiconductors

11.22 SetXBoardConfig

This function sets the configuration of the XBoard in the given XSlot. The configuration
data are device (XBoard) specific. The stream of bytes sent needs to be set-up according
to the specification of the XBoard device (e.g. ABIC1 or LoPSTer).

UM10277_1

Programmer's Manual

To only set some configuration bytes, an offset and a length (smaller than the maximum
number of configuration bytes) can be configured.

See section11.14, page 68 for the corresponding GetXBoardConfig command.

Data Structure Attributes Used

Structure
Attribute

Function

Device

TxDatal

TxData2

TxData3

TxBufl

StatusCode

TraceBuf

Value(s)

Input
PHTEDKITBASEAPIFKT_SETXBOARDCONFIG
See Table 30, page 124.

See Table 29, page 124.

Offset:
ABIC1 0-12
LoPSTer 0-207

Note: The data being set have to be placed at
the correct, original index in TxBuf1. Example:
offset = 20, data being transferred have be
placed at TxBug1[20] and beyond.

Length:

ABIC1 1-13

LoPSTer 1-208

alternative 1:

ConfigData for ABIC1 Xboard

see docu TED-Kit FW Host Interface Spec

alternative 2:

ConfigData for LoPSTer Xboard

see docu TED-Kit FW Host Interface Spec
Output

see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII charac-
ters, NULL terminated.

Description

The device type of the XBoard
being configured.

The XSlot of the XBoard of in-
terest.

The offset within the ConfigData
array.

The number of bytes being
transmitted out of ConfigData.

The configuration data for AB-
IC1 being set.

The configuration data for LoP-
STer being set.

The status code informing about
success or failure.

The human readable debug
trace created by the firmware
for each call.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

81 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 11-22: SetXBoardConfig

int main() {
phTedKit_BaseData_t data;

/* tick time for the default puC of 48 MHz */
float tickTime = 0.0208333;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate data structure to configure an ABICl1 in XSlot #0 to work

as base station for a HITAG2. */
data.Function = PHTEDKITBASEAPIFKT_SETXBOARDCONFIG;
data.Device = PHTEDKITEXTAPIDEVICE_ABIC1;
data.TxDatal = PHTEDKITXBOARD_XSLOT_O;

/* offset = 0@ -> set all configuration data at once */
data.TxData2 = 0;

/* length = 13 -> set all configuration data at once */
data.TxData3 = 13;

/* 1 byte "interface & mode" -> set to O -> "non-filtered" */
data.TxBufl[0] = 0;

/* set the data rate to 100 kHz */

copy((uint32_t) (10/tickTime), data.TxBufl, 1);

/* demodulator sampling phase */
data.TxBufl[5] = Ox2c;

/* 1ignore, set to zero. */

data.TxBufl[6] = O;

/* 1ignore, set to zero. */

data.TxBufl[7] = O;

/* set ABIC1 configuration register 0. */
data.TxBufl[8] = 7;

/* set ABIC1 configuration register 1. */
data.TxBufl[9] = 0;

/* set ABIC1 configuration register 2. */
data.TxBufl[10] = O;

/* set ABIC1 configuration register 3. */
data.TxBufl[11l] = 0;

/* no test mode */

data.TxBufl[12] = O;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

82 of 132


http://www.arrow.com

NXP Semiconductors

11.23 TransmitReceive

UM10277_1

Programmer's Manual

Transmit and receives data to and from the transponder in range of the base station of
the given XSlot.

TransmitReceive of the BaseApi is a general purpose T,/R, function. For a more
transponder/immobilizer specific version, refer to the ExtApi TransmitReceive (see sec-

tion 12.2.1, page 98).

Data Structure Attributes Used

Structure
Attribute

Function
TxDatal

TxData2

TxData3
TxDatad

TxBuf2

StatusCode

TraceBuf

RxDatal

RxBufl

PHTEDKITBASEAPIFKT_TRANSMITRECEIVE

Value(s)

Input

See Table 29, page 124.

See Table 29, page 124.

TxLength
RxLength

TxData, array of unsigned 8 bit. data organiza-

tion is like this:

Byte
Bit
Order

0 1

76543210 76

1.2.3.4.5.6.7.8. 9.10.
Output

see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

RxDataLength in bits

RxData, array of unsigned 8 bit. data organiza-

tion is like this:

Byte
Bit
Order

0
76543210
1.2.3.4.5.6.7.8.

1
76
9. 10.

Description

The XSlot of the XBoard used
for transmission.

The XSlot of the XBoard used
for reception.

The number of bits to send.

The number of bits expected to
be received.

The data bits send to the trans-
ponder. Bit 7 of byte 0 is send
first followed by bit 6 and so on.

The status code informing about
success or failure.

The human readable debug
trace created by the firmware
for each call.

The number of bits being re-
ceived.

The data bits received from the
transponder. Bit 7 of byte 0 is
received first followed by bit 6
and so on.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

83 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 11-23: TransmitReceive (base-layer)

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

/* tick time for the default puC of 48 MHz */
float tickTime = 0.0208333;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* SET THE TX PARAMETERS .. */
/* SET THE RX PARAMETERS .. */
/* SET THE TX WORD SIZE TO 1 .. */
/* SET THE RX WORD SIZE TO 1 .. */

/* populate data structure to execute first step

of authentication of a HITAG2 via XSlot #0 */
data.Function = PHTEDKITBASEAPIFKT_TRANSMITRECEIVE;
data.TxDatal PHTEDKITXBOARD_XSLOT_O;
data.TxData2 PHTEDKITXBOARD_XSLOT_O;

/* send 5 bits (5 bits for start authent) */
data.TxData3 = 5;

/* expect 32 bits returned from the transponder (IDE)
data.TxDatad4 = 32;

/* reset duration -> 5ms */

data.TxTimel = (uint32_t) (5000 / tickTime);

/* reset delay -> 10Oms */

data.TxTime2 = (uint32_t) (10000 / tickTime);

/* start auth := 11000 := 1100 0000 (byte) := 0xCO*/
data.TxBuf2[0] = 0xCO;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID BASEAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
/* Print IDE */
printf("%i bit(s) received:\n", data.RxDatal);
printf ("IDE: %02X%02X%02X%02X\n",

}

*/

data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2], data.RxBufl[3]);

For examples how to set the T, and R, parameters, refer to SetTransmissionParams (see
section 11.20, page 78) or SetReceptionParams (see section 11.19, page 76) respective-

ly.

For an example how to set the word size, refer to SetWordSize (see section 11.21, page

80).

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

84 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12. APl Reference - Extended Functions

DOC-091497

The extended API functions provide functionality on top of the base API functions. They
do not have a direct counterpart in the TED-Kit 2 system (in contrast to the base API
functions).

The extended layer offers the following functions:

Table 17. Function Codes - Extended Layer
Note: All values are prefixed with PHTEDKITEXTFKT _

Value Description Page

Cryptographic Engines

AESCRYPTOINIT Initializes the library’s AES crypto engine. 87
AESCRYPTOOPERATION Encrypts/decrypts data with the AES engine. 88
HITAG2CRYPTOINIT Initializes the library’s HITAG2 crypto engine. 89
HITAG2CRYPTOOPERATION Encrypts/decrypts data with the HITAG2 engine. 91
HITAG3CRYPTOINIT Initializes the library’s HITAG2 crypto engine. 93
HITAG3CRYPTOOPERATION Encrypts/decrypts data with the HITAG2 engine. 95
Immobilizer Communication
TRANSMITRECEIVE Communicate with an immobilizer transponder. 98
Passive Keyless Entry
PKEAUTHENT Performs PKE authentication. 104
PKEPOLLENABLE Prepares polling of the IDE of PKE transponders in range. 106
PKEPOLLIDE Polls the IDE from the PKE transponders in range. 107
PKEPOLLMUTE Prevents a given PKE transponder from IDE polling. 109
PKEREADEEPROM Reads the EEPROM of a PKE transponder. 111
PKEREADVBAT Reads battery voltage of a PKE transponder. 113
PKERSSIALL Returns the RSSI for all axes of a PKE transponder. 115
PKERSSISINGLE Returns the RSSI for each axis of a PKE transponder. 117
PKEWRITEEEPROM Writes the EEPROM of a PKE transponder. 119

All functions explained in this section use the following Run-method parameters:

Table 18. Parameters of Method Run — extended layer
Parameter Value

ComponentID  PHTEDKITCOMPID_EXTAPI
Structure Type phTedKit_BaseData_t

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 85 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.1 Cryptography

The following functions can be used to access the cryptographic engines of the TED-
Kit 2 library.

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 86 of 132

Downloaded from AFFOW.COM.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

12.1.1 AESCyrptolnit

This function prepares the API's AES crypto-unit with the given ingredients for later use.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_AESCRYPTOINIT
Device PHTEDKITEXTAPIDEVICE AESCRYPTO See also Table 30, page 124
TxBufl Secret Key 128 Bit, Bytes [0..15] The AES secret key
Output
StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha- The human readable debug trace
racters, NULL terminated. created by the firmware for each call.

Example 12-1: AESCryptolnit

int main() {
phTedKit_BaseData_t data;

int 1;

void* api = getTEDKit2API();

data.Device = PHTEDKITEXTAPIDEVICE_AESCRYPTO;
data.Function = PHTEDKITEXTAPIFKT_AESCRYPTOINIT;
for (i = 0; i < 15; i++) {

data.TxBufl[i] = 1i;
}

phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %4X\n", data.StatusCode);
}
}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 87 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.1.2 AESCryptoOperation

Encrypts or decrypts given data using the 128 bit AES algorithm. The AES crypto-unit
has to be initialized using function AESCyrptolInit (see section 12.1.1, page 87) first.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_AESCRYPTOOPERATION
Device PHTEDKITEXTAPIDEVICE_AESCRYPTO See also Table 30, page 124.
TxBufl Data to be encrypted or decrypted, bytes [0..15]  The data to be encrypted or
decrypted.
Output
StatusCode see Table 28, page 122 The status code informing

about success or failure.
TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII characters, The human readable debug

NULL terminated. trace created by the firmware
for each call.
RxBufl Encrypted or decrypted data, Bytes [0..15] The decrypted or encrypted
data.

Example 12-2: AESCryptoOperation

int main() {
phTedKit_BaseData_t data;
int 1i;

void* api = getTEDKit2API();

data.Device = PHTEDKITEXTAPIDEVICE_AESCRYPTO;
data.Function = PHTEDKITEXTAPIFKT_AESCRYPTOOPERATION;
for (i = 0; i < 15; i++) {

data.TxBufl[i] = 1i;
}

phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);
if (data.StatusCode != PHTEDKITSTATUS_OK) {

printf("failure %4X\n", data.StatusCode);
}

}

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 88 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.1.3 HITAG2Cryptolnit

This function prepares the API's HITAG2 crypto-unit with the given ingredients for later
use.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_HITAG2CRYPTOINIT
Device PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO See also Table 30, page 124.
TxBufl Secret Key 48 Bit, Bytes [0-5] The Secret Key, the Tags IDE
IDE, Bytes [6-9] and a Random Number.
Random Number, Bytes [10-13]
Output
StatusCode see Table 28, page 122 The status code informing about
success or failure.
TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac- The human readable debug
ters, NULL terminated. trace created by the firmware
for each call.
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 89 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-3: HITAG2Cryptolnit

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate the data structure with the ingredients for the

HITAG 2 crypto engine initialization. */
data.Device = PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO;
data.Function = PHTEDKITEXTAPIFKT_HITAG2CRYPTOINIT;

/* set the (defualt HITAG2 immobilizer) secret key */

data.TxBufl[@] = "M';
data.TxBufl[1l] = 'I';
data.TxBufl[2] = 'K';
data.TxBufl[3] = 'R';
data.TxBufl[4] = '0';
data.TxBufl[5] = 'N';
/* set the IDE of a HITAG2 transponder */
data.TxBufl[6] = Oxfl;
data.TxBufl[7] = Ox2c;
data.TxBufl[8] = Ox7a;
data.TxBufl[9] = Oxb2;

/* set some random number */
data.TxBufl[10]
data.TxBufl[11]
data.TxBufl[12]
data.TxBufl[13]

[ | [
[cNoNoNO]

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID_ EXTAPI, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */
printf("failure %04X\n", data.StatusCode);

}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

90 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.1.4 HITAG2CryptoOperation

Encrypts or decrypts given data using the HITAG2 crypto algorithm. The HITAG2 crypto-
unit has to be initialized using function HITAG2CryptoInit (see section 12.1.3, page

89) first.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function

Device

TxDatal
TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

PHTEDKITEXTAPIFKT_HITAG2CRYPTOOPERATION
PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO

Number of bits to process.

Data to be encrypted or decrypted, Bytes [0-x]

see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE ASCII

NULL terminated.

Encrypted or Decrypted data, Bytes [0-x]

Description

See also Table 30, page
124,

The data to be encrypted
or decrypted.

The status code informing
about success or failure.

The human readable de-
bug trace created by the
firmware for each call.

The decrypted or en-
crypted data.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

91 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-4: HITAG2CryptoOperation

int main() {
phTedKit_BaseData_t data;

/* INITIALIZE THE HITAG2 CRYPTO UNIT .. */

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* simulation of a start authent command (2nd, ciphered step) */
data.Device = PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO;

data.Function = PHTEDKITEXTAPIFKT_HITAG2CRYPTOOPERATION;
data.TxDatal = 32;

/* the base station password has to be send encrypted */

data.TxBufl[@] = Oxff;
data.TxBufl[1l] = Oxff;
data.TxBufl[2] = Oxff;
data.TxBufl[3] = Oxff;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID EXTAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
printf("send (the encrypted part, should be BDEA3E86): ");

printf ("%02X %02X %02X %02X\n",

data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2], data.RxBufl[3]);

/* we received the encrypted default transponder password */

/* encrypted: 94 b9 fa Ob , plain: xx AA 48 54 */
data.TxDatal = 32;

data.TxBufl[@] = 0x94;
data.TxBufl[1l] = Oxb9;
data.TxBufl[2] = Oxfa;
data.TxBufl[3] = Ox0b;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ EXTAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

printf("received (should be xxAA4854):");

printf ("%02X %02X %02X %02X\n",

data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2], data.RxBufl[3]);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

92 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.1.5 HITAG3Cryptolnit

This function prepares the API's HITAG3 crypto-unit with the given ingredients for later
use.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_HITAG3CRYPTOINIT
Device PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO See also Table 30, page 124.
TxBufl IDE, Bytes [0-3] The secret key, the tag’s IDE and
Challenge, Bytes [4-11] a challenge
Secret Key 48 Bit, Bytes [12-23]
Output
StatusCode see Table 28, page 122 The status code informing about

success or failure.
TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCIl cha- The human readable debug trace

racters, NULL terminated. created by the firmware for each

call.
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 93 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-5: HITAG3Cryptolnit

#include <string.h>

int main() {
phTedKit_BaseData_t data;

/* HITAG3 default secret key */

uint8_t sk[] = {
0x11, Ox11, 0x22, 0Ox22, 0x33, 0x33,
0x44, 0x44, 0x55, Ox55, Ox66, Ox66 };

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* populate the data structure with the ingredients for the

HITAG 2 crypto engine initialization. */
data.Device = PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO;
data.Function = PHTEDKITEXTAPIFKT_HITAG3CRYPTOINIT;

/* set the IDE of the transponder 8B4C8010*/

data.TxBufl[@] = Ox8b;
data.TxBufl[1l] = Oxd4c;
data.TxBufl[2] = 0x80;
data.TxBufl[3] = 0x10;

/* set some random number */
memset(data.TxBufl + 4, 0, 8);

/* set the default secret key */
memcpy (data.TxBufl + 12, sk, 12);

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ EXTAPI, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */
printf("failure %04X\n", data.StatusCode);

}

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

94 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.1.6 HITAG3CryptoOperation

Encrypts or decrypts given data using the HITAG3 crypto algorithm. The HITAG3 crypto-
unit has to be initialized using function HITAG3CryptoInit (see section 12.1.5, page

93) first.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function

Device

TxDatal
TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

PHTEDKITEXTAPIFKT_HITAG3CRYPTOOPERATION
PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO

Number of bits to process.

Data to be encrypted or decrypted, Bytes [0-x]

see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE

NULL terminated.

Encrypted or Decrypted data, Bytes [0-x]

Description

See also Table 30, page
124,

The data to be encrypted
or decrypted.

The status code informing
about success or failure.

The human readable de-
bug trace created by the
firmware for each call.

The decrypted or en-
crypted data.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

95 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 12-6: HITAG3CryptoOperation

Programmer's Manual

int main() {
phTedKit_BaseData_t data;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* INITIALIZE THE HITAG3 CRYPTO UNIT .. */

/* simulation of a ciphered read page #0 command */
data.Device = PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO;

data.Function = PHTEDKITEXTAPIFKT_HITAG3CRYPTOOPERATION;

data.TxDatal = 10;

/* send the read page 0 := 11000 00111*/
data.TxBufl[0] = Oxcl;
data.TxBufl[1l] = OxcO;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID EXTAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

printf("send (the encrypted part, should be 0440):

")

printf ("%02X %02X\n", data.RxBufl[@], data.RxBufl[1l]);

/* we received the encrypted page content 32 bit */

/* we read page 0 -> the IDE; encrypted: 9FFO 8717,
data.TxDatal = 32;

data.TxBufl[@] = Ox9f;
data.TxBufl[1l] = Oxf0O;
data.TxBufl[2] = 0x87;
data.TxBufl[3] = 0x17;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID EXTAPI, &data);
/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {

/* failure, handle error */

printf("failure %04X\n", data.StatusCode);
} else {

printf("received (should be 8b4c 8010):");

printf ("%02X %02X %02X %02X\n",

data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2],

plain 8b4c 8010 */

data.RxBufl[3]);

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

96 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.2 Immobilizer

The following functions can be used to interact with NXP proprietary car immobilizer
transponders.

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 97 of 132

Downloaded from AFFOW.COM.


http://www.arrow.com

NXP Semiconductors

12.2.1 TransmitReceive

UM10277_1

Programmer's Manual

Transmit and receives data to and from the immobilizer transponder in range of the base
station of the given XSlot.

Using TransmitReceive via the ExtApi interface ensures a correct data setup accord-
ing to transponder-type, transponder-state and transponder-command. In addition, data
encryption and decryption is also handled by the API (if necessary).

Data Structure Attributes Used

Structure
Attribute

Function

Device

State

Command

TxDatal
TxData2
TxTimel

TxTime2

TxBufl

StatusCode

TraceBuf

RxDatal

RxBufl

Value(s)

Input
PHTEDKITBASEAPIFKT _TRANSMITRECEIVE
See Table 30, page 124.

See Table 19, page 99.

See Table 20, page 99.

See Table 29, page 124.
See Table 29, page 124.

ResetDuration, set to 0 to prevent field reset.

ResetDelay, set to 0 to prevent field reset.

TxData, array of unsigned 8 bit. data organiza-
tion is like this:

Byte 0 1

Bit 76543210 7 6

Order 1.2.3.4.5.6.7.8. 9.10.
Output

see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII charac-
ters, NULL terminated.

RxDatalLength in bits

RxData, array of unsigned 8 bit. data organi-
zation is like this:

Byte 0 1
Bit 76543210 76
Order 1.2.3.4.5.6.7.8. 9.10.

Description

The immobilizer transponder
used as communication counter-
part.

The state in which the transpond-
er is expected to (for evaluation
purposes only).

The command to be executed by
the transponder.

XSlot/ XBoard for transmission.
XSlot/ XBoard for reception.

The duration of the field turned off
in TED-Kit 2 ticks.

The time to be waited after a re-
set until a new transponder com-
munication can be started in ticks.

The data bits send to the trans-
ponder. Bit 7 of byte 0 is send first
followed by bit 6 and so on.

See [1] for details.

The status code informing about
success or failure.

The human readable debug trace
created by the firmware for each
call.

The number of bits being re-
ceived.

The data bits received from the
transponder. Bit 7 of byte 0 is
received first followed by bit 6 and
SO on.

See [1] for details.

DOC-091497

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

98 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

UM10277_1

Programmer's Manual

Table 19. Immobilizer State(-machine) Codes

Value

Description

HITAG2, HITAG2+

PHTEDKITHITAG2STATE_WAIT
PHTEDKITHITAG2STATE_AUTHORIZED
PHTEDKITHITAG2STATE_HALT

The transponder’s immobilizer WAIT state.
The transponder’s immobilizer AUTHORIZED state

The transponder’s immobilizer HALT state.

HITAG2+EE (in addition to HITAG2)

PHTEDKITHITAG2STATE_XMA

The transponder’s immobilizer XMA state.

HITAG2-Extended (in addition to HITAG2+EE)

PHTEDKITHITAG2STATE_XMACFG
PHTEDKITHITAG2STATE_TEST
PHFEDKITHIFAG2ZSTATEHALT

The transponder’s immobilizer XMA config state.
The transponder’s immobilizer TEST state.
Not supported.

HITAG3, HITAG-AES (in addition to HITAG2-Extended)

PHTEDKITHITAG2STATE_USER

PHTEDKITHITAGPROSTATE_WAIT
PHTEDKITHITAGPROSTATE_AUTHENT
PHTEDKITHITAGPROSTATE_CIPHER
PHTEDKITHITAGPROSTATE_PLAIN
PHTEDKITHITAGPROSTATE_CFG
PHTEDKITHITAGPROSTATE_TEST
PHTEDKITHITAGPROSTATE_USER

HITAG-Pro

The transponder’s immobilizer WAIT state.

The transponder’s immobilizer AUTHENT state.
The transponder’s immobilizer CIPHER state.
The transponder’s immobilizer PLAIN state.

The transponder’s immobilizer CFG (config) state.
The transponder’s immobilizer TEST state.

The transponder’s immobilizer USER state.

Table 20. Immobilizer Command Codes

Value

PHTEDKITHITAG2CMD_STARTAUTH
PHTEDKITHITAG2CMD_GETIDE64
PHTEDKITHITAG2CMD_READPAGE
PHTEDKITHITAG2CMD_READPAGEINV
PHTEDKITHITAG2CMD_WRITEPAGE
PHTEDKITHITAG2CMD_HALT

Description

HITAG2

HITAG2+ (in addition to HITAG2)

PHTEDKITHITAG2CMD_BATTTEST
PHTEDKITHITAG2CMD_BUTTONTEST
PHTEDKITHITAG2CMD_SETXON
PHTEDKITHITAG2CMD_SETDOUT
PHTEDKITHITAG2CMD_SETLED
PHTEDKITHITAG2CMD_RESETALL
PHFEBKIFHITAG2ZEMD—GETIDEGS

Not supported

HITAG2+EE (in addition to HITAG2+)

PHTEDKITHITAG2CMD_XMAPLUS
PHTEDKITHITAG2CMD_INCBLKPTR

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

99 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

UM10277_1

Programmer's Manual

Value Description

PHTEDKITHITAG2CMD_DECBLKPTR
PHTEDKITHITAG2CMD_INITBLKPTR
HITAG2-Extended (in addition to HITAG2)
PHTEDKITHITAG2CMD_SOFTRESET
PHTEDKITHITAG2CMD_REFRESH
PHTEDKITHITAG2CMD_XMAWAIT
PHTEDKITHITAG2CMD_XMACFG
PHTEDKITHITAG2CMD_TEST
PHTEDKITHITAG2CMD_XMA
PHTEDKITHITAG2CMD_SELBLOCK
PHTEDKITHITAG2CMD_WRITECFGS
PHTEDKITHITAG2CMD _WRITECFGM
PHTEDKITHITAG2CMD_READCFG
PHTEDKITHITAG2CMD_THASHINIT
PHTEDKITHITAG2CMD_THASHGET
PHTEDKITHITAG2CMD_TWRITEPAGE
PHTEDKITHITAG2CMD_TREADPAGE
PHTEDKITHITAG2CMD_TGETCFG
HITAG3 (in addition to HITAG2-Extended)
PHTEDKITHITAG3CMD_USER
PHTEDKITHITAG3CMD_XMAWAIT
PHTEDKITHITAG3CMD_XMACFG
PHTEDKITHITAG3CMD_TEST
PHTEDKITHITAG3CMD_STARTAUTH
PHTEDKITHITAG3CMD_GETIDE64

PHTFEBKITFHITAG2ZEMD XMAWATT Not supported
PHFEDKITFHIFAG2ZEMDXMACFG Not supported
PHTFEBKIFHITAG2EMDTEST Not supported
PHFEBKTIFHITAG2EMD—STARTAUTH Not supported
PHFEDKTIFHIFAG2ZEMDGETIDEGS Not supported

HITAG-AES (in addition to HITAG2-Extended)
PHTEDKITHITAGAESCMD_STARTAUTH250
PHTEDKITHITAGAESCMD_STARTAUTH500
PHTEDKITHITAGAESCMD_TAESINIT
PHTEDKITHITAGAESCMD_TAESGET
PHTEDKITHITAGAESCMD_GETIDE64

PHFEBKIFHITFAGZEMD—STARTAYTH Not supported
PHTFEBKTITFHITAG2CMDGETIDEGS Not supported
HITAG-Pro

PHTEDKITHITAGPROCMD_SOFTRESET
PHTEDKITHITAGPROCMD_REFRESH

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

100 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

UM10277_1

Programmer's Manual

Value Description

PHTEDKITHITAGPROCMD_GETIDE
PHTEDKITHITAGPROCMD_AUTHENT
PHTEDKITHITAGPROCMD_PLAIN
PHTEDKITHITAGPROCMD_CFG
PHTEDKITHITAGPROCMD_SEQINC
PHTEDKITHITAGPROCMD_SELBLOCK
PHTEDKITHITAGPROCMD_READPAGE
PHTEDKITHITAGPROCMD WRITEPAGE
PHTEDKITHITAGPROCMD_READBYTE
PHTEDKITHITAGPROCMD WRITEBYTE
PHTEDKITHITAGPROCMD_TAESINIT
PHTEDKITHITAGPROCMD_ TAESGET
PHTEDKITHITAGPROCMD_TREADBYTE
PHTEDKITHITAGPROCMD TWRITEBYTE
PHTEDKITHITAGPROCMD_THASHINIT
PHTEDKITHITAGPROCMD_ THASHGET
PHTEDKITHITAGPROCMD_ TGETCFG
HITAG-Pro 2 (in addition to HITAG-Pro)
PHTEDKITHITAGPRO2CMD WRITEDIST
PHTEDKITHITAGPRO2CMD_READDISTN
PHTEDKITHITAGPRO2CMD_READMPAGE
PHTEDKITHITAGPRO2CMD_SEQINC32
PHTEDKITHITAGPRO2CMD_GETIDE64

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

101 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Example 12-7: TransmitReceive (extension-layer)

Programmer's Manual

int main() {

}

phTedKit_BaseData_t data;
/* tick time for the default puC of 48 MHz */
float tickTime = 0.0208333;

/* get the API of the TED-Kit 2 being used. */
void* api = getTEDKit2API();

/* SET THE TX PARAMETERS .. */
/* SET THE RX PARAMETERS .. */
/* SET THE TX WORD SIZE TO 1 .. */
/* SET THE RX WORD SIZE TO 1 .. */

/* populate data structure to execute first step
of authentication of a HITAG2 via XSlot #0 */

data.Function = PHTEDKITBASEAPIFKT_TRANSMITRECEIVE;

data.Device = PHTEDKITEXTAPIDEVICE_HITAG2;

data.State = PHTEDKITHITAG2STATE_WAIT;

data.Command PHTEDKITHITAG2CMD_STARTAUTH;

data.TxDatal PHTEDKITXBOARD_XSLOT_O;

data.TxData2 PHTEDKITXBOARD_XSLOT_O;

/* 2 repetitions of the command */

data.TxData5 = 2;

/* reset duration -> 5ms */

data.TxTimel = (uint32_t) (5000 / tickTime);

/* reset delay -> 10ms */

data.TxTime2 = (uint32_t) (15000 / tickTime);

/* first step of the authentication sequence */

data.TxBufl[0] = 0;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ EXTAPI, &data);

/* evaluate status code returned */
if (data.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure %04X\n", data.StatusCode);
} else {
/* Print IDE */
printf ("IDE: %02X%02X%02X%02X\n",
data.RxBufl[@], data.RxBufl[1l], data.RxBufl[2],

data.RxBufl[3]);

For examples how to set the T, and R, parameters, refer to SetTransmissionParams (see
section 11.20, page 78) or SetReceptionParams (see section 11.19, page 76) respective-

ly.

For an example how to set the word size, refer to SetWordSize (see section 11.21,
page 80).

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

102 of 132


http://www.arrow.com

UM10277_1

Programmer's Manual

NXP Semiconductors

12.3 Passive Keyless Entry

The following functions can be used to interact with a NXP proprietary passive keyless
entry (PKE) system.

In order to execute the example code, several setups and helper functions are neces-
sary. A stub file containing all this is provided here:

[TED-Kit 2 installation]\Development\API\doc\examples\pke-example-stub.c

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 103 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

12.3.1

Programmer's Manual

PkeAuthent
The function performs a PKE authentication using the HITAG2 crypto algorithm.

The crypto engine is fed with the tag’s IDE, the immobilizer secret key and a random
number. The value Signature1 is made from the first 16 output bits from the crypto en-
gine, and verified by the tag. After successful verification, the tag responds with another
48 bit value from the crypto engine, called Signature2.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT PKEAUTHENT
Device PHTEDKITEXTAPIDEVICE_ PKE See also Table 30, page 124.
TxDatal See Table 29, page 124. The XSlot of the XBoard used for trans-
mission.
TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-
tion.
TxTimel ResetDuration; depends on the trans- The duration of the reset sequence of

ponder type, refer to transponder do- the transponder in ticks.
cumentation [3], [4] and [5]

TxTime2 ResetDelay; depends on the trans- The time to be waited after a reset until a
ponder type, refer to transponder do- new transponder communication can be
cumentation [3], [4] and [5] started in ticks.

TxBufl IDE, Bytes [0-3] The Tags IDE, a Random Number and
Random Number, Bytes [4-7] an encrypted local Signature1.
encrypted Signature1, Bytes [8-9]

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCIl The human readable debug ftrace
characters, NULL terminated. created by the firmware for each call.

RxBuf1l encrypted Signature2, Bytes [0-5] The encrypted remote Signature2

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 104 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-8: PkeAuthent

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* populate data structure */

baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEAUTHENT;
baseData.TxDatal xS1o0tABICPort;
baseData.TxData2 xSlotLoPSTerPort;

/* set IDE */

longToBytes(ide, baseData.TxBufl, 0);

/* set random number */

longToBytes (0, baseData.TxBufl, 0);

/* signature 1 */
baseData.TxBufl[8]
baseData.TxBufl[9]

0;
0;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) ({
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf("transponder signature := %02X %02X %02X %02X %02X %02X\n",
baseData.RxBufl[0], baseData.RxBufl[1l], baseData.RxBufl[2],
baseData.RxBufl[3], baseData.RxBufl[4], baseData.RxBufl[5]);

return shutdown();

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

105 of 132



http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

12.3.2 PkePollEnable

This function enables the tag for reception of the following PkePolllde (see section
12.3.3, page 107) command.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_PKEPOLLENABLE
Device PHTEDKITEXTAPIDEVICE_ PKE See also Table 30, page 124.
TxDatal See Table 29, page 124. The XSlot of the XBoard used for
transmission.
TxData2 See Table 29, page 124. The XSlot of the XBoard used for
reception.
Output
StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII The human readable debug trace
characters, NULL terminated. created by the firmware for each call.

Example 12-9: PkePollEnable

int main(void) {

phTedKit_BaseData_t baseData;

if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;
}

baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLENABLE;
baseData.TxDatal = xS1otABICPort;

baseData.TxData2 = xSlotLoPSTerPort;

phcsApilInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);
if (baseData.StatusCode != PHTEDKITSTATUS_OK) {
printf("failure Ox%04X\n", baseData.StatusCode);

return EXIT_FAILURE;
}

return shutdown() ;

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 106 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.3 PkePolllde

UM10277_1

Programmer's Manual

This function scans available tags in range and receives their IDE (one at a time).

Data Structure Attributes Used

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input
PHTEDKITEXTAPIFKT_PKEPOLLIDE
PHTEDKITEXTAPIDEVICE PKE
See Table 29, page 124.

See Table 29, page 124.

Random Number, Bytes [0-1]

Output
see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE ASCII
characters, NULL terminated.

IDE, Bytes [0-3]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for trans-
mission.

The XSlot of the XBoard used for recep-
tion.

Random number to generate a timeslot
for the tag response.

The status code informing about success
or failure.

The human readable debug trace
created by the firmware for each call.

The PKE tag’s IDE

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

107 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Example 12-10: PkePollide

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* populate data structure */

baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLIDE;
baseData.TxDatal = xSlotABICPort;
baseData.TxData2 = xSlotLoPSTerPort;

/* random number == 0 */

baseData.TxBufl[0]
baseData.TxBufl[1]

= 0;
:Q,

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) ({
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;
} else {
ide = bytesTolLong(baseData.RxBufl, 0);
printf("IDE 0x%08X\n", ide);

return shutdown();

DOC-091497 © NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 108 of 132

Downloaded from AFFOW.COM.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

Programmer's Manual

12.3.4 PkePollMute

This function "mutes" the one tag that is addressed by its own IDE, with respect to tag
scanning. This tag will not respond to PkePolllde (see section 12.3.3, page 107) any-
more, until another PkePollEnable (see section 12.3.2, page 106) command is issued.

Data Structure Attributes Used

Structure Value(s) Description
Attribute
Input
Function PHTEDKITEXTAPIFKT_PKEPOLLMUTE
Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.
TxDatal See Table 29, page 124. The XSlot of the XBoard used for trans-
mission.
TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-
tion.
TxBufl IDE, Bytes [0-3] The IDE of the Tag which has to be
muted.
Output
StatusCode see Table 28, page 122 The status code informing about success
or failure.
TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCIl The human readable debug trace
characters, NULL terminated. created by the firmware for each call.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 109 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-11: PkePollMute

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* populate data structure */

baseData.Device = PHTEDKITEXTAPIDEVICE PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLMUTE;
baseData.TxDatal = xSlotABICPort;

baseData.TxData2 = xSlotLoPSTerPort;
longToBytes(ide, baseData.TxBufl, 0);

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) ({
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

return shutdown() ;

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

110 of 132



http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.5 PkeReadEeprom
Reads an EEPROM page of 32 bits.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input

PHTEDKITEXTAPIFKT_PKEREADEEPROM

PHTEDKITEXTAPIDEVICE PKE
See Table 29, page 124.

See Table 29, page 124.

IDE, Bytes [0-3]
Page, Byte [4]

Output
see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE
characters, NULL terminated.

Page value, Bytes [0-3]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for
transmission.

The XSlot of the XBoard used for
reception.

The Tags IDE and the selected page.

The status code informing about suc-
cess or failure.

The human readable debug trace
created by the firmware for each call.

The 32 Bit page value.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

111 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-12: PkeReadEeprom

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* EXECUTE PKE AUTHENT .. */

/* populate data structure */

baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEREADEEPROM;
baseData.TxDatal = xS1otABICPort;

baseData.TxData2 = xSlotLoPSTerPort;

/* set IDE */

longToBytes(ide, baseData.TxBufl, 0);

/* set page to read := 5 */

baseData.TxBufl[4] = 5;

/* call the API’s run(..) method */
phcsApilnt_Run(api, PHTEDKITCOMPID EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) ({
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf("page #5 := %08X\n", bytesTolLong(baseData.RxBufl));

return shutdown();

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

112 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.6 PkeReadVbat

Measures and returns the tag battery voltage index. The index is used together with a
transponder specific look-up table to get the actual voltage value.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input
PHTEDKITEXTAPIFKT_PKEREADVBAT
PHTEDKITEXTAPIDEVICE PKE
See Table 29, page 124.

See Table 29, page 124.

IDE, Bytes [0-3]

LOAD SELECTION, Byte [4]

(1 -UHF, 2 - LED1, 4 - LED2)
Output

see Table 28, page 122

1...PHTEDKITTRACE_BUFSIZE ASCII
characters, NULL terminated.

Battery voltage, Byte [0]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for trans-
mission.

The XSlot of the XBoard used for recep-
tion.

The Tags IDE and the Load selection.

The status code informing about success
or failure.

The human readable debug trace
created by the firmware for each call.

The coded tag battery voltage.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

113 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-13: PkeReadVbat

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;
/* The VBat lookup table applicable for a PCF7953 */
const double vbat[] = {
1.83, 1.92, 2.02, 2.12, 2.21, 2.31, 2.41, 2.50,
2.60, 2.70, 2.80, 2.89, 2.99, 3.09, 3.18, 3.28 };

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* populate data structure */

baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEREADVBAT;
baseData.TxDatal = xSlotABICPort;

baseData.TxData2 = xSlotLoPSTerPort;

/* set IDE */

longToBytes(ide, baseData.TxBufl, 0);

/* set load selection: LED1 + LED2 */
baseData.TxBufl[4] = 2 | 4;

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf("VBat index := %i, value := %fV\n",
(baseData.RxBufl[0@] & OxOF), vbat[baseData.RxBufl[0] & OxOF]);

return shutdown();

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

114 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.7 PkeRssiAll

UM10277_1

Programmer's Manual

Performs RSSI measurements of all three axes, and calculates the squared vector length
(squared geometric mean) V> = X* + Y? + 7.
Data Structure Attributes Used

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input
PHTEDKITEXTAPIFKT PKERSSIALL
PHTEDKITEXTAPIDEVICE_PKE
See Table 29, page 124.

See Table 29, page 124.

IDE, Bytes [0-3]
ADC Resolution, Byte [4]
0...5 =» 5 bit...10 bit
Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII
characters, NULL terminated.

Sum, Bytes [0-2]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for trans-
mission.

The XSlot of the XBoard used for recep-
tion.

The tag’s IDE and the ADC resolution.

The status code informing about success
or failure.

The human readable debug trace
created by the firmware for each call.

The floating point value for the sum of
the 3 axis.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

115 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-14: PkeRssiAll

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* populate data structure */
baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKERSSIALL;
baseData.TxDatal xS1o0tABICPort;
baseData.TxData2 xSlotLoPSTerPort;
/* set IDE */
longToBytes(ide, baseData.TxBufl, 0);
/* ADC resolution 10 bit */
baseData.TxBufl[4] = 5;
/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf("RSSI := %f\n", bytesToDouble(baseData.RxBufl));

return shutdown() ;

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

116 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.8 PkeRssiSingle

Performs RSSI measurements of all three axes, and returns the three vector components

XY, Z

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input

PHTEDKITEXTAPIFKT_PKERSSISINGLE

PHTEDKITEXTAPIDEVICE PKE
See Table 29, page 124.

See Table 29, page 124.

IDE, Bytes [0-3]
ADC Resolution, Byte [4]
0...5 = 5 bit...10 bit

Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.
X-Axis, Bytes [0-2]
Y-Axis, Bytes [3-5]
Z-Axis, Bytes [6-8]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for
transmission.

The XSlot of the XBoard used for
reception.

The tag’s IDE and the ADC resolu-
tion.

The status code informing about suc-
cess or failure.

The human readable debug trace
created by the firmware for each call.

The floating point values for the 3
axis.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

117 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-15: PkeRssiSingle

int main(void) {

/* An instance of the base data structure used to exchange
the API Library. */

phTedKit_BaseData_t baseData;

/* The transponder's IDE */

uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* populate data structure */
baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKERSSISINGLE;
baseData.TxDatal xS1o0tABICPort;
baseData.TxData2 xSlotLoPSTerPort;
/* set IDE */
longToBytes(ide, baseData.TxBufl, 0);
/* ADC resolution 10 bit */
baseData.TxBufl[4] = 5;
/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf ("RSSI X:%f\n", bytesToDouble(baseData.RxBufl + 0));
printf ("RSSI Y:%f\n", bytesToDouble(baseData.RxBufl + 3));
printf ("RSSI Z:%f\n", bytesToDouble(baseData.RxBufl + 6));

return shutdown() ;

data with

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

118 of 132


http://www.arrow.com

NXP Semiconductors

DOC-091497

12.3.9 PkeWriteEeprom
Writes an EEPROM page of 32 bits.

Data Structure Attributes Used

UM10277_1

Programmer's Manual

Structure
Attribute

Function
Device
TxDatal

TxData2

TxBufl

StatusCode

TraceBuf

RxBufl

Value(s)

Input
PHTEDKITEXTAPIFKT_PKEWRITEEEPROM
PHTEDKITEXTAPIDEVICE PKE
See Table 29, page 124.

See Table 29, page 124.

IDE, Bytes [0-3]
Page, Byte [4]
Page value [5-8]
Output
see Table 28, page 122

1..PHTEDKITTRACE_BUFSIZE ASCIlI cha-
racters, NULL terminated.

Page value, Bytes [0-3]

Description

See also Table 30, page 124.

The XSlot of the XBoard used for
transmission.

The XSlot of the XBoard used for
reception.

The tag’s IDE, the selected page
and the Page value.

The status code informing about
success or failure.

The human readable debug trace
created by the firmware for each
call.

The 32 Bit page value confirmation.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

119 of 132


http://www.arrow.com

NXP Semiconductors

UM10277_1

DOC-091497

Programmer's Manual

Example 12-16: PkeWriteEeprom

int main(void) {
/* An instance of the base data structure used to exchange data with
the API Library. */
phTedKit_BaseData_t baseData;
/* The transponder's IDE */
uint32_t ide;

/* initialize the TED-Kit 2 and its components for PKE. */
if (setup() == EXIT_FAILURE) {
return EXIT_FAILURE;

/* EXECUTE PKE POLL ENABLE .. */

/* EXECUTE PKE POLL IDE .. */
ide = ..;

/* EXECUTE PKE AUTHENT .. */

/* populate data structure */
baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;
baseData.Function = PHTEDKITEXTAPIFKT_PKEWRITEEEPROM;
baseData.TxDatal = xS1otABICPort;
baseData.TxData2 = xSlotLoPSTerPort;

/* set IDE */

longToBytes(ide, baseData.TxBufl, 0);

/* set page to write := 5 */
baseData.TxBufl[4] = 5;

/* set value to write */

longToBytes (0x12345678, baseData.TxBufl, 5);

/* call the API’s run(..) method */
phcsApiInt_Run(api, PHTEDKITCOMPID_ EXTAPI, &baseData);
/* evaluate status code returned */
if (baseData.StatusCode != PHTEDKITSTATUS_OK) {
/* failure, handle error */
printf("failure Ox%04X\n", baseData.StatusCode);
return EXIT_FAILURE;

printf("page #5 written, transponder answered:= %08X\n",
bytesTolLong(baseData.RxBufl));

return shutdown();

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.COM.

Rev. 1.29 — 22 June 2011

120 of 132



http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

13. APl Reference — Common Constants

DOC-091497

13.1

13.1.1

13.1.2

13.1.3

13.1.4

Places of Definition

This section lists the locations of all the elements of the TED-Kit 2 API required and used
throughout this manual. All locations given refer to the installation location of the TED-
Kit 2 software.

Function Declarations
The three functions to initialize, execute and shut down a TED-Kit 2 API are defined in
the following files:

Table 21. API Function Declarations

Programming Language Declaration in File
Interface

C intfs\IphcsApilnt\inc\phlcsApilnt.h

C++ comps\phcsApilnt\inc\phcsApilnt.hpp

C# TED-Kit 2 APLcs

Function Codes
The function codes for the three layers of the TED-Kit 2 API can be found here:

Table 22. API Function Codes Definitions

Programming Language Declaration in File Item
Interface
C :
types\phTedKitCommands.h  #define ..
C++

C# TED-Kit 2 APLcs; phcs_TedKit2::Functions

Data Structures

The data structures needed to exchange data with the TED-Kit 2 API are defined here:

Table 23. API Data Structure Declaration

Programming Language Declaration in File Item
Interface
c ; hTedKit_IoData_t
types\phTedKitTypeDefs.h p - -
C++ phTedKit_BaseData_t
C# TED-Kit 2 APLcs: phcs_TedKit2::IOData

phcs_TedKit2::BaseData

Status Codes
The status codes returned by the TED-Kit 2 API are defined here:

Table 24. API Status Code Definitions

Programming Language Declaration in File Item
Interface
c .
types\phTedKitStatus.h #define .
C++
C# TED-Kit 2 APLcs; phcs_TedKit2::ReturnCode

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 121 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

13.1.5 API Layer IDs
The IDs for the different API layers are defined here:

Table 25. API Layer IDs

Programming Language Declaration in File Item
Interface
C .
types\phTedKitStatus.h #define ..
C++
C# TED-Kit 2 APLcs; phcs_TedKit2::Layer

13.1.6 Transponder Specifics

All transponder (NXP immobilizer) commands are defined here:

Table 26. Transponder Command Definitions

Programming Language Declaration in File Item
Interface
C :
types\phTedKitCommands.h  #define ..
C++
C# TED-Kit 2 APLcs; phcs_TedKit2::Command

All transponder (NXP immobilizer) states are defined here:

Table 27. Transponder State Definitions

Programming Language Declaration in File Item
Interface
C ,
types\phTedKitCommands.h  enum { .. }
C++
C# TED-Kit 2 APLcs; phcs_TedKit2::State

13.2 Status Codes

The status codes are returned by APl each time a function is called. It tells whether the
function call was successful or not as well as what went wrong. The following values are

defined:
Table 28. Status Code Values
Value Description
TED-Kit 2 Status Codes (prefix PHTEDKITSTATUS_)
0K Function was successful.
MSG_RX_TIMEOUT The base station was unable to receive anything within
a timeout period.
MSG_RX_ERROR The base station was able to receive data but they are
corrupted.
MSG_RX_FRAMESIZE The base station was able to receive something from
the transponder but the wrong number of bits.
ERR_INVALID_FUNCTION The run method was called with an undefined function
ID.
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 122 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

DOC-091497

UM10277_1

Programmer's Manual

Value
ERR_INVALID CHECKSUM

ERR_MEM_ALLOC_COMMAND_RX

ERR_INVALID_PARAM_RANGE

ERR_INVALID_ PARAM_LENGTH
ERR_NO_XBOARD_IN_XSLOT

ERR_FUNCTION_NOT_SUPPORTED
ERR_XBOARD_COMM_FAILURE
ERR_MEM_ALLOC_COMMAND_EXEC
10_READTIMEOUT
I0_INVALID_FUNCTION
I0_DOWNLOADFILE_OPEN_ERROR
I0_DOWNLOADFILE DOWNLOAD_ ERROR
BASEAPI_INVALID_ FUNCTION
BASEAPI_RX_FRAMESIZE_INVALID

BASEAPI_RX_CHECKSUM_INVALID

BASEAPI_INVALID_BOUNDARY

EXTAPI_INVALID_DEVICE

EXTAPI_INVALID_FUNCTION

EXTAPI_INVALID_TRANSPONDER_CMD
EXTAPI_INVALID_TRANSPONDER_CHK
EXTAPI_INVALID_RX_LENGTH
EXTAPI_INVALID_STATE
EXTAPI_INVALID_COMMAND_USE

NO_TRANSPONDER_ANSWER

WRONG_API_LAYER

Description

The communication from the API to the firmware is
corrupted; the checksum of the data exchanged does
not match.

The firmware is unable to allocate enough memory for
data received from the host/API.

One or more parameters used in the API call are out of
their specified range.

The length of an (array) parameter does not match.

Accessing an XBoard which is not available (broken
are not existing) in the given XSlot.

The function called is currently not supported.
The communication with the given XBoard failed.
The memory allocation failed.

Reading data via the I/O layer timed out.

An invalid 1/O layer function was specified.

The download-file could not be opened.

The download-file could not be downloaded.

An invalid Base layer function was specified.

The number of data received by the API from the firm-
ware is wrong.

The communication from the Firmware to the API is
corrupted; the checksum of the data received by the
API from the firmware does not match.

Wrong usage of array size

The given base station or transponder type during an
API call is invalid.

The run method of the EXT API Layer was called with
an undefined function ID (for that layer).

A bad transponder command was specified.
HITAG Pro Transponder checksum is not OK.
HITAG Pro Transponder length is not OK.
Not existing Transponder state.

Not allowed Transponder command in actual Trans-
ponder state.

The transponder did not answered on a communication
attempt made by the base station.

Not existing API layer

FTDI Error Codes (prefix PHTEDKITSTATUS_FT_)

INVALID HANDLE
DEVICE_NOT_FOUND
DEVICE_NOT_OPENED
I0_ERROR

INSUFFICIENT RESOURCES
INVALID_ PARAMETER

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 123 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

DOC-091497

13.3

13.4

Programmer's Manual

Value Description
INVALID BAUD_RATE
DEVICE_NOT_OPENED_FOR_ERASE
DEVICE_NOT_OPENED_FOR_WRITE
FAILED _TO_WRITE_DEVICE
EEPROM_READ_FAILED
EEPROM_WRITE FAILED
EEPROM_ERASE_FAILED
EEPROM_NOT_PRESENT
EEPROM_NOT_PROGRAMMED
INVALID ARGS
NOT_SUPPORTED
OTHER_ERROR

XSlot Codes

To access the XSlot (the XBoard actually), a set of constants has been defined. The de-
finition locations are shown in the first table below:

Table 29. XSlot/XBoard Codes

Value Description
PHTEDKITXBOARD_XSLOT_0 Selects XBoard in XSlot 0.
PHTEDKITXBOARD_XSLOT_1 Selects XBoard in XSlot 1.
PHTEDKITXBOARD_XSLOT_2 Selects XBoard in XSlot 2.
PHTEDKITXBOARD_XSLOT_3 Selects XBoard in XSlot 3.

API Device Codes

The base and the extension layer of the TED-Kit 2 API use a device code to correctly
process and direct the data given via the phTedKit _BaseData_ t data structure. The
following API devices are defined:

Table 30. API Device Codes

Value Description

Immobilizer Transponders

PHTEDKITEXTAPIDEVICE_HITAG2 Addresses HITAG2 and HITAG2+.
PHTEDKITEXTAPIDEVICE_HITAG2EXT Addresses HITAG 2 Extended.
PHTEDKITEXTAPIDEVICE_HITAGPRO Addresses HITAG Pro and HITAG-Pro 2.
PHTEDKITEXTAPIDEVICE_HITAG3 Addresses HITAG3.
PHTEDKITEXTAPIDEVICE_HITAGAES Addresses HITAG-AES.

PHTEDKITEXTAPIDEVICE_HITAG2PLUSEE Addresses HITAG2+EE.

Virtual Devices
PHTEDKITEXTAPIDEVICE_ PKE Addresses the PKE feature block
PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO Addresses the HITAG2 crypto unit.
PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO Addresses the HITAG3 crypto unit.
PHTEDKITEXTAPIDEVICE_AESCRYPTO Addresses the AES crypto unit.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011 124 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

Value Description

Base Stations

PHTEDKITEXTAPIDEVICE_ABIC1 Addresses ABIC1.
PHTEDKITEXTAPIDEVICE_ABIC2 Addresses ABIC2.
PHTEDKITEXTAPIDEVICE_LOPSTER Addresses LoPSTer.

13.5 Coding Schemes and Word Size

The uC of the TED-Kit 2 supports several coding schemes for data encoding and decod-
ing. The table below lists the coding scheme codes and corresponding word sizes sup-
ported:

Table 31. Coding Scheme Codes and Word Size

Value Word Size Description
(Bits per Value)

PHTEDKITCODING_MANCHESTER 1
PHTEDKITCODING_CDP 1
PHTEDKITCODING_BPLM 1 Binary coded Pulse Length Modulation.
PHTEDKITCODING_FREEWAVE 8

Manchester.

Conditional De-Phase.

Arbitrary coded waveform (high and low
level alternate).

PHTEDKITCODING_ANALOG 8/16 Analogue signal with either 8 or 10 bit reso-
lution
PHTEDKITCODING_PLAIN 1 Free wave form signal (arbitrary order of
carrier on/off).
PHTEDKITCODING_GPIO 16 16 bits at a time (parallel) via GPIO.
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 125 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

14. Document Management

14.1 Abbreviations and Terminology

The following abbreviations and terminology is used throughout this document:

Table 32. Abbreviations and Terminology

Abbreviation Description

uC Micro Controller

ABIC{1/|2} Advanced Base station IC{1|2}

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BPLM Binary coded Pulse Length Modulation

CDP Conditional Dephase Encoding

DLL Dynamic Link Library

EEPROM Electrically Erasable Programmable Read-Only Memory

FTDI Future Technology Devices International Ltd., http://www.ftdichip.com, provid-

er of the UART/USB converter soft- and hardware.

GPIO General Purpose Input/Output

HW Hardware

1/0 Input/Output

I“C Inter-Integrated Circuit; a multi-master serial single-ended computer bus in-

vented by Philips

IC Integrated Circuit

ID Identifier

IDE Identifier

LED Light-Emitting Diode

LF Low Frequency

LIN Local Interconnect Network

LoPSTer Low Power, Single-chip Transceiver

PKE Passive Keyless Entry

RSSI Received Signal Strength Indicator

Rx Reception

SPI Serial Peripheral Interface

SW Software

TED-Kit 2 Transponder Evaluation and Demonstration-Kit 2

Tx Transmission

UHF Ultra High Frequency

USB Universal Serial Bus

XBoard Extension Board

XMA Extended Memory Access

XSlot Extension Slot
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 126 of 132

Downloaded from AFFOW.Ccom.


http://www.ftdichip.com/
http://www.ftdichip.com/
http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

14.2 Referenced Documents

The following documents are referenced throughout this document:

Table 33. Referenced Documents

ID Title Version Issue Date
UM10278_1 TED-Kit 2 Firmware-to-Host Interface Specification 4.04 October 2™, 2008
1 Run-Method Overview.xls n/a n/a
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 127 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

15. Legal Information

UM10277_1

Programmer's Manual

15.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in modifica-
tions or additions. NXP Semiconductors does not give any representations
or warranties as to the accuracy or completeness of information included
herein and shall have no liability for the consequences of use of such infor-
mation.

15.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the conse-
quences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of con-
tract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability to-
wards customer for the products described herein shall be limited in accor-
dance with the Terms and conditions of commercial sale of NXP Semicon-
ductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limita-
tion specifications and product descriptions, at any time and without notice.
This document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental dam-
age. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and there-
fore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconduc-
tors accepts no liability for any assistance with applications or customer
product design. It is customer’s sole responsibility to determine whether the
NXP Semiconductors product is suitable and fit for the customer’s applica-
tions and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

DOC-091497

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP Semiconduc-
tors products in order to avoid a default of the applications and the products
or of the application or use by customer’s third party customer(s). NXP does
not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express, im-
plied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or inciden-
tal damages (including without limitation damages for loss of business, busi-
ness interruption, loss of use, loss of data or information, and the like) arising
out the use of or inability to use the product, whether or not based on tort
(including negligence), strict liability, breach of contract, breach of warranty
or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by custom-
er for the product or five dollars (US$5.00). The foregoing limitations, exclu-
sions and disclaimers shall apply to the maximum extent permitted by appli-
cable law, even if any remedy fails of its essential purpose.

15.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

15.4 Patents

Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

15.5 Trademarks

Notice: All referenced brands, product names, service names and trade-
marks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

128 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

16. List of Examples

Example 9-1. Preamble for Example Code....................... 34 Example 12-12: PkeReadEeprom............cccceeivennnnnnnn. 112
Example 10-1: CIOSE........c.vveveeeieeiiiieieee e 36 Example 12-13: PkeReadVbat................cccooei. 114
Example 10-2: EEUARead ........cccociiiiiiiiiecc 38 Example 12-14: PKeRSSIAll........coccoiiiiiiiiiiieeec e 116
Example 10-3: EEUASIZe ........ccooiiiiiiiee 39 Example 12-15: PkeRssiSingle.........c.ccccceviiiiiiiiiiennnen. 118
Example 10-4: EEUAWTite.........oooviiiiiiiece 40 Example 12-16: PkeWriteEeprom ..........ccccocveeeiiiniennnnen. 120
Example 10-5: GetAPIVersion..........ccccccceeveiviieeieeeeeecns 41
Example 10-6: GetDevicelnfoDetail.............ccccvveeeeeeeennnn. 43
Example 10-7: GetDeviceNumber .............ccccovveeeeeeeennnns 44
Example 10-8: GetDriverVersion ...........cccccovvieeennienennnen. 45
Example 10-9: GetLibraryVersion..........ccccccocveeeniiinennnnn. 46
Example 10-10: Open (Normal Operation) ...........cccccouu.ee. 47
Example 10-11: Open (Firmware Update)............c........... 48
Example 11-1: Delay.......cccooveeiiiiiieieee e 50
Example 11-2: DeselectXSIot ........ccoceeeeeieiiiiiiiieieeeeeees 51
Example 11-3: DisableContReception ............ccccevvvvennen. 52
Example 11-4: EAitGPIOPIN ......cccceiiiiiiiiiiiienee e 54
Example 11-5: EnableContReception...........cccccevvivennen. 55
Example 11-6: GetButtonStates ..........cc.cceeecvvieiieeiieinnn, 56
Example 11-7: GetContReceivedData...............cccceeunnne. 58
Example 11-8: GetDeviceStatus..........c..ccceeecvvieeeeeceennnns 60
Example 11-9: GetFWVersion ..........cccoeceeivieiiniiincne, 61
Example 11-10: GetLEDStates..........cocceveeiviieiiiiiec 62
Example 11-11: GetReceptionParams.............cccocvvvennen. 64
Example 11-12: GetTransmissionParams ........................ 66
Example 11-13: GetWordSize .......cccccceeeeeeiiciiiieieeeeeee, 67
Example 11-14: GetXBoardConfig.........cccceeviveeeenverennnnn. 69
Example 11-15: GetXSIotInfo .......cccvveviiiiiiiiiiiie 72
Example 11-16: ResetMainBoard .............cccocveeeiiiinennnen. 73
Example 11-17: ResetXBoard ..........cccovveveiiiieiiniiinene, 74
Example 11-18: SetLEDStates .........cccceceeveciiiieieeeieens 75
Example 11-19: SetReceptionParams..............ccccoceeennne 77
Example 11-20: GetTransmissionParams ........................ 79
Example 11-21: SetWordSize........cccccceveeeiiiiiiieiieee e 80
Example 11-22: SetXBoardConfig.........cccceevvveeennverennnen. 82
Example 11-23: TransmitReceive (base-layer)................. 84
Example 12-1: AESCryptolnit........ccoeviiiiiie 87
Example 12-2: AESCryptoOperation ...........ccccoeveeeiinnnns 88
Example 12-3: HITAG2Cryptolnit ........ccccoooiiiieiiiiiine 90
Example 12-4: HITAG2CryptoOperation.........cccccceeernnee. 92
Example 12-5: HITAG3Cryptolnit .........ccccceiiiieiiniinenn. 94
Example 12-6: HITAG3CryptoOperation.........c.c.cceeevnnee. 96
Example 12-7: TransmitReceive (extension-layer) ......... 102
Example 12-8: PkeAuthent ...........oooovvvviiiiiiiiiiieiiiiiiieienes 105
Example 12-9: PkePollEnable ............ooovveevvvivviiiieieieinnes 106
Example 12-10: PkePolllde..........ccccveeieiiiiiiiiiiieee e 108
Example 12-11: PkePolIMute............ccccccoeeviiieiieeceees 110
DOC-091497 © NXP B.V. 2010. All rights reserved.
User manual Rev. 1.29 — 22 June 2011 129 of 132

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

17. List of Tables

UM10277_1

Programmer's Manual

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.

DOC-091497

Required Ingredients...........cccccoeviiiiiiiieeiiiieenn. 4
ABIC1 XBoard Configuration ............cccccoueeee. 20
HITAG2-Extended Ty Parameter.................... 21
HITAG2-Extended Ry Parameter .................... 22
Functions for Ty/Rx....ceoceveeiiieeeeiee e 28
Logging Data Storage Format............c............ 29
API Initialization Function................ccccccccee. 31
API Execution Function.............ccccooiiiennenn. 31
API Destruction Function ............cccccccvieenennn. 32
Function Codes - /O Layer........ccccceeeuveennnen. 35
Parameters of Method Run — 1/O layer............ 35
FTDI EEPROM layout.........ccccceeiiireeeieee e 37
Function Codes - Base Layer...........cccccne. 49
Parameters of Method Run — base layer......... 49
XBoard Type Code Values..........ccccceeeeeeennnne 70
XBoard Feature Code Values ..........ccccccueenne. 70
Function Codes - Extended Layer.................. 85
Parameters of Method Run — extended layer..85
Immobilizer State(-machine) Codes................ 99
Immobilizer Command Codes..........ccccceennne 99
API Function Declarations.............ccccceeeeennn. 121
API Function Codes Definitions .................... 121
API Data Structure Declaration ..................... 121
API Status Code Definitions............cccceeeneee. 121
APl Layer IDS........oeeiiiiiiiiieeeeee e 122
Transponder Command Definitions .............. 122
Transponder State Definitions....................... 122
Status Code Values .........ccecovveiiieeiiiieeens 122
XSlot/XBoard Codes .........cceeevverernceeaenieenns 124
API Device Codes......ccvveiiereniiiieenieee e 124
Coding Scheme Codes and Word Size......... 125
Abbreviations and Terminology..................... 126
Referenced Documents ..........ccccceeeeveinnnnenn. 127

© NXP B.V. 2010. All rights reserved.

User manual

Downloaded from AFFOW.Ccom.

Rev. 1.29 — 22 June 2011

130 of 132


http://www.arrow.com

NXP Semiconductors UM1 0277_1

Programmer's Manual

18. Contents

1. Document PUIrPOSE .......ccceecerecrecreeerceerceereeenenns 3 7.9 Reading all Pages from a Block ............cccccue... 25
11 What this Document is NOt....eveee oo 3 7.10 Writing a Page of a Block ..., 26
2, Introduction .........cccocveeminii 4 711 Read that Page Back ... 26
21 Requirements...........ccccevviiiiii e 4 712 Shut IZ?own...... """"""" T 27
3 “Hello World” in C 5 8. Transmit/Receive Logging.......ccccceereriameeeeennn. 28
| Lo T Tmmmmmm——— 8.1 Storage and Format ...........ccocccueueveveeercecnnnnn. 28
A EPIlOg...eeeee et o
g 2 In?’[li:I?zation g 8.2 Printing the data ............ccocoiiiii 29
321 Count FTDI DEVICES..........orvveerrrreererereererrreenone 5 9 API Reference - OVerview ...............ooovuveeee. 31
322 Get Device Details .............o.coeurererinieneinen. 6 9.1 FUNCHONS ..o 31
3.23 OPEN DEVICE ... 6 9.1.1 Initialization...........coccoiii 31
3.3 Calling APl FUNCHONS ......c.cvoveveeeceeeeeeeeeeeeeenn 7 9.1.2 EXeCUtioNn.........coviiiii 31
34 Clean-Up ....c.ovoveeeeeeeeeeceeeeeeeeeeeee e 7 913 Clean-Up ... 32
4 “Hello World” in C++ 8 9.2 Common Attributes..............cocoviiiii 32
| Lo Tmmmmmmmm—m— 9.2.1 FUNCHON D ... 32
41 E[.)I.|O.g..... ............................................................. 8 9292 Status Code. ... 32
4.2 Initialization ..o 8 923 T BUFf 32
421 Count FTDI DEVICES...........orrrvoooooovoereeoeocer g = ACE BUNBT.--rvvvvvvvvvvisssssss s
. ) 9.24 TIMINGS e 33
422 Get Device Details ........ccccocveeviiiiiieniiciiccieee 9
423 Open Device ......cccuveeiieiiicieeeee e 10 93 Common Example COde ..........coowwwvveeesesoeen 33
4.3 Calling API FUNCHONS ......veveeeeeeeeeeeeeeeeeseeeenn 10 10. API Reference - 1/0 Functions ...........ccccviuneenne 35
4.4 ClIEAN-UP ...t 10 101 ClOSE ..t 36
5, T TRt TR o 12 18-5 EEBQQF’“ ------------------------------------------------------- g;
. . 72U
51 EPIlOg ..eeiiiiie i 12 .
5.2 INIG@IIZAtON ........ooooovvee oo 12 1 8'2 gEtUA/;VI\\’/”te s j?
521 Count FTDI DEVICES............ooovrvrrrrrrvrerrerrrrn 12 ' OUATIVEISION. - oorovvvvvvvvvvss e
529 Get Device Details 13 10.6 GetDevicelnfoDetail ............ccooceeviiiiieiiiiiieens 42
593 Open Device 14 10.7 GetDeviceNumber...........ccccceeeeiiiiiiiiiieeeeeee, 44
573 Calling APl FUNCHONS .ovovoo oo 14 10.8 GethverVerspn .............................................. 45
54 CIGAN-UD oo 14 1851)0 getleraryVersmn ............................................ 26
. . . . PN 7
g' 1 H?:;izfg:el\rn—:l:g:e?ewces """""""""""""""""""" ::g 1. API Reference - Base Functions ...........cc......... 49
6.2 T T T B 16 11 Delay ..o 50
. ) 11.2 DeselectXSIOt......ooiiiiiiiii 51
7. Intetra(.:tlon with a.Tran.sponder """""""""""" 18 1.3 DisableContReception............c..cccccoeviiiinnin, 52
7.1 Finding a TED-Kit 2 with an ABICT .................. 18 114 EQItGPIOPIN ..o 53
7.2 Enabling the TED-Kit 2., 19 115 EnableContReception ............cccccovvereeveeeeennnn. 55
7.3 Configuring the ABIC1 XBoard...............c..c...... 19 116 GetBUttONSTAeS .......cucveveiiececiceeeeeee. 56
74 Configuring the Data Transmission................. 20 417 GetContReceivedData.............cccocurvrreeeeecnnnnn. 57
7.5 Conflgurlng the Data Rgceptlion ....................... 22 11.8 GetDeVICeStatus oo 59
7.6 Read!ng the XMA Configuration....................... 22 11.9 GEtFWVEISION oo 61
7.6.1 Enter!ng XMA/CFG s 23 11.10 GEtLEDSHALES oo 62
7.6.2 Reading the Configuration .............cc.coovieeens 23 1111 GetReceptionParams ..............coceurverenineecennnnn. 63
7 Executing a Ciphered Authentication ............... 24 1112 GetTransmissionParams..............cccccoowwe...... 65
7.7.1 Preparation...........ccooooiiiins 24 4113 GetWOrdSIZe .ooveooeeeooeeeeeeeeeeeeeeeeeeeeeeee. 67
7.7.2 Authent!cat!on In|t|allzgt|on ............................... 24 11.14 GEetXBOArdCONTIG «..veveeeeeveereeeeeeeeeeeeeeeeeeeeeee. 68
7.7.3 Authentication Execution..........cccccoceeviieiennen. 24 11.15 GetXSIOUNTO oo 70
7.8 Selecting a XMA Segment and Block............... 25 11.16 ReSetMaiNBOAIT. .. oo 73

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 June 2011
Document identifier: DOC-091497

Downloaded from AFFOW.Ccom.


http://www.arrow.com

NXP Semiconductors

11.17
11.18
11.19
11.20
11.21
11.22
11.23
12,
12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.2
12.2.1
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9
13.
13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.2
13.3
13.4
13.5
14.
14.1
14.2
15.
15.1
15.2
15.3
15.4
15.5

16.

ResetXBoard.........ccoooovveiviieeiiiiiiiicee e, 74
SetLEDStates.....cccoovviieeeeeeeee e, 75
SetReceptionParams ............ccooeciiiiiieiiiiieen. 76
SetTransmissionParams............ccceeeeeevevevvennnnn. 78
SetWordSizZe .......ueeeeee 80
SetXBoardConfig ........cccvriueereriiiee e 81
TransmitReceive .........ccocoevviveiiieeieiiiiiiiceeeee, 83
API Reference - Extended Functions............... 85
Cryptography.......ccceeveoiiiieeee e 86
AESCyYrptolnit........coeveeiiiiiiee e 87
AESCryptoOperation..........c.cccceeivvieeinciercnnen, 88
HITAG2Cryptolnit.........cccoveeiiiiiiiiee e 89
HITAG2CryptoOperation............cocveeeevierennnen. 91
HITAG3Cryptolnit.......ccccoeeviiiie e 93
HITAG3CryptoOperation..........c.cccceeeenveeeennen. 95
IMMODINZEN ..., 97
TransmitRECEIVE .........oveveeiiiiiiiieeeeeeeeeeeeee, 98
Passive Keyless Entry.........cccoocvviiiieiininennn, 103
PkeAuthent..........cccoooiiiiiiiiiiieeee e, 104
PkePollEnable............coooovvveeeiiiiiiiieieeeeeee, 106
(g o] ] o [T 107
PKePolIMUte ..........coveeeiiieceeeeeeeeeeee e 109
PkeReadEeprom..........cccoceeviviiiiiiiiiecc e 111
PkeReadVbat............cooovvviieieiiiiiiiiiieeeeeee, 113
PKERSSIAIl.......eeveeeeieieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 115
PkeRssiSingle.......coccooiiiiiieieeee e 117
PkeWriteEeprom ............evvvvvvveviviiieiiieieiiieienes 119
API Reference — Common Constants............ 121
Places of Definition ...........cceevveeeeveeeeeeeeieeeinnns 121
Function Declarations ............ccccoeeovvvivvceeenen. 121
Function Codes.........coovvveveviviieeiieieeeeeeeeeeeeeees 121
Data Structures ..........ooevvveveviieviiiiiiiiieieieeeieees 121
Status Codes........uuuura 121
APILayer IDS .....ccovviiiiiiiiii e 122
Transponder SpecifiCs .........cccocvveeeeeeiecnnneenn.. 122
Status Codes.......uuueueeias 122
XSlot Codes ......cooovvvviiiiiiiiii 124
APl Device COdeS......ccooevviiveiiiieeeeeieeiieeeeens 124
Coding Schemes and Word Size ................... 125
Document Management............cccececimernnninnnee 126
Abbreviations and Terminology...................... 126
Referenced Documents ............coeevevvveveveennnnes 127
Legal Information ...........cccoovomiiiiiiicciiieeeeee 128
DefinitionNS .......oovvveeieiieeeee e 128
Disclaimers...........eeeiiiiiiiiieeee e 128
LICENSES ... 128
Patents....ccooooveeeeeeeeeeee e, 128
TrademarkS .......coooeevvuieeeeeeieeeeeee e 128
List of Examples........cccconrimernnninninnennisneennns 129

Downloaded from AFFOW.Ccom.

17.
18.

UM10277_1

Programmer's Manual

List of Tables .......ccuererererererereeeeerereeeeeeereeeeeeeeee 130
CoNtentS....cceeeeceieiieee e ——— 131

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010.

For
For sales office addresses, please send an email to: salesaddresses@nxp.com

All rights reserved.

information, please visit: http://www.nxp.com

Date of release: 22 June 2011
Document identifier: DOC-091497


http://www.arrow.com

	1. Document Purpose
	1.1 What this Document is Not

	2. Introduction
	2.1 Requirements

	3. “Hello World” in C
	3.1 Epilog
	3.2 Initialization
	3.2.1 Count FTDI Devices
	3.2.2 Get Device Details
	3.2.3 Open Device

	3.3 Calling API Functions
	3.4 Clean-Up

	4. “Hello World” in C++
	4.1 Epilog
	4.2 Initialization
	4.2.1 Count FTDI Devices
	4.2.2 Get Device Details
	4.2.3 Open Device

	4.3 Calling API Functions
	4.4 Clean-Up

	5. “Hello World” in C#
	5.1 Epilog
	5.2 Initialization
	5.2.1 Count FTDI Devices
	5.2.2 Get Device Details
	5.2.3 Open Device

	5.3 Calling API Functions
	5.4 Clean-Up

	6. Handling Multiple Devices
	6.1 One-after-Another
	6.2 In Parallel

	7. Interaction with a Transponder
	7.1 Finding a TED-Kit 2 with an ABIC1
	7.2 Enabling the TED-Kit 2
	7.3 Configuring the ABIC1 XBoard
	7.4 Configuring the Data Transmission
	7.5 Configuring the Data Reception
	7.6 Reading the XMA Configuration
	7.6.1 Entering XMA/CFG
	7.6.2 Reading the Configuration

	7.7 Executing a Ciphered Authentication
	7.7.1 Preparation
	7.7.2 Authentication Initialization
	7.7.3 Authentication Execution

	7.8 Selecting a XMA Segment and Block
	7.9 Reading all Pages from a Block
	7.10 Writing a Page of a Block
	7.11 Read that Page Back
	7.12 Shut Down

	8. Transmit/Receive Logging
	8.1 Storage and Format
	8.2 Printing the data

	9. API Reference - Overview
	9.1 Functions
	9.1.1 Initialization
	9.1.2 Execution
	9.1.3 Clean-Up

	9.2 Common Attributes
	9.2.1 Function ID
	9.2.2 Status Code
	9.2.3 Trace Buffer
	9.2.4 Timings

	9.3 Common Example Code

	10. API Reference - I/O Functions
	10.1 Close
	10.2 EEUARead
	10.3 EEUASize
	10.4 EEUAWrite
	10.5 GetAPIVersion
	10.6 GetDeviceInfoDetail
	10.7 GetDeviceNumber
	10.8 GetDriverVersion
	10.9 GetLibraryVersion
	10.10 Open

	11. API Reference - Base Functions
	11.1 Delay
	11.2 DeselectXSlot
	11.3 DisableContReception
	11.4 EditGPIOPin
	11.5 EnableContReception
	11.6 GetButtonStates
	11.7 GetContReceivedData
	11.8 GetDeviceStatus
	11.9 GetFWVersion
	11.10 GetLEDStates
	11.11 GetReceptionParams
	11.12 GetTransmissionParams
	11.13 GetWordSize
	11.14 GetXBoardConfig
	11.15 GetXSlotInfo
	11.16 ResetMainBoard
	11.17 ResetXBoard
	11.18 SetLEDStates
	11.19 SetReceptionParams
	11.20 SetTransmissionParams
	11.21 SetWordSize
	11.22 SetXBoardConfig
	11.23 TransmitReceive

	12. API Reference - Extended Functions
	12.1 Cryptography
	12.1.1 AESCyrptoInit
	12.1.2 AESCryptoOperation
	12.1.3 HITAG2CryptoInit
	12.1.4 HITAG2CryptoOperation
	12.1.5 HITAG3CryptoInit
	12.1.6 HITAG3CryptoOperation

	12.2 Immobilizer
	12.2.1 TransmitReceive

	12.3 Passive Keyless Entry
	12.3.1 PkeAuthent
	12.3.2 PkePollEnable
	12.3.3 PkePollIde
	12.3.4 PkePollMute
	12.3.5 PkeReadEeprom
	12.3.6 PkeReadVbat
	12.3.7 PkeRssiAll
	12.3.8 PkeRssiSingle
	12.3.9 PkeWriteEeprom


	13. API Reference – Common Constants
	13.1 Places of Definition
	13.1.1 Function Declarations
	13.1.2 Function Codes
	13.1.3 Data Structures
	13.1.4 Status Codes
	13.1.5 API Layer IDs
	13.1.6 Transponder Specifics

	13.2 Status Codes
	13.3 XSlot Codes
	13.4 API Device Codes
	13.5 Coding Schemes and Word Size

	14. Document Management
	14.1 Abbreviations and Terminology
	14.2 Referenced Documents

	15. Legal Information
	15.1 Definitions
	15.2 Disclaimers
	15.3 Licenses
	15.4 Patents
	15.5 Trademarks

	16. List of Examples
	17. List of Tables
	18. Contents

