

UM10277_1
TED-Kit 2 Programmer's Manual

Rev. 1.29 — 22 June 2011 User manual

Document information

Info Content

Keywords TED-Kit 2, Programmer’s Manual

Abstract This document describes step-by-step how to write software for the TED-

Kit 2 and its components using the API Library.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 2 of 132

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Downloaded from Arrow.com.

http://www.nxp.com/
mailto:salesaddresses@nxp.com
http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 3 of 132

1. Document Purpose

The purpose of this document is to describe how to write software which uses the TED-

Kit 2 and its components including base stations and transponders. The intended au-

diences are software engineers planning to create their own custom software incorporat-

ing the TED-Kit 2.

All examples shown in this manual are written in C, C++ or C#. Although not tested, no

problems are expected to use other programming languages capable of using functionali-

ty dynamically linked (DLL) during run-time. Such languages are Objective-C, Java, Vis-

ual Basic or even scripting languages like Perl.

The development environment used to develop and run the examples is Microsoft Visual

C++ 2005 Express. It is available from Microsoft free of charge. Nevertheless, any other

development environment for C++ running on Windows is expected to work because no

features specific to that development software are used.

1.1 What this Document is Not

This document will not explain how NXP’s immobilizers, Remote- or Passive Keyless

Entry transponders and LF- or UHF base station products work. For a detailed explana-

tion about e.g. the configuration settings, state machines or timings refer to the appropri-

ate data sheet.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 4 of 132

2. Introduction

This section will explain the software and hardware required to program and run software

for the TED-Kit 2 as well as the basic concepts of the API Library usage.

2.1 Requirements

The following ingredients are required to write and later run the software for the TED-

Kit 2 system:

Table 1. Required Ingredients

Item Description Type

Compiling

tk2.lib The API library stub, required to compile the software. SW

C/C++ Header Files The header files containing the class and function declarations

of the TED-Kit 2 Library (for C and C++ programming).

SW

TED-Kit 2 API.cs C# library wrapper (for C# programming). SW

Executing

tk2.dll The TED-Kit 2 library, required to run the software. SW

ftd2xx.dll The FTDI driver library, required to run the software. SW

FTDI Driver The FTDI driver (installed on the host system). SW

TED-Kit 2 The TED-Kit 2 hardware including an XBoard (e.g. an ABIC1). HW

Transponder The transponder to communicate with. HW

tk2.dll The TED-Kit 2 library, required to run the software. SW

The search path for the include-files of the C/C++ compiler needs an entry pointing to the

root of the include file/folder structure. The C/C++ linker needs to be configured to link

the DLL-stub tk2.lib to the software.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 5 of 132

3. ―Hello World‖ in C

This section will explain a fully working example written in C to illustrate the basic steps

required to make use of the TED-Kit 2 library functionality. To be specific, this sample

application will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices

2. Open a single device and retrieve detailed information.

3. Read and show the firmware version of that TED-Kit 2 device.

4. Clean-up and close the device.

All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\example.c

3.1 Epilog

The epilog of this C example program is rather simple. It includes all the declarations ne-

cessary to access the TED-Kit 2 library:

1

2

3

#include "intfs\IphcsApiInt\inc\phIcsApiInt.h"

#include "types\phTedKitStatus.h"

#include "types\phTedKitCommands.h"

3.2 Initialization

The actual functionality will be found in the main function of the example. The very first

step is to declare a handle to the TED-Kit 2 Library to actually be able to use its

functionality:

32 void *api = phcsApiInt_Alloc();

To exchange data between this application and the TED-Kit 2 library, an instance each of

the data structures is required:

34

36

phTedKit_IoData_t ioData;

…

phTedKit_BaseData_t baseData;

3.2.1 Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber

(see section 10.7, page 44) of the API’s I/O layer is called. To do that, the ioData struc-

ture is prepared by assigning the function’s ID to the Function attribute of the structure.

39 ioData.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

41 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

The first parameter is the handle of the API instance. The second parameter indicates an

I/O layer call and the third parameter is the reference to the data structure. If successful,

the user is informed about the number of devices found by printing the content of the

DeviceNum attribute of the ioData structure:

47 printf("Number of devices found: %d.\n\n", ioData.DeviceNum);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 6 of 132

To ensure proper operation of the software, it will stop if no devices were found.

3.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are

actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product

ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices

found for all further actions. To find that device, a loop over all available devices is

created.

To actually retrieve the device details, the API function named GetDeviceInfoDetail (see

section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared

accordingly:

58 ioData.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of

them. The loop’s body will set the device/port number and than actually call the run

method with the proper parameters:

59

60

61

81

for (i = 0; i < (int) ioData.DeviceNum; i++) {

 ioData.Port = i;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

 …

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.

Depending on the result, either the device information or an error message is shown. In

case of success, the device information is printed by just listing all the items which are

available:

63

64

65

66

67

68

69

70

71

printf("Number : %d\n", i);

printf("Flags : %d\n", ioData.Flags);

printf(" -> opened=%s\n",

 ((ioData.Flags & 1) ? "yes" : "no"));

printf("Type : %d\n", ioData.Type);

printf("DeviceID : 0x8X\n", ioData.ID);

printf("LocId : %d\n", ioData.LocId);

printf("SerialNumber : %s\n", ioData.SerialNumber);

printf("Description : %s\n", ioData.Description);

After showing the device information, the vendor-and-product-ID is compared with the

one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for

further processing.

74

76

if ((ioData.ID == PHTEDKITUSB_VIDPID) && (index == -1)) {

 …

}

After the loop has finished, the device being used is shown. If no proper device was

found, the software shows an error message and aborts. Now, the application knows

what devices are detected and which one to use for the remaining steps.

3.2.3 Open Device

The final step of the initialization section is to open the device for sending and receiving

data:

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 7 of 132

92

93

94

95

ioData.Port = index;

ioData.Function = PHTEDKITIOFKT_OPEN;

ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI

device number gets the value of the first NXP TED-Kit 2 device found. The function

called is Open (see section 10.10, page 47) and the OpenMode is set to normal

(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in

case of failure, a message is printed and the application is aborted.

3.3 Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out

of the BaseApi. The instance of phTedKit_BaseData_t is populated with the proper

data required for the call. In case of this simple function, only the function name needs to

be set:

105 baseData.Function = PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

106 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-

sage is shown. In case of success, the returned values stored in the same instance of

the baseData structure are processed:

108

109

110

printf("Firmware Code : %d\n", baseData.RxData1);

printf("Firmware Version : %d.%d\n",

 baseData.RxData2, baseData.RxData3);

3.4 Clean-Up

After executing all the functions required, the device in use shall be closed by calling the

API function Close (see section 10.1, page 36):

121

122

ioData.Function = PHTEDKITIOFKT_CLOSE;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

The ioData structure is properly populated and the Run function is called. After evaluat-

ing the StatusCode (and eventually showing an error message), the final step – freeing

the resources – is done.

129 phcsApiInt_Destroy(api);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 8 of 132

4. ―Hello World‖ in C++

The C++ interface of the TED-Kit 2 library as described in this document is obsolete and

shall not be used anymore. Instead, the TED-Kit 2 Foundation Classes library shall be

used.

This is a class library build on top of the TED-Kit 2 library and greatly simplifies the pro-

gramming of the TED-Kit 2. It is available from the same source as this TED-Kit 2 soft-

ware package.

This section will explain a fully working example written in C++ to illustrate the basic

steps required to make use of the API Library functionality. To be specific, this sample

application will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices

2. Open a single device and retrieve detailed information.

3. Read and show the firmware version of that TED-Kit 2 device.

4. Clean-up and close the device.

All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\example.cpp

4.1 Epilog

As any C++ program, this one also has an epilog section including function- and constant

declarations:

1

2

3

#include "comps\phcsApiInt\inc\phcsApiInt.hpp"

#include "types\phTedKitStatus.h"

#include "types\phTedKitCommands.h"

4.2 Initialization

The actual functionality will be found in the main function of this example program. The

very first step is to define an instance of the API Library to actually be able to use its

functionality:

34 phcs_TedKit2::ApiInt api;

To exchange data between this application and API Library, an instance of the data

structure specified for that purpose is required:

37 phcs_TedKit2::phTedKit_IoData_t ioData;

4.2.1 Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber

(see section 10.7, page 44) of the API’s I/O layer is called. To do that, the ioData struc-

ture is prepared by assigning the function’s ID to the Function attribute of the structure.

40 ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_GET_DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 9 of 132

42 api.Run(PHTEDKITCOMPID_IO, &ioData);

The first parameter indicates an I/O layer call; the second parameter is the address of the

data structure. If successful, the user is informed about the number of devices found by

printing the content of the DeviceNum attribute of the ioData structure:

48

49

std::cout << "Number of devices found: " << ioData.DeviceNum << "."

 << std::endl << std::endl;

To ensure proper operation of the software, it will stop if no device were found.

4.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are

actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product

ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices

found for all further actions. To find that device, a loop over all available devices is

created.

To actually retrieve the device details, the API function named GetDeviceInfoDetail (see

section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared

accordingly:

59 ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of

them. The loop’s body will set the device/port number and than actually call the run

method with the proper parameters:

60

61

62

84

for (int i = 0; i < static_cast<int>(ioData.DeviceNum); i++) {

 ioData.Port = i;

 api.Run(PHTEDKITCOMPID_IO, &ioData);

 …

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.

Depending on the result, either the device information or an error message is shown. In

case of success, the device information is printed by just listing all the items which are

available:

64

65

66

67

68

69

70

71

72

73

74

75

std::cout

 << "Number : " << i << std::endl

 << "Flags : " << ioData.Flags << std::endl

 << " -> opened="

 << ((ioData.Flags & 1) ? "yes" : "no") << std::endl

 << "Type : " << ioData.Type << std::endl

 << "DeviceID : 0x" << std::hex << std::uppercase << ioData.ID

 << std::dec << std::endl

 << "LocId : " << ioData.LocId << std::endl

 << "SerialNumber : " << ioData.SerialNumber << std::endl

 << "Description : " << ioData.Description << std::endl

 << std::endl;

After showing the device information, the vendor-and-product-ID is compared with the

one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for

further processing.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 10 of 132

77

79

if ((ioData.ID == PHTEDKITUSB_VIDPID) && (index == -1)) {

 …

}

After the loop is finished, the device being used is shown. If no proper device was found,

the software shows an error message and aborts. Now, the application knows what de-

vices are detected and which one to use for the remaining steps.

4.2.3 Open Device

The final step of the initialization section is to open the device for sending and receiving

data:

96

97

98

99

ioData.Port = index;

ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_OPEN;

ioData.OpenMode = phcs_TedKit2::PHTEDKITIOFKT_NORMAL_OPERATION;

api.Run(PHTEDKITCOMPID_IO, &ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI

device number gets the value of the first NXP TED-Kit 2 device found. The function

called is Open (see section 10.10, page 47) and the OpenMode is set to normal

(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in

case of failure, a message is printed and the application is aborted.

4.3 Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out

of the BaseApi. To achieve this, an instance of the proper data structure for BaseApi

calls is required:

107 phcs_TedKit2::phTedKit_BaseData_t baseData;

Now, that instance can be populated with the proper data required for the call. In case of

this simple function, only the function name needs to be set:

111 baseData.Function = phcs_TedKit2::PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

112 api.Run(PHTEDKITCOMPID_BASEAPI, &baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-

sage is shown. In case of success, the returned values stored in the same instance of

the baseData structure are processed:

114

115

116

117

std::cout

 << "Firmware Code : " << baseData.RxData1 << std::endl

 << "Firmware Version : " << baseData.RxData2 << "."

 << baseData.RxData3 << std::endl;

4.4 Clean-Up

After executing all the functions required, the device in use shall be closed by calling the

API function Close (see section 10.1, page 36):

127

128

ioData.Function = phcs_TedKit2::PHTEDKITIOFKT_CLOSE;

api.Run(PHTEDKITCOMPID_IO, &ioData);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 11 of 132

The ioData structure is properly populated and the Run function is called. After evaluat-

ing the StatusCode (and eventually showing an error message), the application is

closed. This will trigger the destructor of the API class which releases all resources used

for the TED-Kit 2.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 12 of 132

5. ―Hello World‖ in C#

This section will explain a fully working example written C# to illustrate the basic steps

required to make use of the API Library functionality. To be specific, this sample applica-

tion will show how to:

1. Retrieve a list with all connected NXP TED-Kit 2 devices

2. Open a single device and retrieve detailed information.

3. Read and show the firmware version of that TED-Kit 2 device.

4. Clean-up and close the device.

All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\example.cpp

In contrast to the C and C++ examples shown in the previous sections, C# cannot direct-

ly access the library functions and definitions. To be able to write software in C#, a wrap-

per class is required. It is provided as part of the installation of this software:

[TED-Kit 2 installation]\Development\API\doc\examples\TED-Kit 2 API.cs

This class is required to run all examples shown in this manual.

5.1 Epilog

The epilog of this C# example program is rather simple. The use of the System and the

phcs_TedKit2 namespaces is declared. The example class itself is put into its own

namespace:

1

2

3

4

136

using System;

using phcs_TedKit2;

namespace com.nxp.cai.tedkit2 {

 …

}

5.2 Initialization

The actual functionality will be found in the main function of the class Example. The very

first step is to declare a handle to the TED-Kit 2 Library to actually be able to use its

functionality:

25

29

API api = null;

 …

api = new API();

To exchange data between this application and the TED-Kit 2 library, an instance of the

data structure specified for that purpose is required:

32 API.IoData ioData = new API.IoData();

In this case, it’s an instance of the I/O data structure because that is needed first.

5.2.1 Count FTDI Devices

To retrieve the number of all connected FTDI devices, the function GetDeviceNumber

(see section 10.7, page 44) of the API’s I/O layer is called. To do that, the ioData struc-

ture is prepared by assigning the function’s ID to the Function attribute of the structure.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 13 of 132

35 ioData.Function = API.Function.PHTEDKITIOFKT_GET_DEVICE_NUMBER;

Afterwards, the Run method of the API is called:

36 api.Run(API.Layer.PHTEDKITCOMPID_IO, ioData);

The first parameter indicates an I/O layer call and the second parameter is the reference

to the data structure. If successful, the user is informed about the number of devices

found by printing the content of the DeviceNum attribute of the ioData structure:

42

43

Console.WriteLine("Number of devices found: "

 + ioData.DeviceNum + "\n");

To ensure proper operation of the software, it will stop if no devices were found.

5.2.2 Get Device Details

The next step is to show the device details and determine whether the FTDI devices are

actually NXP TED-Kit 2 devices. This will be done by evaluating the vendor and product

ID of each FTDI device connected.

This example application will use the first NXP TED-Kit 2 device out of all FTDI devices

found for all further actions. To find that device, a loop over all available devices is

created.

To actually retrieve the device details, the API function named GetDeviceInfoDetail (see

section 10.6, page 42) out of the I/O layer is used. The ioData structure is prepared

accordingly:

55 ioData.Function = API.Function.PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

Now, the loop over all available devices can run and repeat that function call for each of

them. The loop’s body will set the device/port number and than actually call the run

method with the proper parameters:

56

57

58

79

for (ushort i = 0; i < ioData.DeviceNum; i++) {

 ioData.Port = i;

 api.Run(API.Layer.PHTEDKITCOMPID_IO, ioData);

 …

}

After calling the Run function, its StatusCode attribute of ioData is evaluated.

Depending on the result, either the device information or an error message is shown. In

case of success, the device information is printed by just listing all the items which are

available:

60

61

62

63

64

65

66

67

68

Console.WriteLine("No : {0}", i);

Console.WriteLine("Flags : {0}", ioData.Flags);

Console.WriteLine("Type : {0}", ioData.Type);

Console.WriteLine("DeviceID : {0:X}", ioData.ID);

Console.WriteLine("LocID : {0}", ioData.LocId);

Console.WriteLine("SerialNumber : {0}",

 API.toString(ioData.SerialNumber));

Console.WriteLine("Description : {0}",

 API.toString(ioData.Description));

After showing the device information, the vendor-and-product-ID is compared with the

one expected by NXP TED-Kit 2 devices. In case the IDs match, the index is kept for

further processing.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 14 of 132

70

73

if ((ioData.ID == API.PHTEDKITUSB_VIDPID) && !found) {

 …

}

After the loop is finished, the device being used is shown. If no proper device was found,

the software shows an error message and aborts. Now, the application knows what de-

vices are detected and which one to use for the remaining steps.

5.2.3 Open Device

The final step of the initialization section is to open the device for sending and receiving

data:

92

93

94

95

ioData.Port = index;

ioData.Function = API.Function.PHTEDKITIOFKT_OPEN;

ioData.OpenMode = API.PHTEDKITIOFKT_NORMAL_OPERATION;

api.Run(API.Layer.PHTEDKITCOMPID_IO, ioData);

First, the ioData structure is properly populated: The Port attribute specifying the FTDI

device number gets the value of the first NXP TED-Kit 2 device found. The function

called is Open (see section 10.10, page 47) and the OpenMode is set to normal

(PHTEDKITIOFKT_NORMAL_OPERATION).

After the call, the StatusCode attribute of the ioData structure is evaluated and in

case of failure, a message is printed and the application is aborted.

5.3 Calling API Functions

This example will call only one function: GetFWVersion (see section 11.9, page 61) out

of the BaseApi. To achieve this, an instance of the proper data structure for BaseApi

calls is required:

103 API.BaseData baseData = new API.BaseData();

Now, that instance can be populated with the proper data required for the call. In case of

this simple function, only the function name needs to be set:

108 baseData.Function = API.Function.PHTEDKITBASEAPIFKT_GETFWVERSION;

The method Run is called afterwards:

109 api.Run(API.Layer.PHTEDKITCOMPID_BASEAPI, baseData);

To finish that call, the StatusCode attribute is evaluated and eventually an error mes-

sage is shown. In case of success, the returned values stored in the same instance of

the baseData structure are processed:

111

112

113

Console.WriteLine("Firmware Code : {0}", baseData.RxData1);

Console.WriteLine("Firmware Version : {0}.{1}",

 baseData.RxData2, baseData.RxData3);

5.4 Clean-Up

After executing all the functions required, the device in use shall be closed by calling the

API function Close (see section 10.1, page 36):

121

122

ioData.Function = API.Function.PHTEDKITIOFKT_CLOSE;

api.Run(API.Layer.PHTEDKITCOMPID_IO, ioData);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 15 of 132

The ioData structure is properly populated and the Run function is called. After evaluat-

ing the StatusCode (and eventually showing an error message), all resources are re-

leased:

129 api.dispose();

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 16 of 132

6. Handling Multiple Devices

The whole software system is able to handle multiple connected TED-Kit 2 devices at the

same time. This chapter will illustrate how this shall be handled by custom software writ-

ten in C. The strategy shown here can be applied to all other languages as well.

6.1 One-after-Another

The key to handle multiple devices one-after-another is to open and close each of the

devices for using. The example code explained in section 3: “Hello World” in C uses only

the very first TED-Kit 2 device found. The extensions necessary to handle all TED-Kit 2

devices connected are illustrated below.

Instead of opening just one device, the code will open each TED-Kit 2 device, ask for the

firmware and close it. Thus, the open and close function calls are now inside the loop:

for (int i = 0; i < (int) ioData.DeviceNum; i++) {

 …

 if (ioData.ID == PHTEDKITUSB_VIDPID) {

 …

 ioData.Port = i;

 ioData.Function = PHTEDKITIOFKT_OPEN;

 ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

 …

 ioData.Function = PHTEDKITIOFKT_CLOSE;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

 …

 }

 …

}

The pointer api points to the TED-Kit 2 specified during the opening process. With the

loop above, the example application ripples through all the TED-Kit 2 devices available,

one per loop cycle.

6.2 In Parallel

If an application shall be able to handle multiple TED-Kit 2 devices in parallel, the sample

shown in section 6.1 is of no use. The key to handle multiple devices in parallel is to

create multiple instances of the TED-Kit 2 API library. For each device a new instance is

created and an open-use-close cycle can be used independent from the other instances.

For the initial analysis of the connected devices one instance is required. After retrieving

the number of devices, each device asks for the details and if it is a TED-Kit 2 device

stored for later use:

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 17 of 132

void** tedKit2List = malloc(…);

…

if (ioData.ID == PHTEDKITUSB_VIDPID) {

 /* create a new instance of the ApiInt class */

 void* tedKit2 = phcsApiInt_Alloc();

 /* open the device */

 ioData.Port = i;

 ioData.Function = PHTEDKITIOFKT_OPEN;

 ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

 …

 /* store reference in the list */

 tedKit2List[i] = tedKit2;

}

Afterwards, each device can be operated independent from each other by accessing it

through the array index:

phcsApiInt_Run(tedKit2List[i], PHTEDKITCOMPID_BASEAPI, &baseData);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 18 of 132

7. Interaction with a Transponder

This section will show detail how to setup and execute a communication sequence with a

HITAG2-Extended (PCF7937EA) transponder. The following steps are executed and ex-

plained:

1. Finding a TED-Kit 2 with an ABIC1 on the USB

2. Enabling the TED-Kit 2

3. Configuring the ABIC1 XBoard

4. Configuring the data transmission (from ABIC1 to HITAG2-Extended)

5. Configuring the data reception (from HITAG2-Extended to ABIC1)

6. Reading the XMA configuration of the transponder.

7. Executing an authentication in ciphered mode (default secret key)

8. Selecting an appropriate XMA segment and block

9. Reading all pages from the block.

10. Writing a page of a block.

11. Read that page back.

12. Shut down.

All explanations refer to the example code in:

[TED-Kit 2 installation]\Development\API\doc\examples\PCF7937-in-out.c

In order to run this example, a TED-Kit 2 with an ABIC1 XBoard as well as a HITAG2-

Extended transponder (PCF7937AS) has to be available. The transponder must be con-

figured for ciphered authentication with the default secret key. The equalizer mode must

be set to normal, The XMA configuration must contain at least 2 segments where the

second segment is accessible in ciphered mode (read/write).

For details about the configuration, refer to the data sheet of the transponder.

7.1 Finding a TED-Kit 2 with an ABIC1

Finding a TED-Kit 2 with an ABIC1 on the USB is done similar to the previous examples.

First, a TED-Kit 2 API is created:

173 api = phcsApiInt_Alloc();

Second, the number of FTDI/TED-Kit 2 devices is determined:

186

187

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

Third, a loop over all devices is defined:

214

300

for (i = 0; i < (int) ioData.DeviceNum; i++) {

 …

}

Inside that loop, the device details for each FTDI device are read and evaluated to find

the actual TED-Kit 2s using function GetDeviceInfoDetail (see section 10.6, page 42):

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 19 of 132

213

215

216

221

296

ioData.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;

…

ioData.Port = i;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

…

if (ioData.ID == PHTEDKITUSB_VIDPID) {

 …

}

For each TED-Kit 2, the XSlot information is read in order to find a proper ABIC1 XBoard:

239

240

baseData.Function = PHTEDKITBASEAPIFKT_GETXSLOTINFO;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

For each XBoard, it is checked whether it is an ABIC1 with an LF-Antenna connected:

244

245

246

247

248

if ((baseData.RxData1 == PHTEDKITXBOARD_ABIC1)

 && ((baseData.RxData5 & PHTEDKITXBOARD_FEAT_LF) != 0)

 && (xSlotPort == -1)) {

 xSlotPort = 0;

}

The first ABIC1 is used for the rest of the program. The TED-Kit 2 port ID is stored in

tedKit2Port; the XSlot ID is stored in xSlotPort.

7.2 Enabling the TED-Kit 2

One the TED-Kit 2 and XBoard being used for the rest of the program has been deter-

mined; it can be finally opened for normal operation:

323

324

325

326

ioData.Port = tedkit2Port;

ioData.Function = PHTEDKITIOFKT_OPEN;

ioData.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

After successfully opened, the TED-Kit 2 tick time has to be retrieved to be able to cor-

rectly set all the timings afterwards. This is achieved using BaseApi function GetDeviceS-

tatus (see section 11.8, page 59):

336

337

344

345

baseData.Function = PHTEDKITBASEAPIFKT_GETDEVICESTATUS;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

…

frequency = bytesToLong(baseData.RxBuf1, 6);

tickTime = 1000000.0 / frequency;

The bytes 6 to 9 of RxBuf1 contain the frequency of the TED-Kit 2’s µc in Hertz. The

variable tickTime contains now the timing reference suitable for timings given in µs.

7.3 Configuring the ABIC1 XBoard

The configuration of the XBoard is done using the BaseApi’s function SetXBoardConfig

(see section 11.22, page 81):

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 20 of 132

358

359

360

362

364

baseData.Function = PHTEDKITBASEAPIFKT_SETXBOARDCONFIG;

baseData.Device = PHTEDKITEXTAPIDEVICE_ABIC1;

baseData.TxData1 = xSlotPort;

…

baseData.TxData2 = 0;

…

baseData.TxData3 = 13;

The XBoard used for communication is an ABIC1 and thus, all 14 configuration elements

(0…13) will be set at once. The following values taken from [UM10278_1] are set:

Table 2. ABIC1 XBoard Configuration

Parameter Value

Interface and Mode Non-Filtered

Data Rate 10 µs

Demodulator Sampling Phase 44

Antenna Phase 0

Diagnosis 0

ABIC1 Configuration Register 0…3 7, 0, 0, 0

Test Mode Off

For a detailed description of the meaning of these fields (ABIC1 Configuration Registers

in particular), refer to the ABIC1 data sheet. The actual values are taken from the AB-

IC1’s data sheet and filled in the baseData structure:

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

/* 1 byte "interface & mode" -> set to 0 -> "none filtered" */

baseData.TxBuf1[0] = 0;

/* set the data rate to 10 µs ticks */

longToBytes((long) (10 / tickTime), baseData.TxBuf1, 1);

/* demodulator sampling phase */

baseData.TxBuf1[5] = 0x2c;

/* antenna phase: ignore, set to zero */

baseData.TxBuf1[6] = 0;

/* ignore, set to zero */

baseData.TxBuf1[7] = 0;

/* ABIC1 config register #0 */

baseData.TxBuf1[8] = 7;

/* ABIC1 config register #1 */

baseData.TxBuf1[9] = 0;

/* ABIC1 config register #2 */

baseData.TxBuf1[10] = 0;

/* ABIC1 config register #3 */

baseData.TxBuf1[11] = 0;

/* test mode off -> 0 */

baseData.TxBuf1[12] = 0;

phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

7.4 Configuring the Data Transmission

The data transmission parameters are configured using the BaseApi’s function Set-

TransmissionParams (see section 11.20, page 78). The general configuration is shown in

Table 3.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 21 of 132

Table 3. HITAG2-Extended Tx Parameter

Parameter Value

Global Inversion Off

Preamble Length 0

Preamble Symbol Duration 0

Header Length 0

Header Symbol Duration 0

Trailer Length 0

Trailer Symbol Duration 0

Idle Level 0

Body Encoding BPLM

Body Encoding Parameters

TPulse 48µs

TLog0 160µs

TLog1 224µs

TStop 288µs

The actual values are taken from the transponder’s data sheet and filled in the

baseData structure:

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

baseData.Function = PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS;

baseData.TxData1 = xSlotPort;

/* Global Inversion -> off */

baseData.TxData2 = 0;

/* PreambleLength */

baseData.TxData3 = 0;

/* PreambleSymbolDuration */

baseData.TxTime1 = 0;

/* HeaderLength */

baseData.TxData4 = 0;

/* HeaderSymbolDuration */

baseData.TxTime2 = 0;

/* TrailerLength */

baseData.TxData5 = 0;

/* TrailerSymbolDuration */

baseData.TxTime3 = 0;

/* IdleLevel */

baseData.TxData6 = 0;

/* Tx Data Coding Type -> BPLM */

baseData.TxData7 = PHTEDKITCODING_BPLM;

/* T_Pulse -> 48µs */

longToBytes((long) (48 / tickTime), baseData.TxBuf1, 0);

/* T_Log0 -> 160µs */

longToBytes((long) (160 / tickTime), baseData.TxBuf1, 4);

/* T_Log1 -> 224µs */

longToBytes((long) (224 / tickTime), baseData.TxBuf1, 8);

/* T_Stop -> 288µs */

longToBytes((long) (288 / tickTime), baseData.TxBuf1, 12);

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 22 of 132

7.5 Configuring the Data Reception

The data reception parameters are configured using the BaseApi’s function

SetReceptionParams (see section 11.19, page 76). The general configuration is

shown in Table 4:

Table 4. HITAG2-Extended Rx Parameter

Parameter Value

Synchronization Mode Time based

Synchronization Delay 1.33ms

Global Inversion Off

Header Length 10 half bits

Header Pattern 0101010101bin

Header Symbol Duration 128µs

Body Encoding Manchester

Body Encoding Parameters Symbol Duration TUnit 128µs

The actual values are taken from the transponder’s data sheet and filled in the

baseData structure:

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

baseData.Function = PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS;

baseData.TxData1 = xSlotPort;

/* SyncMode -> time based */

baseData.TxData2 = 1;

/* SyncDelay -> 1330µs */

baseData.TxTime1 = (uint32_t) (1330 / tickTime);

/* Global Inversion -> off */

baseData.TxData3 = 0;

/* Header Length -> 10 half-bits */

baseData.TxData4 = 10;

/* Header Symbol Duration -> 128µs */

baseData.TxTime2 = (uint32_t) (128 / tickTime);

baseData.TxData5 = PHTEDKITCODING_MANCHESTER;

/* Body Symbol Duration -> 128 µs */

longToBytes((long) (128 / tickTime), baseData.TxBuf1, 0);

/* Header Pattern for Manchester/EQ -> 5540hex (10 half-bits) */

baseData.TxBuf2[0] = 0x55;

baseData.TxBuf2[1] = 0x40;

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

The HITAG2-Extended can handle two different header patterns: the default pattern 5

bits long (11111bin) and the modified pattern 7 bits long (1111110bin). The patterns are

always Manchester encoded regardless of the encoding scheme for the payload. The

length and the waveform of the pattern must be given already encoded as Manchester.

Thus, the header length for the default pattern is set to 10 (10 half bits = 5 bits) in

TxData4. The pattern in TxBuf2 conforms to five One’s encoded as Manchester

(5540hex = 0101010101bin). The value is left aligned and thus, the last 4 of the 16 bits are

ignored.

7.6 Reading the XMA Configuration

To read the transponder’s XMA configuration, two steps are necessary. First, the trans-

ponder has to be set into XMA/CFG state. Second, the memory configuration has to be

read for each segment.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 23 of 132

7.6.1 Entering XMA/CFG

To enter the XMA/CFG state, the PHTEDKITHITAG2CMD_XMACFG command executed

using TransmitReceive (see section 12.2.1, page 98) is used.

This command can be executed in the transponder’s WAIT state only. To ensure the

transponder is indeed in WAIT state, a hard-reset (125 kHz field off/on) is configured.

Such a hard reset can be issued at any time by setting TxTime1 and TxTime2 of the

baseData structure to proper values (other than zero):

485

487

488

489

baseData.TxTime1 = (uint32_t) (5000 / tickTime);

…

baseData.TxTime2 = (uint32_t) (6640 / tickTime);

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,

 PHTEDKITHITAG2CMD_XMACFG, &baseData);

The timings set correspond to TRESET, DURATION=5ms (TxTime1) and TRESET, SETUP=6.64ms

(TxTime2) of the PCF7937AS data sheet.

An alternative to the hard (field-) reset is the use of the command

PHTEDKITHITAG2CMD_SOFTRESET as explained in section 7.7.1, page 24.

After successful execution, the transponder is in XMA/CFG state. To prevent a hard reset

during the next ExtApi transmit-receive sequence, the two timing parameters have to be

reset to 0:

497

598

baseData.TxTime1 = 0;

baseData.TxTime2 = 0;

7.6.2 Reading the Configuration

The second step is to actually read the XMA configuration from the transponder. The

transponder has 8 segments, for each of them; the appropriate commands have to be

issued. A loop is defined first:

506

535

for (i = 0; i < 8; i++) {

 …

}

To read the configuration for a segment, the segment number has to be given in TxBuf1

followed by the execution of the function TransmitReceive (see section 12.2.1, page

98) with command PHTEDKITHITAG2CMD_READCFG in state

PHTEDKITHITAG2STATE_XMACFG:

508

509

510

baseData.TxBuf1[0] = i;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMACFG,

 PHTEDKITHITAG2CMD_READCFG, &baseData);

After successful execution, the segment configuration is stored in RxBuf1. The first entry

contains the segment’s access mode; the second entry contains the size (number of

blocks):

517

518

519

printf(

 "segment #%i configuration: mode=0x%02X, size=%i blocks.\n",

 i, (baseData.RxBuf1[0] & 0x0F), (baseData.RxBuf1[1] & 0x0F));

For a detailed description of RxBuf1’s layout, refer to [1].

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 24 of 132

7.7 Executing a Ciphered Authentication

An authentication for a HITAG2-Extended is a two-step process. First, the init sequence

is executed returning the transponder’s IDE. Second, the actual authentication (either

password or ciphered) is carried out.

7.7.1 Preparation

To successfully authenticate, the transponder commands have to be executed in the

WAIT state of the transponder. From the previous section, the transponder is still in

XMACFG state. To bring it back to the WAIT state, the function TransmitReceive (see

section 12.2.1, page 98) is executed with transponder command

PHTEDKITHITAG2CMD_SOFTRESET in transponder state

PHTEDKITHITAG2STATE_XMACFG:

552

553

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMACFG,

 PHTEDKITHITAG2CMD_SOFTRESET, &baseData);

After the reset, the transponder needs some time to initialize itself. The timing T init state of a

PCF7937AS is specified with 6.32ms. Before sending any other command to the trans-

ponder, we have to wait that time to ensure the transponder is listening again.

To delay, the build-in function Delay (see section 11.1, page 50) of the TED-Kit 2 is used.

The timing value TxTime1 is first converted to µs (6.32ms = 6320µs) and then converted

in TED-Kit 2 system ticks (as the TED-Kit 2 requires it):

562

564

565

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

…

baseData.TxTime1 = (uint32_t) (6320 / tickTime);

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

Because the TxTime1 attribute of baseData is used as field reset configuration, it must

be reset to 0 to prevent any field reset during the next transmit-receive sequence:

573 baseData.TxTime1 = 0;

7.7.2 Authentication Initialization

The first step of the authentication is the initialization returning the transponder’s IDE.

This is achieved using the function TransmitReceive (see section 12.2.1, page 98)

with command PHTEDKITHITAG2CMD_STARTAUTH in state

PHTEDKITHITAG2STATE_WAIT. To indicate the first part of the authentication se-

quence, TxBuf1 is set to 0:

576

577

578

baseData.TxBuf1[0] = 0;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,

 PHTEDKITHITAG2CMD_STARTAUTH, &baseData);

The returned IDE is stored in RxBuf1 and is printed on the screen:

586

587

ide = bytesToLong(baseData.RxBuf1, 0);

printf("transponder IDE: 0x%08X\n", ide);

7.7.3 Authentication Execution

The second step of the authentication is the exchange of the secure items. To indicate

that now the second step is executed, TxBuf1 is set to 2 - indicating crypto mode:

594 baseData.TxBuf1[0] = 2;

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 25 of 132

Besides that, TxBuf1 is also filled with the IDE, the challenge (0 in this example) and the

secret key (the default value in this example):

596

598

599

600

601

603

604

605

606

607

608

 longToBytes(ide, baseData.TxBuf1, 1);

 …

 baseData.TxBuf1[5] = 0;

 baseData.TxBuf1[6] = 0;

 baseData.TxBuf1[7] = 0;

 baseData.TxBuf1[8] = 0;

 …

 baseData.TxBuf1[9] = 'M';

 baseData.TxBuf1[10] = 'I';

 baseData.TxBuf1[11] = 'K';

 baseData.TxBuf1[12] = 'R';

 baseData.TxBuf1[13] = 'O';

 baseData.TxBuf1[14] = 'N';

For details about the layout of TxBuf1, refer to [1]. To execute the second step, the func-

tion TransmitReceive (see section 12.2.1, page 98) with command

PHTEDKITHITAG2CMD_STARTAUTH in state PHTEDKITHITAG2STATE_WAIT is used:

609

610

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_WAIT,

 PHTEDKITHITAG2CMD_STARTAUTH, &baseData);

If successful, RxBuf1 contains the transponder password which can be used by the

base station to ensure the intended transponder is authenticated:

617

618

printf("transponder password: 0x%06X\n",

 (bytesToLong(baseData.RxBuf1, 0) & 0x00FFFFFF));

7.8 Selecting a XMA Segment and Block

In order to access the HITAG2-Extended’s memory, the transponder has to move from

the AUTHENT state in the XMA state. This is achieved using the function

TransmitReceive (see section 12.2.1, page 98) with transponder command

PHTEDKITHITAG2CMD_XMA in transponder state

PHTEDKITHITAG2STATE_AUTHORIZED. This command also selects the desired seg-

ment (#1 in this example given in TxBuf1):

636

637

638

baseData.TxBuf1[0] = 1;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_AUTHORIZED,

 PHTEDKITHITAG2CMD_XMA, &baseData);

Selecting a block of the segment, the function TransmitReceive (see section 12.2.1,

page 98) with transponder command PHTEDKITHITAG2CMD_SELBLOCK in state

PHTEDKITHITAG2STATE_XMA is executed. The desired block is given in TxBuf1:

650

651

652

baseData.TxBuf1[0] = 0;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,

 PHTEDKITHITAG2CMD_SELBLOCK, &baseData);

7.9 Reading all Pages from a Block

Each block has 8 pages of 32-bit values. To read them, an appropriate loop is defined:

666

678

for (i = 0; i < 8; i++) {

 …

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 26 of 132

Inside the loop, each of the 8 pages is read one after another using function

TransmitReceive (see section 12.2.1, page 98) with transponder command

PHTEDKITHITAG2CMD_READPAGE in transponder state PHTEDKITHITAG2STATE_XMA

(the transponder is still in XMA state):

668

669

670

baseData.TxBuf1[0] = i;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,

 PHTEDKITHITAG2CMD_READPAGE, &baseData);

After successful reading, the value returned in RxBuf1 from the TED-Kit 2 is printed on

the screen:

677 printf("page #%i := 0x%08X\n", i, bytesToLong(baseData.RxBuf1, 0));

7.10 Writing a Page of a Block

To write a page, the page number and its value have to be given in TxBuf1 (page 7 and

a value of 76543210hex are used in this example):

688

690

baseData.TxBuf1[0] = 7;

…

longToBytes(0x76543210, baseData.TxBuf1, 1);

The function TransmitReceive (see section 12.2.1, page 98) is executed with trans-

ponder command PHTEDKITHITAG2CMD_WRITEPAGE in transponder state

PHTEDKITHITAG2STATE_XMA (the transponder is still in XMA state):

692 transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,

 PHTEDKITHITAG2CMD_WRITEPAGE, &baseData);

The transponder needs some time to actually carry out the memory write operation. The

timing TProg of a PCF7937AS is specified with 4.92ms. Before sending any other com-

mand to the transponder, we have to wait that time to ensure the transponder is listening

again.

To delay, the build-in function Delay (see section 11.1, page 50) of the TED-Kit 2 is used.

The timing value TxTime1 is first converted to µs (4.92ms = 4920µs) and then converted

in TED-Kit 2 system ticks (as the TED-Kit 2 requires it):

702

704

705

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

…

baseData.TxTime1 = (uint32_t) (4920 / tickTime);

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

Because the TxTime1 attribute of baseData is used as field reset configuration, it must

be reset to 0 to prevent any field reset during the next transmit-receive sequence:

713 baseData.TxTime1 = 0;

7.11 Read that Page Back

To read that page 7 just written back from the transponder and e.g. check for correct-

ness, the function TransmitReceive (see section 12.2.1, page 98) is executed with

transponder command PHTEDKITHITAG2CMD_READPAGE in transponder state

PHTEDKITHITAG2STATE_XMA (the transponder is still in XMA state):

724

725

baseData.TxBuf1[0] = 7;

transmitReceive(api, xSlotPort, PHTEDKITHITAG2STATE_XMA,

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 27 of 132

726 PHTEDKITHITAG2CMD_READPAGE, &baseData);

The result is stored in RxBuf1 and printed on the screen:

733 printf("page #7 := 0x%08X\n", bytesToLong(baseData.RxBuf1, 0));

7.12 Shut Down

To properly shut down the application, the following steps are necessary. First, the TED-

Kit 2 device is closed:

741

742

743

744

745

746

ioData.Function = PHTEDKITIOFKT_CLOSE;

phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &ioData);

if (ioData.StatusCode != PHTEDKITSTATUS_OK) {

 printf("Unable to close device.\n");

 return EXIT_FAILURE;

}

Second, the TED-Kit 2 library API resources are freed.

749 phcsApiInt_Destroy(api);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 28 of 132

8. Transmit/Receive Logging

All functions dealing with transmission and reception (see Table 5, page 28) of data to

and from transponders log the actual bits send or received. These logging data can be

used to visualize the data stream or analyze it for debugging purposes.

Table 5. Functions for Tx/Rx

Function API Layer Page

TransmitReceive Base API 83

TransmitReceive Extension API 98

PkeAuthent Extension API 104

PkePollEnable Extension API 106

PkePollIde Extension API 107

PkePollMute Extension API 109

PkeReadEeprom Extension API 111

PkeReadVbat Extension API 113

PkeRssiAll Extension API 115

PkeRssiSingle Extension API 117

PkeWriteEeprom Extension API 119

In case of a ciphered communication, the bits logged are already encrypted or not yet

decrypted.

In case of communication failures, the logging buffers still may contain data. For example

if a 10 bit answer was expected but only 9 bits received, the nine bits are in the logging

buffer (RxBuf3 in this case).

8.1 Storage and Format

The logging data are stored in TxBuf3 and RxBuf3 of the baseData structure. The da-

ta are stored separately for transmitted and received bits. For each transmit/receive se-

quence, a data record is stored in both TxBuf3 (containing the transmission part) and

RxBuf3 (containing the received part).

Because there are several transponder commands with more than one transmit/receive

sequence (e.g. authentication, page writing etc), the data are stored in a way to handle

an arbitrary number of sequences.

Table 6, page 29 illustrates how the data are stored. The format applies to both buffers,

TxBuf3 and RxBuf3.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 29 of 132

Table 6. Logging Data Storage Format

Byte of buffer 0 1 2 3 … x x+1 x+2 …

Description Number of

records

Number of bits 1
st

record

1
st
 data byte of

1
st
 sequence

... Number of bits 2
nd

record

1
st
 data byte of

2
nd

 sequence

…

MSB LSB MSB LSB

Bit 7 6 5 4 3 2 1 0 … 7 6 5 4 3 2 1 0 …

Order Send/Received 1 2 3 4 5 6 7 8 … 1 2 3 4 5 6 7 8 …

The first byte always contains the number of records following. Each record consists of a

two byte header containing the number of bits followed by the necessary number of bytes

to represent the bits transmitted/received.

The data section of the record is always byte-aligned even if e.g. only 5 bits are transmit-

ted; the next record starts at the next byte of the buffer.

For each transmit record in TxBuf3, a corresponding receive record exists in RxBuf3.

This is the case even if any of them is empty (e.g. the write page command has two

transmit and only one receive part).

8.2 Printing the data

The code below illustrates how to print the actual bits transmitted and received on the

screen:

void logMessage(

 const char* const prefix, const uint8_t* buf, const uint8_t idx) {

 uint16_t offset = 1;

 uint16_t bitcount;

 int i;

 uint8_t mask;

 /* "fast forward" to the bits of the given index */

 for (i = 0; i < idx; i++) {

 bitcount = ((buf[offset] << 8) | buf[offset + 1]);

 offset += 2 + ((bitcount / 8) + (bitcount % 8 == 0 ? 0 : 1));

 }

 /* print the message on screen */

 bitcount = ((buf[offset] << 8) | buf[offset + 1]);

 printf("%s %i bits\n", prefix, bitcount);

 /* print the bits on screen (if any) */

 if (bitcount > 0) {

 for (i = 0; i < bitcount; i++) {

 mask = (1 << (7 - (i % 8)));

 printf("%c", ((buf[2 + offset + (i / 8)] & mask) ? '1' : '0'));

 }

 printf("\n");

 }

}

void logAllMessages(const phTedKit_BaseData_t* const baseData) {

 int txCnt = 0;

 int rxCnt = 0;

 while ((txCnt < baseData->TxBuf3[0]) || (rxCnt < baseData->RxBuf3[0])) {

 if (txCnt < baseData->TxBuf3[0]) {

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 30 of 132

 logMessage("Transmit", baseData->TxBuf3, txCnt);

 txCnt++;

 }

 if (rxCnt < baseData->RxBuf3[0]) {

 logMessage("Receive", baseData->RxBuf3, rxCnt);

 rxCnt++;

 }

 };

}

The function logAllMessages can be called right after the execution of an appropriate

Tx/Rx command. It will loop through both buffers and print the bits transmitted (first) and

received (second).

Adding those two functions to the example shown in section 7, page 18 and calling

logAllMessages right after the write page command:

702

703

704

705

706

707

710

baseData.Function = PHTEDKITBASEAPIFKT_DELAY;

/* T_prog = 4.92ms -> 4920µs */

baseData.TxTime1 = (uint32_t) (4920 / tickTime);

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

logAllMessages(&baseData);

if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 …

}

produces the following output:

…

Transmit 10 bits

0000010010

Receive 10 bits

0001110110

Transmit 32 bits

10010001010000011000111111101000

Receive 0 bits

…

This is exactly how the transmit/receive sequence for the write page command of the

HITAG2-Extended transponder is defined. The data shown are the actual data transmit-

ted/received and thus, are encrypted.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 31 of 132

9. API Reference - Overview

This and the following sections give a detailed description of all the functions offered by

the API and all the functionality which can be accessed through this API.

9.1 Functions

The API gives access to the functionality of the TED-Kit 2. This is achieved by using only

a few functions. Depending on the programming language, the names and parameters

differ a bit. Each application using the TED-Kit 2 and its API will go through three parts:

1. Initialize the API and the TED-Kit 2 software and hardware.

2. Execute one or more functions of the TED-Kit 2

3. Clean-up the API and TED-Kit 2 library and resources.

For each of the three steps, the API offers one function. There naming and parameters

differ a bit as well as the location of the declaration depending on the used programming

language.

9.1.1 Initialization

This function must be called before any other interaction with the API can take place.

Each of the three functions returns a (language specific) handle to an instance of the

API. Calling it multiple times will create different, independent instances of the API (e.g.

required to interact with multiple TED-Kit 2 devices at once).

Table 7. API Initialization Function

Programming

Language

 Interface

Method Signature

C void* phcsApiInt_Alloc()

C++ phcs_TedKit2::ApiInt()

C# phcs_TedKit2::API()

9.1.2 Execution

To execute actual TED-Kit 2 functions, the following method must be used:

Table 8. API Execution Function

Programming

Language

 Interface

Method Signature

C PHTEDKITSTATUS phcsApiInt_Run(

 void* instance, uint16_t comp, void* param)

C++ phcs_TedKit2::PHTEDKITSTATUS

 phcs_TedKit2::ApiInt.Run(uint16_t comp, void* param)

C# phcs_TedKit2::API.Run(ushort comp, Object param)

For C the first parameter is always the handle of the desired API/TED-Kit 2. For C++ and

C#, the handle is an instance of the ApiInt class and its method Run can be called di-

rectly on this instance.

The parameter comp defines the layer to which the desired function belongs (see Table

11, page 35; Table 14, page 49 and Table 18, page 85).

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 32 of 132

The last parameter is a pointer (or reference in C#) to a structure (or class in C#). De-

pending on the API layer, one of two structures types needs to be used (see Table 11,

page 35; Table 14, page 49 and Table 18, page 85).

All parameters for a TED-Kit 2 function and all return values created by the TED-Kit 2

function are passed through this structure.

9.1.3 Clean-Up

To clean-up all the resources used by the software, the following method shall be called.

Once this is done, the handle cannot be used anymore!

Table 9. API Destruction Function

Programming

Language

Interface

Method Signature

C void phcsApiInt_Destroy(void* instance)

C++ phcs_TedKit2::~ApiInt()

C# void phcs_TedKit2::API.dispose()

9.2 Common Attributes

There are several attributes of the parameter structure which are shared between some

or all functions. These attributes are explained in detail in the following sections.

9.2.1 Function ID

The attribute Function is required for each function call. It contains the function’s ID

intended to call. It must be one of the IDs shown in Table 10, page 35; Table 13, page 49

and Table 17, page 85.

9.2.2 Status Code

Each function of the API returns a status code stored in the attribute StatusCode. In

case the function executed successfully, the return code will always be

PHTEDKITSTATUS_OK. In case of a problem, the status code will be one of the codes

listed in Table 28, page 122.

9.2.3 Trace Buffer

All functions of the Ext- (PHTEDKITCOMPID_EXTAPI) and the Base-

(PHTEDKITCOMPID_BASEAPI) API are capable of returning the debug trace data

eventually created by the firmware. This feature is not available for functions of the I/O

layer (PHTEDKITCOMPID_IO).

The debug trace data are nothing but a NULL terminated, human readable ASCII charac-

ter string. It contains text which allows analyzing the firmware’s program flow. This text is

usually available only if the debug version of the firmware is running at the TED-Kit 2’s

µController.

The trace is stored in the attribute TraceBuf of the structure phTedKit_BaseData_t.

To print it, any character string printing function can be used, e.g.

std::cout << dataStructure.TraceBuf << std::endl;

Or

printf(“%s\n”, dataStructure.TraceBuf);

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 33 of 132

To determine whether some debug trace data are available, the size of the text string

stored in TraceBuf shall be determined. If it’s greater zero, debug trace data are availa-

ble:

if (strlen(dataStructure.TraceBuf) > 0) {

 // debug trace data are available

 …

}

It is guaranteed that the TraceBuf attribute of the structure in use is NULL terminated. In

case the debug trace information is empty, NULL will be the first and only content of the

TraceBuf.

9.2.4 Timings

All timing parameters set or returned are specified as so called ticks. Each tick

represents a certain amount of time which depends on the clock cycle of the TED-Kit 2’s

µController. This simplifies the time handling inside the firmware dramatically but creates

some overhead for the API user.

To use the correct timing information, one has to determine the µControllers clock fre-

quency by calling GetDeviceStatus (see section 11.8, page 59) and evaluating the 4
th

element of the returned RxBuf1:

long frequency;

baseData.Function = phcs_TedKit2::PHTEDKITBASEAPIFKT_GETDEVICESTATUS;

/* call the API’s run(..) method */

phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &baseData);

if (evalStatus(baseData.StatusCode)) {

 frequency = ((baseData.RxBuf1[6] << 24) | (baseData.RxBuf1[7] << 16)

 | (baseData.RxBuf1[8] << 8) | baseData.RxBuf1[9]);

}

Now, the software can create the proper API timing values out of the natural timings (in

seconds) given by the user, e.g.:

double headerSymbolDuration_s = 0.000128; /* 128 µs */

The user specifies e.g. the header symbol duration as 128 µs (0.000128 seconds). The

tick time is than the natural time multiplied with the frequency in Hz:

int headerSymbolDuration_tick = headerSymbolDuration_s * frequency;

The result depends on the value of frequency, for a µController running at e.g. 48 MHz,

the tick time value is 6144 and for a µController running at 24 MHz it is 3072. This value

than shall be used during the API call of e.g. SetReceptionParams (see section 11.19,

page 76) or GetReceptionParams (see section 11.11, page 63) .

All natural timing values need to be converted to the system specific tick time and vice

versa. The user shall never see these tick times. In the user interface only timings in

seconds (or the proper sub units like µs or ms) shall be used.

9.3 Common Example Code

All example code in the following sections is written in plain C and will run if compiled

together with the code section shown below.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 34 of 132

Example 9-1. Preamble for Example Code

#include "intfs\IphcsApiInt\inc\phIcsApiInt.h"

#include "types\phTedKitCommands.h"

#include "types\phTedKitStatus.h"

#include <stdio.h>

void* getTEDKit2API() {

 phTedKit_IoData_t data;

 void* api = phcsApiInt_Alloc();

 data.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 printf("FTDI devices found: %i\n", data.DeviceNum);

 data.Function = PHTEDKITIOFKT_OPEN;

 data.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

 data.Port = 0;

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 return api;

}

void copy(const uint32_t value, uint8_t* const dest, const int offset) {

 dest[offset + 0] = (uint8_t) ((value >> 24) & 0xFF);

 dest[offset + 1] = (uint8_t) ((value >> 16) & 0xFF);

 dest[offset + 2] = (uint8_t) ((value >> 8) & 0xFF);

 dest[offset + 3] = (uint8_t) ((value >> 0) & 0xFF);

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 35 of 132

10. API Reference - I/O Functions

The functions of the I/O library component provide access to the major functions of the

FTDI driver library. These functions are mainly used for maintenance of the TED-Kit 2

and do not deliver any functionality regarding NXP’s base station or transponder compo-

nents.

The functions of this group do not interact with the TED-Kit 2 µC firmware. They only talk

to either the device driver or to the FTDI hardware of the TED-Kit 2 system.

The I/O layer offers the following functions:

Table 10. Function Codes - I/O Layer

Note: All values are prefixed with PHTEDKITIOFKT_

Value Description Page

CLOSE Close a FTDI/TED-Kit 2 device. 36

EE_UAREAD Reads the TED-Kit 2’s FTDI EEPROM. 37

EE_UASIZE Returns the TED-Kit 2’s FTDI EEPROM size. 39

EE_UAWRITE Writes the TED-Kit 2’s FTDI EEPROM. 40

GET_API_VERSION Returns the TED-Kit 2 API library version. 41

GET_DEVICE_INFODETAIL Returns details about a FTD/TED-Kit 2 device. 42

GET_DEVICE_NUMBER Returns the number of FTDI devices on the USB. 44

GET_DRIVER_VERSION Returns the FTDI/TED-Kit 2 device driver version. 45

GET_LIBRARY_VERSION Returns the FTDI library version. 46

OPEN Opens a FTDI/TED-Kit 2 device. 47

All functions explained in this section use the following API Run-method parameters:

Table 11. Parameters of Method Run – I/O layer

Parameter Value

Component ID PHTEDKITCOMPID_IO

Structure Type phTedKit_IoData_t

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 36 of 132

10.1 Close

This function closes the connection to a previously opened TED-Kit 2 device.

See section 10.10, page 47 for the corresponding Open command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_CLOSE

Output

StatusCode see Table 28, page 122 The status code information about success or failure.

Example 10-1: Close

int main() {
 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_CLOSE;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 37 of 132

10.2 EEUARead

This function reads the content of the TED-Kit 2’s FTDI IC EEPROM user area. The max-

imum size of that memory is determined by calling function EEUASize (section 10.3,

page 39). If the input attribute EESize exceeds this number, the behavior is undefined.

See section 10.4, page 40 for the corresponding EEUAWrite command.

For the meaning of each of the EEData’s values (the memory layout), see Table 12,

page 37.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_EE_UAREAD

EESize unsigned 32 Bit The number of bytes being read, maximum can

be retrieved with call of EEUASize.

Output

StatusCode see Table 28, page 122 The status code information about success or

failure.

EEData 0…EESize of unsigned 8 bit The bytes being read.

Table 12. FTDI EEPROM layout

Address Value Description

0 The hardware version of the TED-Kit 2 main board. Currently, the values 0, 1

and 2 (for the board revisions 0, 1 and 2) are in use.

1..13 The TED-Kit 2’s custom name. 12 ASCII characters in the range from 20hex to

7Ehex (all printable US-ASCII characters).

14..23 Currently not used.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 38 of 132

Example 10-2: EEUARead

int main() {
 phTedKit_IoData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* determine user area size */

 const uint32_t EEPROM_SIZE = 22; /* the default UAEE size */

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_EE_UAREAD;

 data.EESize = EEPROM_SIZE;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 } else {

 /* print the user area content */

 for (i = 0; i < data.EESize; i++) {

 printf("%02X\n", (int) data.EEData[i]);

 }

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 39 of 132

10.3 EEUASize

This function returns the number of bytes of the TED-Kit 2’s FTDI IC EEPROM user area.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_EE_UASIZE

Output

StatusCode see Table 28, page 122 The status code information about success or

failure.

EEEsize unsigned 32 bit The size of the user area in bytes.

Example 10-3: EEUASize

int main() {

 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_EE_UASIZE;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 /* print the user area content */
 printf("User EE size=%i bytes\n", data.EESize);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 40 of 132

10.4 EEUAWrite

This function writes the content of the TED-Kit 2’s FTDI IC EEPROM user area. The

maximum size of that memory is determined by calling function EEUASize (section 10.3,

page 39). If the input attribute EESize exceeds this number, the behavior is undefined.

See section 10.2, page 37 for the corresponding EEUARead command.

For the meaning of each of the EEData’s values (the memory layout), see Table 12,

page 37.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_EE_UAWRITE

EESize 0…PHTEDKITIO_BUFSIZE of

unsigned 8 bit.

The number of bytes being written.

EEData Array of unsigned 8 bit with

EESize of valid data.

The bytes being written (always starts at EE-

PROM address 0).

Output

StatusCode see Table 28, page 122 The status code informing about success or

failure.

Example 10-4: EEUAWrite

int main() {
 phTedKit_IoData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_EE_UAWRITE;

 /* write ten bytes */

 data.EESize = 10;
 for (i = 0; i < 10; i++) {
 data.EEData[i] = i;

 }

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 41 of 132

10.5 GetAPIVersion

This function returns the version of the API library currently in use.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_GET_API_VERSION

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

ID 32 bit unsigned The version information.

Bits 0..7 The micro part of the version.

Bits 8..15 The minor part of the version

Bits 16..23 The major part of the version.

Example 10-5: GetAPIVersion

int main() {
 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */
 data.Function = PHTEDKITIOFKT_GET_API_VERSION;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("TED-Kit 2 API Version: %i.%i.%i\n",

 ((data.ID >> 16) & 255),

 ((data.ID >> 8) & 255),

 ((data.ID >> 0) & 255));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 42 of 132

10.6 GetDeviceInfoDetail

This function returns configuration details of an FTDI device (which might be a TED-

Kit 2).

This function can be called without opening the device in advance. The function

GetDeviceNumber (see section 10.7, page 44) must be called in advance to allow the

device driver to properly determine the device details.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_GET_DEVICE_INFODETAIL

Port 0..126 The port (index) of the TED-

Kit 2 box of interest.

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

Flags unsigned 32 bit Bit 0 indicates whether this

port is open (1) or closed (0).

All other bits are reserved and

have no purpose at this time.

Type unsigned 32 bit unknown

ID unsigned 32 bit The hardware’s product and

vendor ID. For the TED-Kit 2,

always

PHTEDKITUSB_VIDPID.

LocID unsigned 32 bit unknown

SerialNumber NULL terminated character string, length is 1..16

(incl. NULL)

The TED-Kit 2’s unique serial

number.

Description NULL terminated character string, length 1..64

(incl. NULL)

The description of the TED-

Kit 2 device from the USB

point of view, always TED-

Kit 2.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 43 of 132

Example 10-6: GetDeviceInfoDetail

int main() {
 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */
 data.Function = PHTEDKITIOFKT_GET_DEVICE_INFODETAIL;
 data.Port = 0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("FTDI device details:\n");
 printf("TED-Kit 2 : %s\n",
 (data.ID == PHTEDKITUSB_VIDPID ? "yes" : "no"));
 printf("Port : %d\n", data.Port);
 printf("Flags : %d\n", data.Flags);

 printf(" -> opened=%s\n", ((data.Flags & 1) ? "yes" : "no"));

 printf("Type : %d\n", data.Type);
 printf("DeviceID : 0x%08X\n", data.ID);
 printf("LocId : %d\n", data.LocId);
 printf("SerialNumber : %s\n", data.SerialNumber);

 printf("Description : %s\n", data.Description);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 44 of 132

10.7 GetDeviceNumber

This function returns the number of FTDI devices found on the USB.

A FTDI device is not necessarily a TED-Kit 2 device (FTDI chips can be found in many

products). To ensure an FTDI device is actually a TED-Kit 2 device, check for the ven-

dor- and product code returned by GetDeviceInfoDetail (see section 10.6, page 42).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_GET_DEVICE_NUMBER

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

DeviceNum 0..126 The number of FTDI devices found

on the USB.

Example 10-7: GetDeviceNumber

int main() {

 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_GET_DEVICE_NUMBER;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("FTDI devices found: %i\n", data.DeviceNum);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 45 of 132

10.8 GetDriverVersion

This function returns the version of the FTDI device driver currently in use.

In order to get a valid result, at least one FTDI device must be currently opened (see

Open, section 10.10, page 47).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_GET_DRIVER_VERSION

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

ID 32 bit unsigned The version information as.

major.minor.micro.

Bits 0..7 The micro part of the version.

Bits 8..15 The minor part of the version

Bits 16..23 The major part of the version.

Example 10-8: GetDriverVersion

int main() {
 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* OPEN AT LEAST ONE DEVICE … */

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_GET_DRIVER_VERSION;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("FTDI Driver Version: %i.%i.%i\n",

 ((data.ID >> 16) & 255),

 ((data.ID >> 8) & 255),
 ((data.ID >> 0) & 255));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 46 of 132

10.9 GetLibraryVersion

This function returns the version of the (FTDI-) library currently in use.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_GET_LIBRARY_VERSION

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

ID 32 bit unsigned The version information as.

major.minor.micro.

Bits 0..7 The micro part of the version.

Bits 8..15 The minor part of the version

Bits 16..23 The major part of the version.

Example 10-9: GetLibraryVersion

int main() {

 phTedKit_IoData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITIOFKT_GET_LIBRARY_VERSION;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 } else {

 printf("FTDI Library Version: %i.%i.%i\n",

 ((data.ID >> 16) & 255),

 ((data.ID >> 8) & 255),

 ((data.ID >> 0) & 255));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 47 of 132

10.10 Open

This function opens a FTDI/TED-Kit 2 device. Calling this function is required to work

with a device or to update its firmware (see input parameter).

If the device is not longer used, it shall be closed using the appropriate API function

Close (see section 10.1, page 36).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITIOFKT_OPEN

OpenMode PHTEDKITIOFKT_NORMAL_OPERATION The TED-Kit 2 will operate in normal

mode.

PHTEDKITIOFKT_FIRMWARE_UPDATE The TED-Kit 2 will be ready to load a

new firmware (update).

Port 0..n The device/port number of the TED-

Kit 2 desired to be opened. This num-

ber is retrieved from the result of call-

ing GetDeviceInfoDetail

FileInfo String The path and name of the HEX file

containing the firmware to be up-

loaded. Used only if OpenMode is set

to

PHTEDKITIOFKT_FIRMWARE_UPDATE

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

Example 10-10: Open (Normal Operation)

int main() {

 void* api = getTEDKit2API();

 // populate the data structure

 phTedKit_IoData_t data;

 data.Function = PHTEDKITIOFKT_OPEN;

 data.OpenMode = PHTEDKITIOFKT_NORMAL_OPERATION;

 data.Port = 0;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 48 of 132

Example 10-11: Open (Firmware Update)

int main() {

 void* api = getTEDKit2API();

 /* populate the data structure */

 phTedKit_IoData_t data;

 data.Function = PHTEDKITIOFKT_OPEN;

 data.OpenMode = PHTEDKITIOFKT_FIRMWARE_UPDATE;

 data.Port = 0;

 data.FileInfo = "C:\\foo\\tedkit2.hex";

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_IO, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 49 of 132

11. API Reference - Base Functions

The base API functions represent a direct access to the functionality provided by the

TED-Kit 2 system (hardware with firmware running on the µC).

The base layer offers the following functions:

Table 13. Function Codes - Base Layer

Note: All values are prefixed with PHTEDKITBASEFKT_

Value Description Page

DELAY Delays processing of the next TED-Kit 2 command. 50

DESELECTXSLOT Deselects the given XSlot/XBoard. 51

DISABLECONTRECEPTION Disables continuous data reception. 52

EDITGPIOPIN Read/Write the TED-Kit 2’s µC GPIO pins. 53

ENABLECONTRECEPTION Enables continuous data reception. 55

GETBUTTONSTATES Returns the status of the TED-Kit 2 buttons. 56

GETCONTRECEIVEDDATA Returns the continuously received data. 57

GETDEVICESTATUS Returns status information from the TED-Kit 2. 59

GETFWVERSION Returns the firmware version running on a TED-Kit 2. 61

GETLEDSTATES Returns the status (on/off) of the TED-Kit 2 LEDs. 62

GETRECEPTIONPARAMS Returns the reception parameters for an XBoard. 63

GETTRANSMISSIONPARAMS Returns the transmission parameters for an XBoard. 65

GETWORDSIZE Returns the word size of the given XBoard. 67

GETXBOARDCONFIG Returns the configuration of an XBoard. 68

GETXSLOTINFO Returns information about the 4 XSlots of a TED-Kit 2. 70

RESETMAINBOARD Resets the TED-Kit 2 main board (incl. µC) 73

RESETXBOARD Resets the given XBoard. 74

SETLEDSTATES Sets the state (on/off) of the TED-Kit 2’s LEDs. 75

SETRECEPTIONPARAMS Sets the reception parameters of an XBoard. 76

SETTRANSMISSIONPARAMS Sets the transmission parameters of an XBoard. 78

SETWORDSIZE Sets the word size for the given XBoards 80

SETXBOARDCONFIG Sets the configuration of an XBoard. 81

TRANSMITRECEIVE Transmits/Receives data as configured. 83

All functions explained in this section use the following API Run-method parameters:

Table 14. Parameters of Method Run – base layer

Parameter Value

Component ID PHTEDKITCOMPID_BASEAPI

Structure Type phTedKit_BaseData_t

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 50 of 132

11.1 Delay

This function requests the TED-Kit 2 to delay processing of the next command for the

given number of system ticks.

The duration of one tick is the time of one clock cycle of the TED-Kit 2 µController. To

retrieve the µController’s clock frequency, call GetDeviceStatus (see section 11.8, page

59).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_DELAY

TxTime1 unsigned 32 bit The number of ticks any further

processing is delayed.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 0..PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

Example 11-1: Delay

int main() {
 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_DELAY;

 /* delay all activities for 10 milliseconds */

 data.TxTime1 = 480000; /* 10ms @ 48 MHz TED-Kit 2 system clock */

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 51 of 132

11.2 DeselectXSlot

This function deselects the currently selected XSlot of the TED-Kit 2. An XSlot becomes

selected automatically if used (by the appropriate commands).

This command shall be executed before calling EditGPIOPin (see section 11.4, page 53).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_DESELECTXSLOT

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

Example 11-2: DeselectXSlot

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_DESELECTXSLOT;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 52 of 132

11.3 DisableContReception

This function stops the continuous data reception and discards all received data. See

section 11.5, page 55 for the corresponding EnableContReception command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_DISABLECONTRECEPTION

Output

StatusCode see Table 28, page 122 The status code inform-

ing about success or

failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable

debug trace created by

the firmware for each

call.

Example 11-3: DisableContReception

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_DISABLECONTRECEPTION;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 53 of 132

11.4 EditGPIOPin

Sets the directions and values of the GPIO pins of the µController on the TED-Kit 2 main

board and returns immediately the new pin directions and values.

In order to make this command work properly, the currently selected XBoard needs to be

deselected (see command DeselectXSlot, section 11.2, page 51).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_EDITGPIOPIN

TxData1 PinDirection, 0..65535 Bits 0…15 correspond to the GPIO pins 0…15. 0 sets the cor-

responding GPIO pin to input and 1 to output.

TxData2 PinDirectionMask, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. When a bit is

“1”, the direction of the corresponding GPIO pin will be set ac-

cording to the corresponding bit of PinDirection; when a bit is

“0”, the direction of the corresponding GPIO pin remains un-

changed.

TxData3 PinValue, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. Output GPIO

pins will be set accordingly if the corresponding bits of PinVal-

Mask are “1”.

TxData4 PinValueMask, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. The bits that

correspond to input GPIO pins are ignored. For the rest bits,

when it is “1”, the corresponding output GPIO pin will be set

according to the corresponding bit of PinValue; when a bit is “0”,

the corresponding output GPIO pin remains unchanged.

Output

StatusCode see Table 28, page 122 The status code informing about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace created by the firmware for

each call.

RxData1 PinDirection, 0..65535 Bits 0 to 15 correspond to the GPIO pins 0 to 15. If a bit is “0”,

the corresponding GPIO pin is currently set as input; otherwise,

the pin is set as output.

RxData2 PinValue, 0..65535 Bits 0 to 15 correspond to the values of GPIO pins 0 to 15.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 54 of 132

Example 11-4: EditGPIOPin

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */
 data.Function = PHTEDKITBASEAPIFKT_EDITGPIOPIN;

 /* set pins to reading (input) */

 data.TxData1 = 0;

 /* pin direction valid only for pins 0 and 1 */

 data.TxData2 = 0x03;
 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 /* do something with the data retreived. */
 printf("%X\n", (data.RxData2 & data.RxData1));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 55 of 132

11.5 EnableContReception

This function starts continuous data reception using the XBoard in the designated XSlot.

Only one XBoard can receive continuous data at a time.

To actually get the data received, repetitive calls to function GetContReceivedData

(see section 11.7, page 57) are necessary.

To stop continuous reception of data, use function DisableContReception (see sec-

tion 11.3, page 52).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_ENABLECONTRECEPTION

TxData1 See Table 29, page 124. Specifies the target XSlot

to be selected.

TxData2 RxMaxLength, 0..65535 The maximum data frame

size to be received, in

words.

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable de-

bug trace created by the

firmware for each call.

Example 11-5: EnableContReception

int main() {
 phTedKit_BaseData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_ENABLECONTRECEPTION;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = 500;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 56 of 132

11.6 GetButtonStates

This function returns the state of the 2 buttons at the TED-Kit 2 box. These buttons can

be freely used to interact with the user.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETBUTTONSTATES

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxData1 Button states, only bits 0 and 1 relevant. The button state (bit 0 for button

1, bit 1 for button 2), 1 indicates

pressed, 0 indicates released.

Example 11-6: GetButtonStates

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETBUTTONSTATES;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("Button #1: %s\n",

 (data.RxData1 & 1 ? "pressed" : "released"));

 printf("Button #1: %s\n",

 (data.RxData1 & 2 ? "pressed" : "released"));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 57 of 132

11.7 GetContReceivedData

This function is used to retrieve the next available chunk of data during continuous data

reception.

Continuous data reception has to be enabled first using function

EnableContReception (see section 11.5, page 55).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETCONTRECEIVEDDATA

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable de-

bug trace created by the

firmware for each call.

RxData1 RxLength, 16 Bit The length of received

response data frame in

word.

RxData2 Overrun, 8 Bit, true/false information Reception of frames is

contiguous.

RxBuf1 RxData The received data frame.

RxBuf2 Timestamp, 8 Byte The timestamp of the re-

ceived data frame

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 58 of 132

Example 11-7: GetContReceivedData

int main() {
 phTedKit_BaseData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* CONFIGURE AND ENABLE CONTINOUS RECEPTION… */

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETCONTRECEIVEDDATA;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {
 if (data.RxData1 != 0) {
 printf("data loss\n");
 } else {
 printf("received %i bytes:\n", data.RxData1);
 for (i = 0; i < data.RxData1; i++) {
 printf("%02X\n", data.RxBuf1[0]);

 }

 }

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 59 of 132

11.8 GetDeviceStatus

This function returns status information of the TED-Kit 2 device.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETDEVICESTATUS

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxBuf1 Byte array with 10 entries representing 4

numbers, each number is stored in big endian

(highest byte first)

[0..1] The number of bytes available in

the µController’s memory.

[2..3] The number of bytes of the larg-

est continuous block in the

µController’s memory.

[4..5] The supply voltage in multiples of

0.03255V.

[6..9] The frequency of the µController

clock in Hz.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 60 of 132

Example 11-8: GetDeviceStatus

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETDEVICESTATUS;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("µC memory free : %i bytes\n",

 ((data.RxBuf1[0] << 8) | data.RxBuf1[1]));

 printf("µc memory largest block free: %i bytes\n",

 ((data.RxBuf1[2] << 8) | data.RxBuf1[3]));

 printf("Supply Voltage : %f V\n",

 ((data.RxBuf1[4] << 8) | data.RxBuf1[5]) * 0.03255f);

 printf("µC clock frequency : %i Hz\n",

 ((data.RxBuf1[6] << 24) | (data.RxBuf1[7] << 16)

 | (data.RxBuf1[8] << 8) | data.RxBuf1[9]));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 61 of 132

11.9 GetFWVersion

This function returns the code and version of the firmware currently running at the TED-

Kit 2 board.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETFWVERSION

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

RxData1 unsigned 16 bit Firmware code number. For

TED-Kit 2 always 0.

RxData2 unsigned 16 bit The major version number.

RxData3 unsigned 16 bit The minor version number.

Example 11-9: GetFWVersion

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETFWVERSION;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("TED-Kit 2 Firmware Version: %i.%i\n",

 data.RxData2, data.RxData3);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 62 of 132

11.10 GetLEDStates

This function returns the status (on/off) of the 4 LEDs at the front of the TED-Kit 2 box.

See section 11.18 , page 75 for the corresponding SetLEDStates command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETLEDSTATES

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxData1 Bits 0..3 of RxData1. Each bit indicates the status of one

LED (0 off, 1 on).

Example 11-10: GetLEDStates

int main() {
 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETLEDSTATES;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("LED #1:%s, #2:%s, #3:%s, #4:%s\n",
 (data.RxData1 & 1 ? "on" : "off"),
 (data.RxData1 & 2 ? "on" : "off"));
 (data.RxData1 & 4 ? "on" : "off"),
 (data.RxData1 & 8 ? "on" : "off"));

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 63 of 132

11.11 GetReceptionParams

This function returns the reception parameters for the XBoard in the given XSlot.

See section 11.19, page 76 for the corresponding SetReceptionParams command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETRECEPTIONPARAMS

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest.

Output

StatusCode see Table 28, page 122 The status code informing about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable debug trace created by the

firmware for each call.

RxData1 Global Inversion, only bit 0 relevant. Indicates whether the electrical voltage levels of the

signals sent by the transponder are plain (0) or in-

verted (1).

RxData2 Synchronization mode, only bit 0 relevant:

0 – pattern based

1 – time based

Always 1, indicates time-based synchronization of the

communication between transponder and base sta-

tion.

RxData3 HeaderLength; 10 – standard, 14 - extended The number of the half-bits the signal header con-

tains of.

RxData4 DataWordSize See Table 31, page 125.

RxData5 BodyDataCoding See Table 31, page 125.

RxTime1 SyncTime; depends on the transponder type, refer

to transponder documentation [3], [4] and [5] – look

for tWAIT,Tr.

Time in ticks between end of transmit from base sta-

tion and start of receiving data from transponder.

RxTime2 HeaderSymbolDuration; depends on the trans-

ponder type, refer to transponder documentation

[3], [4] and [5] – look for Tunit.

Duration in ticks for one symbol of the header.

RxBuf1 DataCodingParams; one value, encoded as big

endian. The value depends on the transponder

type, refer to transponder documentation [3], [4]

and [5]

Timing information

 [0..3] Tunit

RxBuf2 HeaderPattern; 10 or 14 Bits The coded header bits, value depends on DataCo-

dingType and HeaderLength.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 64 of 132

Example 11-11: GetReceptionParams

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETRECEPTIONPARAMS;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("Global Inversion Flag : %s\n",

 (data.RxData1 ? "on" : "off"));

 printf("Synchronization Mode : %s based\n",

 (data.RxData2 ? "time" : "pattern"));

 printf("Header Length : %i bits\n", data.RxData3);
 printf("Word Size : %i bits\n", data.RxData4);

 printf("Body Data Coding : %s\n",

 (data.RxData5 ? "CDP" : "Manchester"));
 printf("Synchronizaton Time : %i system ticks\n", data.RxTime1);
 printf("Header Symbol Duration: %i system ticks\n", data.RxTime2);
 printf("Data Coding Params : 0x%0X, 0x%0X, 0x%0x, ...\n",
 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2]);

 printf("Header Pattern : 0x%0X%0X\n",

 data.RxBuf2[0], data.RxBuf2[1]);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 65 of 132

11.12 GetTransmissionParams

Returns the transmission parameters set for the XBoard in the given XSlot.

See section 11.20, page 78 for the corresponding SetTransmissionParams com-

mand.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETTRANSMISSIONPARAMS

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest.

Output

StatusCode see Table 28, page 122 The status code informing about success or

failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters, NULL

terminated.

The human readable debug trace created by

the firmware for each call.

RxData1 Invert, bit 0 Indicates whether the electrical voltage levels

of the signals sent by the base station are

plain (0) or inverted (1).

RxData2 PreambleLength

RxData3 HeaderLength

RxData4 TrailerLength

RxData5 IdleLevel The electrical level of energy (0 or 1) between

base station and transponder if no communi-

cation happens (to ensure the transponder is

still provided with energy).

RxData6 DataWordSize See Table 31, page 125.

RxData7 BodyDataCoding See Table 31, page 125.

RxTime1 PreambleSymbolDuration

RxTime2 HeaderSymbolDuration

RxTime3 TrailerSymbolDuration

RxBuf1 DataCodingParams, array of 16 bytes, each value en-

coded as big endian. The values depend on the trans-

ponder type, refer to transponder documentation [3], [4]

and [5]

Timing information

[0..3] Tpulse (in ticks)

[4..7] T0 (in ticks)

[8..11] T1 (in ticks)

[12..15] TSTOP (in ticks)

RxBuf2 HeaderPattern not used

RxBuf3 TrailerPattern not used

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 66 of 132

Example 11-12: GetTransmissionParams

int main() {
 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */
 data.Function = PHTEDKITBASEAPIFKT_GETTRANSMISSIONPARAMS;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("Global Inversion Flag : %s\n",

 (data.RxData1 ? "on" : "off"));

 printf("Preamble Length : %i bits\n", data.RxData2);

 printf("Header Length : %i bits\n", data.RxData3);

 printf("Trailer Length : %i bits\n", data.RxData4);

 printf("Idle Level : %s\n",

 (data.RxData5 ? "high" : "low"));

 printf("Word Size : %i bits\n", data.RxData6);
 printf("Body Data Coding : %i\n", data.RxData7);
 printf("Preamble Symbol Duration: %i system ticks\n", data.RxTime1);
 printf("Header Symbol Duration : %i system ticks\n", data.RxTime2);
 printf("Trailer Symbol Duration : %i system ticks\n", data.RxTime3);
 printf("Data Coding Params : 0x%0X, 0x%0X, 0x%0x, ...\n",
 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2]);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 67 of 132

11.13 GetWordSize

This function gets the word size for the different coding types. The word size is directly

stored in the API.

One word represents the number of bits carried per symbol of the selected coding

scheme. See Table 31, page 125 for an overview of value combinations.

See section 11.21, page 80 for the corresponding SetWordSize command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETWORDSIZE

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest

TxData2 DataDirection,

0=Transmission, 1=Reception

Transmit or Receive direction

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxData1 Word size See Table 31, page 125.

Example 11-13: GetWordSize

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETWORDSIZE;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = 0; /* transmission */

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 printf("Current word size of XSlot #%i (%s): %i bit(s)\n",

 data.TxData1, (data.TxData2 ? "Rx" : "Tx"), data.RxData1);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 68 of 132

11.14 GetXBoardConfig

This function returns the configuration of the XBoard in the given XSlot. The configuration

data are device (XBoard) specific. The stream of bytes received needs to be interpreted

according to the specification of the XBoard device (e.g. ABIC1 or LoPSTer).

See section 11.22, page 81 for the corresponding SetXBoardConfig command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETXBOARDCONFIG

TxData1 See Table 29, page 124. The XSlot of the XBoard of inter-

est.

TxData2 Offset The offset in the ConfigData ar-

ray.

TxData3 Length The length of the ConfigData ar-

ray.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxBuf1 alternative 1:

ConfigData for ABIC1 Xboard

see [UM10278_1]

The configuration data for ABIC1

being set.

alternative 2:

ConfigData for LoPSTer Xboard

see [UM10278_1]

The configuration data for LoP-

STer being set.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 69 of 132

Example 11-14: GetXBoardConfig

int main() {
 phTedKit_BaseData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure to receive the configuraton

 for an ABIC1 XBoard. */
 data.Function = PHTEDKITBASEAPIFKT_GETXBOARDCONFIG;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;

 /* request all data starting at configuration 0 */

 data.TxData2 = 0;

 /* request all data (13 bytes) */

 data.TxData3 = 13;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("Configuration for ABIC1 in XSlot #%i:\n", data.TxData1);
 for (i = 0; i < data.TxData3; i++) {
 printf("0x%02X ", data.RxBuf1[i]);

 }

 printf("\n");

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 70 of 132

11.15 GetXSlotInfo

This function returns information about the 4 XSlots of a TED-Kit 2 box.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_GETXSLOTINFO

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

RxData1 See Table 15, page 70. Type of XBoard in XSlot 0.

RxData2 See Table 15, page 70. Type of XBoard in XSlot 1.

RxData3 See Table 15, page 70. Type of XBoard in XSlot 2.

RxData4 See Table 15, page 70. Type of XBoard in XSlot 3.

RxData5 See Table 16, page 70. Features of XBoard in XSlot 0.

RxData6 See Table 16, page 70. Features of XBoard in XSlot 1.

RXdata7 See Table 16, page 70. Features of XBoard in XSlot 2.

RxData8 See Table 16, page 70. Features of XBoard in XSlot 3.

Table 15. XBoard Type Code Values

Value Description

PHTEDKITXBOARD_SELFTESTING future use

PHTEDKITXBOARD_EXPERIMENT Indicates an experimental XBoard.

PHTEDKITXBOARD_UAA3220 future use

PHTEDKITXBOARD_CRYPTO future use

PHTEDKITXBOARD_LOBSTER Indicates a LoPSTer XBoard.

PHTEDKITXBOARD_ABIC1 Indicates an ABIC-1 XBoard.

PHTEDKITXBOARD_ABIC2 Indicates an ABIC-2 XBoard

PHTEDKITXBOARD_NONE Indicates no XBoard present.

Table 16. XBoard Feature Code Values

Value Description

PHTEDKITXBOARD_FEAT_LF XBoard has LF antenna.

PHTEDKITXBOARD_FEAT_UHF XBoard has UHF antenna.

PHTEDKITXBOARD_FEAT_SPI XBoard communicates via SPI interface.

PHTEDKITXBOARD_FEAT_I2C XBoard communicates via I2C interface.

PHTEDKITXBOARD_FEAT_GPIO XBoard communicates via GPIO interface.

PHTEDKITXBOARD_FEAT_LIN XBoard communicates via LIN.

PHTEDKITXBOARD_FEAT_INT XBoard has Interrupt output.

PHTEDKITXBOARD_FEAT_AIN XBoard has analog input.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 71 of 132

Value Description

PHTEDKITXBOARD_FEAT_AOUT XBoard has analog output.

PHTEDKITXBOARD_FEAT_TX XBoard is able to transmit data.

PHTEDKITXBOARD_FEAT_RX XBoard is able to receive data.

PHTEDKITXBOARD_FEAT_CONFIGTXRX XBoard can be configured while transmitting or receiv-

ing data.

PHTEDKITXBOARD_FEAT_DISABLED XBoard is disabled due to a conflicting XBoard configu-

ration.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 72 of 132

Example 11-15: GetXSlotInfo

void printXSlotInfo(
 const int slot, const uint16_t type, const uint16_t features) {
 printf("XBoard in XSlot #%i:\n", slot);
 printf(" Type: ");
 switch (type) {
 case PHTEDKITXBOARD_SELFTESTING:
 printf("Selftesting\n"); break;
 case PHTEDKITXBOARD_EXPERIMENT:
 printf("Experiment\n"); break;
 case PHTEDKITXBOARD_UAA3220:
 printf("UAA 3220\n"); break;
 case PHTEDKITXBOARD_CRYPTO:
 printf("Crypto\n"); break;
 case PHTEDKITXBOARD_LOPSTER:
 printf("LoPSTer\n"); break;
 case PHTEDKITXBOARD_ABIC1:
 printf("ABIC-1\n"); break;
 case PHTEDKITXBOARD_ABIC2:
 printf("ABIC-2\n"); break;
 case PHTEDKITXBOARD_NONE:
 printf("None\n"); return;
 default:
 printf("Unknown (%02X)\n", type); return;

 }

 printf(" Features: LF(%s), UHF(%s), SPI(%s), I²C(%s), GPIO(%s), LIN(%s),\n",
 (features & PHTEDKITXBOARD_FEAT_LF ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_UHF ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_SPI ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_I2C ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_GPIO ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_LIN ? "yes" : "no"));
 printf(" Interrupt(%s), Analog In(%s), Analog Out(%s), Tx(%s),\n",
 (features & PHTEDKITXBOARD_FEAT_INT ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_AIN ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_AOUT ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_TX ? "yes" : "no"));
 printf(" Rx(%s), Configure Tx/Rx(%s), Disabled(%s)\n",
 (features & PHTEDKITXBOARD_FEAT_RX ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_CONFIGTXRX ? "yes" : "no"),
 (features & PHTEDKITXBOARD_FEAT_DISABLED ? "yes" : "no"));

}

int main() {
 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_GETXSLOTINFO;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printXSlotInfo(PHTEDKITXBOARD_XSLOT_0, data.RxData1, data.RxData5);
 printXSlotInfo(PHTEDKITXBOARD_XSLOT_1, data.RxData2, data.RxData6);
 printXSlotInfo(PHTEDKITXBOARD_XSLOT_2, data.RxData3, data.RxData7);
 printXSlotInfo(PHTEDKITXBOARD_XSLOT_3, data.RxData4, data.RxData8);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 73 of 132

11.16 ResetMainBoard

This function resets the main board. After the reset, all four LEDs on the TED-Kit 2 main

board are switched off and all GPIO pins are set to input pins.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_RESETMAINBOARD

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated

The human readable debug

trace created by the firmware

for each call.

Example 11-16: ResetMainBoard

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_RESETMAINBOARD;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 74 of 132

11.17 ResetXBoard

This function resets the XBoard in the given XSlot. The state will be the same as after the

device initialization, i.e. all parameters of the XBoard are back to default.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_RESETXBOARD

TxData1 See Table 29, page 124. The XSlot of the XBoard being reset.

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

eventually created by the firmware

for each call.

Example 11-17: ResetXBoard

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_RESETXBOARD;

 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 75 of 132

11.18 SetLEDStates

This function turns the 4 status LEDs at the TED-Kit 2 box on or off.

To retrieve the status of the LEDs, use command GetLEDStates (see section 11.10,

page 62).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_SETLEDSTATES

TxData1 States, 0..15 The LED states, 0 – off, 1 – on.

The bits 0 to 3 correspond with

the LEDs 1 to 4. To leave a

state unchanged, use the

second argument (mask).

TxData2 Mask, 0..15 Masks the LED modifications, 0

– ignore modification, 1 – apply

modification. The bits 0 to 3

correspond with the LEDs 1 to

4.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

Example 11-18: SetLEDStates

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */
 data.Function = PHTEDKITBASEAPIFKT_SETLEDSTATES;

 /* set all to "on" */

 data.TxData1 = 0xFF;

 /* mask out all but LED 2 */

 data.TxData2 = 0x02;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 76 of 132

11.19 SetReceptionParams

This function sets the reception parameters for the XBoard in the given XSlot.

See section 11.11, page 63 for the corresponding GetReceptionParams command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest.

TxData2 SyncMode Always 1, indicates time-based synchronization of the

communication between transponder and base sta-

tion.

TxData3 Invert Indicates whether the electrical voltage levels of the

signals sent by the transponder are plain (0) or in-

verted (1).

TxData4 HeaderLength; 10 – standard, 14 - extended The number of the half-bits the signal header con-

tains of.

TxData5 BodyDataCoding See Table 31, page 125.

TxTime1 SyncTime; depends on the transponder type, refer

to transponder documentation [3], [4] and [5] – look

for tWAIT,Tr.

Time in ticks between end of transmit from base sta-

tion and start of receiving data from transponder.

TxTime2 HeaderSymbolDuration; depends on the trans-

ponder type, refer to transponder documentation

[3], [4] and [5] – look for Tunit.

Duration in ticks for one symbol of the header.

TxBuf1 DataCodingParams; one value, encoded as big

endian. The value depends on the transponder

type, refer to transponder documentation [3], [4]

and [5]

Timing information

 [0..3] Tunit

TxBuf2 HeaderPattern; 10 or 14 Bits The coded header bits, value depends on DataCo-

dingType and HeaderLength.

Output

StatusCode see Table 28, page 122 The status code informing about success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable debug trace created by the

firmware for each call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 77 of 132

Example 11-19: SetReceptionParams

int main() {
 phTedKit_BaseData_t data;

 /* tick time for the default µC of 48 MHz */

 float tickTime = 0.0208333;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure to receive data from a HITAG2 via XSlot #0 */
 data.Function = PHTEDKITBASEAPIFKT_SETRECEPTIONPARAMS;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = 1; /* time based synchronization */
 data.TxTime1 = (uint32_t) (1330 / tickTime); /* SyncDelay 1330µs */
 data.TxData3 = 0; /* global inversion off */
 data.TxData4 = 10; /* Header Length 10 bit */
 data.TxTime2 = (uint32_t) (128 / tickTime); /* Header Symbol Duration 128µs
*/

 data.TxData5 = PHTEDKITCODING_MANCHESTER;

 /* populate the data coding params (for Machester encoding): */

 /* Tunit = 128µs */

 copy ((uint32_t) (128 / tickTime), data.TxBuf1, 0);

 /* Header Pattern for Manchester/EQ -> 5540hex */
 data.TxBuf2[0] = 0x55;

 data.TxBuf2[1] = 0x40;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 78 of 132

11.20 SetTransmissionParams

This function sets the transmission parameters for the XBoard in the given XSlot.

See section 11.12, page 65 for the corresponding GetTransmissionParams com-

mand.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest.

TxData2 Invert, bit 0 Indicates whether the electrical voltage levels of

the signals sent by the base station are plain (0)

or inverted (1).

TxData3 PreambleLength Specifies the preamble pattern length in symbols.

TxData4 HeaderLength Specifies the header pattern length in plain bit.

TxData5 TrailerLength Specifies the trailer pattern length in plain bit.

TxData6 IdleLevel The electrical level of energy (0 or 1) between

base station and transponder if no communication

happens (to ensure the transponder is still pro-

vided with energy).

TxData7 BodyDataCoding See Table 31, page 125.

TxTime1 PreambleSymbolDuration Duration in ticks for one symbol of the preamble.

TxTime2 HeaderSymbolDuration Duration in ticks for one symbol of the header.

TxTime3 TrailerSymbolDuration Duration in ticks for one symbol of the trailer

TxBuf1 DataCodingParams, array of 16 bytes, each value en-

coded as big endian. The values depend on the trans-

ponder type, refer to transponder documentation [3], [4]

and [5]

Timing information

 [0..3] Tpulse (in ticks)

 [4..7] T0 (in ticks)

 [8..11] T1 (in ticks)

 [12..15] TSTOP (in ticks)

TxBuf2 HeaderPattern Specifies the header pattern in plain bits.

TxBuf3 TrailerPattern Specifies the trailer pattern in plain bits.

Output

StatusCode see Table 28, page 122 The status code informing about success or fail-

ure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII characters, NULL

terminated.

The human readable debug trace created by the

firmware for each call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 79 of 132

Example 11-20: GetTransmissionParams

int main() {

 phTedKit_BaseData_t data;

 /* tick time for the default µC of 48 MHz */

 float tickTime = 0.0208333;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure to transmit to a HITAG2 transponder via XSlot 0*/

 data.Function = PHTEDKITBASEAPIFKT_SETTRANSMISSIONPARAMS;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = 0; /* Invert -> no */
 data.TxData3 = 0; /* PreambleLength */
 data.TxTime1 = 0; /* PreambleSymbolDuration */
 data.TxData4 = 0; /* HeaderLength */
 data.TxTime2 = 0; /* HeaderSymbolDuration */
 data.TxData5 = 0; /* TrailerLength */
 data.TxTime3 = 0; /* TrailerSymbolDuration */
 data.TxData6 = 0; /* IdleLevel */
 data.TxData7 = PHTEDKITCODING_BPLM; /* Data Coding Type -> BPLM */

 /* populate the data coding params (for Machester encoding): */

 /* T_Pulse -> 48µs */

 copy((uint32_t) (48 / tickTime), data.TxBuf1, 0);

 /* T_Log0 -> 160µs */

 copy((uint32_t) (160 / tickTime), data.TxBuf1, 4);

 /* T_Log1 -> 224µs */

 copy((uint32_t) (224 / tickTime), data.TxBuf1, 8);

 /* T_Stop -> 288µs */

 copy((uint32_t) (288 / tickTime), data.TxBuf1, 12);

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 80 of 132

11.21 SetWordSize

This function sets the word size for the different coding types. The word size is directly

stored in the API.

One word represents the number of bits carried per symbol of the selected coding

scheme. See Table 31, page 125 for an overview of value combinations.

See section 11.13, page 67 for the corresponding GetWordSize command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_SETWORDSIZE

TxData1 See Table 29, page 124. The XSlot of the XBoard of interest

TxData2 DataDirection,

0=Transmission, 1=Reception

Transmit or Receive direction

TxData3 Word size See Table 31, page 125.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

Example 11-21: SetWordSize

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Function = PHTEDKITBASEAPIFKT_SETWORDSIZE;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = 0; /* transmission */

 data.TxData3 = 1; /* 1 bit per word. */

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 81 of 132

11.22 SetXBoardConfig

This function sets the configuration of the XBoard in the given XSlot. The configuration

data are device (XBoard) specific. The stream of bytes sent needs to be set-up according

to the specification of the XBoard device (e.g. ABIC1 or LoPSTer).

To only set some configuration bytes, an offset and a length (smaller than the maximum

number of configuration bytes) can be configured.

See section11.14, page 68 for the corresponding GetXBoardConfig command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_SETXBOARDCONFIG

Device See Table 30, page 124. The device type of the XBoard

being configured.

TxData1 See Table 29, page 124. The XSlot of the XBoard of in-

terest.

TxData2 Offset:

ABIC1 0-12

LoPSTer 0-207

Note: The data being set have to be placed at

the correct, original index in TxBuf1. Example:

offset = 20, data being transferred have be

placed at TxBug1[20] and beyond.

The offset within the ConfigData

array.

TxData3 Length:

ABIC1 1-13

LoPSTer 1-208

The number of bytes being

transmitted out of ConfigData.

TxBuf1 alternative 1:

ConfigData for ABIC1 Xboard

see docu TED-Kit FW Host Interface Spec

The configuration data for AB-

IC1 being set.

alternative 2:

ConfigData for LoPSTer Xboard

see docu TED-Kit FW Host Interface Spec

The configuration data for LoP-

STer being set.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 82 of 132

Example 11-22: SetXBoardConfig

int main() {
 phTedKit_BaseData_t data;

 /* tick time for the default µC of 48 MHz */

 float tickTime = 0.0208333;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure to configure an ABIC1 in XSlot #0 to work

 as base station for a HITAG2. */

 data.Function = PHTEDKITBASEAPIFKT_SETXBOARDCONFIG;
 data.Device = PHTEDKITEXTAPIDEVICE_ABIC1;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;

 /* offset = 0 -> set all configuration data at once */

 data.TxData2 = 0;

 /* length = 13 -> set all configuration data at once */

 data.TxData3 = 13;

 /* 1 byte "interface & mode" -> set to 0 -> "non-filtered" */

 data.TxBuf1[0] = 0;

 /* set the data rate to 100 kHz */

 copy((uint32_t) (10/tickTime), data.TxBuf1, 1);

 /* demodulator sampling phase */

 data.TxBuf1[5] = 0x2c;

 /* ignore, set to zero. */

 data.TxBuf1[6] = 0;

 /* ignore, set to zero. */

 data.TxBuf1[7] = 0;

 /* set ABIC1 configuration register 0. */

 data.TxBuf1[8] = 7;

 /* set ABIC1 configuration register 1. */

 data.TxBuf1[9] = 0;

 /* set ABIC1 configuration register 2. */

 data.TxBuf1[10] = 0;

 /* set ABIC1 configuration register 3. */

 data.TxBuf1[11] = 0;

 /* no test mode */

 data.TxBuf1[12] = 0;

 /* call the API’s run(..) method */
 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 83 of 132

11.23 TransmitReceive

Transmit and receives data to and from the transponder in range of the base station of

the given XSlot.

TransmitReceive of the BaseApi is a general purpose Tx/Rx function. For a more

transponder/immobilizer specific version, refer to the ExtApi TransmitReceive (see sec-

tion 12.2.1, page 98).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_TRANSMITRECEIVE

TxData1 See Table 29, page 124. The XSlot of the XBoard used

for transmission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used

for reception.

TxData3 TxLength The number of bits to send.

TxData4 RxLength The number of bits expected to

be received.

TxBuf2 TxData, array of unsigned 8 bit. data organiza-

tion is like this:

The data bits send to the trans-

ponder. Bit 7 of byte 0 is send

first followed by bit 6 and so on. Byte 0 1 …

Bit 7 6 5 4 3 2 1 0 7 6 …

Order 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. …

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

RxData1 RxDataLength in bits The number of bits being re-

ceived.

RxBuf1 RxData, array of unsigned 8 bit. data organiza-

tion is like this:

The data bits received from the

transponder. Bit 7 of byte 0 is

received first followed by bit 6

and so on.
Byte 0 1 …

Bit 7 6 5 4 3 2 1 0 7 6 …

Order 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. …

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 84 of 132

Example 11-23: TransmitReceive (base-layer)

int main() {
 phTedKit_BaseData_t data;

 /* tick time for the default µC of 48 MHz */

 float tickTime = 0.0208333;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* SET THE TX PARAMETERS … */

 /* SET THE RX PARAMETERS … */

 /* SET THE TX WORD SIZE TO 1 … */

 /* SET THE RX WORD SIZE TO 1 … */

 /* populate data structure to execute first step

 of authentication of a HITAG2 via XSlot #0 */
 data.Function = PHTEDKITBASEAPIFKT_TRANSMITRECEIVE;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = PHTEDKITXBOARD_XSLOT_0;

 /* send 5 bits (5 bits for start authent) */

 data.TxData3 = 5;

 /* expect 32 bits returned from the transponder (IDE) */

 data.TxData4 = 32;

 /* reset duration -> 5ms */

 data.TxTime1 = (uint32_t) (5000 / tickTime);

 /* reset delay -> 10ms */

 data.TxTime2 = (uint32_t) (10000 / tickTime);

 /* start auth := 11000 := 1100 0000 (byte) := 0xC0*/

 data.TxBuf2[0] = 0xC0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_BASEAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 /* Print IDE */

 printf("%i bit(s) received:\n", data.RxData1);

 printf("IDE: %02X%02X%02X%02X\n",

 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2], data.RxBuf1[3]);

 }

}

For examples how to set the Tx and Rx parameters, refer to SetTransmissionParams (see

section 11.20, page 78) or SetReceptionParams (see section 11.19, page 76) respective-

ly.

For an example how to set the word size, refer to SetWordSize (see section 11.21, page

80).

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 85 of 132

12. API Reference - Extended Functions

The extended API functions provide functionality on top of the base API functions. They

do not have a direct counterpart in the TED-Kit 2 system (in contrast to the base API

functions).

The extended layer offers the following functions:

Table 17. Function Codes - Extended Layer

Note: All values are prefixed with PHTEDKITEXTFKT_

Value Description Page

Cryptographic Engines

AESCRYPTOINIT Initializes the library’s AES crypto engine. 87

AESCRYPTOOPERATION Encrypts/decrypts data with the AES engine. 88

HITAG2CRYPTOINIT Initializes the library’s HITAG2 crypto engine. 89

HITAG2CRYPTOOPERATION Encrypts/decrypts data with the HITAG2 engine. 91

HITAG3CRYPTOINIT Initializes the library’s HITAG2 crypto engine. 93

HITAG3CRYPTOOPERATION Encrypts/decrypts data with the HITAG2 engine. 95

Immobilizer Communication

TRANSMITRECEIVE Communicate with an immobilizer transponder. 98

Passive Keyless Entry

PKEAUTHENT Performs PKE authentication. 104

PKEPOLLENABLE Prepares polling of the IDE of PKE transponders in range. 106

PKEPOLLIDE Polls the IDE from the PKE transponders in range. 107

PKEPOLLMUTE Prevents a given PKE transponder from IDE polling. 109

PKEREADEEPROM Reads the EEPROM of a PKE transponder. 111

PKEREADVBAT Reads battery voltage of a PKE transponder. 113

PKERSSIALL Returns the RSSI for all axes of a PKE transponder. 115

PKERSSISINGLE Returns the RSSI for each axis of a PKE transponder. 117

PKEWRITEEEPROM Writes the EEPROM of a PKE transponder. 119

All functions explained in this section use the following Run-method parameters:

Table 18. Parameters of Method Run – extended layer

Parameter Value

Component ID PHTEDKITCOMPID_EXTAPI

Structure Type phTedKit_BaseData_t

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 86 of 132

12.1 Cryptography

The following functions can be used to access the cryptographic engines of the TED-

Kit 2 library.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 87 of 132

12.1.1 AESCyrptoInit

This function prepares the API’s AES crypto-unit with the given ingredients for later use.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_AESCRYPTOINIT

Device PHTEDKITEXTAPIDEVICE_AESCRYPTO See also Table 30, page 124.

TxBuf1 Secret Key 128 Bit, Bytes [0..15] The AES secret key

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

Example 12-1: AESCryptoInit

int main() {
 phTedKit_BaseData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Device = PHTEDKITEXTAPIDEVICE_AESCRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_AESCRYPTOINIT;
 for (i = 0; i < 15; i++) {
 data.TxBuf1[i] = i; /* secret key byte i */

 }

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %4X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 88 of 132

12.1.2 AESCryptoOperation

Encrypts or decrypts given data using the 128 bit AES algorithm. The AES crypto-unit

has to be initialized using function AESCyrptoInit (see section 12.1.1, page 87) first.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_AESCRYPTOOPERATION

Device PHTEDKITEXTAPIDEVICE_AESCRYPTO See also Table 30, page 124.

TxBuf1 Data to be encrypted or decrypted, bytes [0..15] The data to be encrypted or

decrypted.

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable debug

trace created by the firmware

for each call.

RxBuf1 Encrypted or decrypted data, Bytes [0..15] The decrypted or encrypted

data.

Example 12-2: AESCryptoOperation

int main() {
 phTedKit_BaseData_t data;

 int i;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate data structure */

 data.Device = PHTEDKITEXTAPIDEVICE_AESCRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_AESCRYPTOOPERATION;
 for (i = 0; i < 15; i++) {
 data.TxBuf1[i] = i; /* payload byte i */

 }

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %4X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 89 of 132

12.1.3 HITAG2CryptoInit

This function prepares the API’s HITAG2 crypto-unit with the given ingredients for later

use.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_HITAG2CRYPTOINIT

Device PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO See also Table 30, page 124.

TxBuf1 Secret Key 48 Bit, Bytes [0-5]

IDE, Bytes [6-9]

Random Number, Bytes [10-13]

The Secret Key, the Tags IDE

and a Random Number.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug

trace created by the firmware

for each call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 90 of 132

Example 12-3: HITAG2CryptoInit

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate the data structure with the ingredients for the

 HITAG 2 crypto engine initialization. */
 data.Device = PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_HITAG2CRYPTOINIT;

 /* set the (defualt HITAG2 immobilizer) secret key */

 data.TxBuf1[0] = 'M';
 data.TxBuf1[1] = 'I';
 data.TxBuf1[2] = 'K';
 data.TxBuf1[3] = 'R';
 data.TxBuf1[4] = 'O';
 data.TxBuf1[5] = 'N';

 /* set the IDE of a HITAG2 transponder */

 data.TxBuf1[6] = 0xf1;
 data.TxBuf1[7] = 0x2c;
 data.TxBuf1[8] = 0x7a;
 data.TxBuf1[9] = 0xb2;

 /* set some random number */
 data.TxBuf1[10] = 0;
 data.TxBuf1[11] = 0;
 data.TxBuf1[12] = 0;
 data.TxBuf1[13] = 0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 91 of 132

12.1.4 HITAG2CryptoOperation

Encrypts or decrypts given data using the HITAG2 crypto algorithm. The HITAG2 crypto-

unit has to be initialized using function HITAG2CryptoInit (see section 12.1.3, page

89) first.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_HITAG2CRYPTOOPERATION

Device PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO See also Table 30, page

124.

TxData1 Number of bits to process.

TxBuf1 Data to be encrypted or decrypted, Bytes [0-x] The data to be encrypted

or decrypted.

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1…PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable de-

bug trace created by the

firmware for each call.

RxBuf1 Encrypted or Decrypted data, Bytes [0-x] The decrypted or en-

crypted data.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 92 of 132

Example 12-4: HITAG2CryptoOperation

int main() {

 phTedKit_BaseData_t data;

 /* INITIALIZE THE HITAG2 CRYPTO UNIT … */

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* simulation of a start authent command (2nd, ciphered step) */

 data.Device = PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_HITAG2CRYPTOOPERATION;
 data.TxData1 = 32;

 /* the base station password has to be send encrypted */

 data.TxBuf1[0] = 0xff;
 data.TxBuf1[1] = 0xff;
 data.TxBuf1[2] = 0xff;
 data.TxBuf1[3] = 0xff;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("send (the encrypted part, should be BDEA3E86): ");

 printf("%02X %02X %02X %02X\n",

 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2], data.RxBuf1[3]);

 }

 /* we received the encrypted default transponder password */

 /* encrypted: 94 b9 fa 0b , plain: xx AA 48 54 */
 data.TxData1 = 32;
 data.TxBuf1[0] = 0x94;
 data.TxBuf1[1] = 0xb9;
 data.TxBuf1[2] = 0xfa;
 data.TxBuf1[3] = 0x0b;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("received (should be xxAA4854):");

 printf("%02X %02X %02X %02X\n",

 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2], data.RxBuf1[3]);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 93 of 132

12.1.5 HITAG3CryptoInit

This function prepares the API’s HITAG3 crypto-unit with the given ingredients for later

use.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_HITAG3CRYPTOINIT

Device PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO See also Table 30, page 124.

TxBuf1 IDE, Bytes [0-3]

Challenge, Bytes [4-11]

Secret Key 48 Bit, Bytes [12-23]

The secret key, the tag’s IDE and

a challenge

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 94 of 132

Example 12-5: HITAG3CryptoInit

#include <string.h>

int main() {
 phTedKit_BaseData_t data;

 /* HITAG3 default secret key */

 uint8_t sk[] = {

 0x11, 0x11, 0x22, 0x22, 0x33, 0x33,

 0x44, 0x44, 0x55, 0x55, 0x66, 0x66 };

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* populate the data structure with the ingredients for the

 HITAG 2 crypto engine initialization. */

 data.Device = PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_HITAG3CRYPTOINIT;

 /* set the IDE of the transponder 8B4C8010*/
 data.TxBuf1[0] = 0x8b;
 data.TxBuf1[1] = 0x4c;
 data.TxBuf1[2] = 0x80;
 data.TxBuf1[3] = 0x10;

 /* set some random number */

 memset(data.TxBuf1 + 4, 0, 8);

 /* set the default secret key */

 memcpy(data.TxBuf1 + 12, sk, 12);

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 95 of 132

12.1.6 HITAG3CryptoOperation

Encrypts or decrypts given data using the HITAG3 crypto algorithm. The HITAG3 crypto-

unit has to be initialized using function HITAG3CryptoInit (see section 12.1.5, page

93) first.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_HITAG3CRYPTOOPERATION

Device PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO See also Table 30, page

124.

TxData1 Number of bits to process.

TxBuf1 Data to be encrypted or decrypted, Bytes [0-x]

The data to be encrypted

or decrypted.

Output

StatusCode see Table 28, page 122 The status code informing

about success or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII characters,

NULL terminated.

The human readable de-

bug trace created by the

firmware for each call.

RxBuf1 Encrypted or Decrypted data, Bytes [0-x] The decrypted or en-

crypted data.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 96 of 132

Example 12-6: HITAG3CryptoOperation

int main() {

 phTedKit_BaseData_t data;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* INITIALIZE THE HITAG3 CRYPTO UNIT … */

 /* simulation of a ciphered read page #0 command */

 data.Device = PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO;
 data.Function = PHTEDKITEXTAPIFKT_HITAG3CRYPTOOPERATION;
 data.TxData1 = 10;

 /* send the read page 0 := 11000 00111*/
 data.TxBuf1[0] = 0xc1;
 data.TxBuf1[1] = 0xc0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */
 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("send (the encrypted part, should be 0440): ");
 printf("%02X %02X\n", data.RxBuf1[0], data.RxBuf1[1]);

 }

 /* we received the encrypted page content 32 bit */

 /* we read page 0 -> the IDE; encrypted: 9FF0 8717, plain 8b4c 8010 */

 data.TxData1 = 32;
 data.TxBuf1[0] = 0x9f;
 data.TxBuf1[1] = 0xf0;
 data.TxBuf1[2] = 0x87;
 data.TxBuf1[3] = 0x17;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {
 printf("received (should be 8b4c 8010):");
 printf("%02X %02X %02X %02X\n",

 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2], data.RxBuf1[3]);

 }

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 97 of 132

12.2 Immobilizer

The following functions can be used to interact with NXP proprietary car immobilizer

transponders.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 98 of 132

12.2.1 TransmitReceive

Transmit and receives data to and from the immobilizer transponder in range of the base

station of the given XSlot.

Using TransmitReceive via the ExtApi interface ensures a correct data setup accord-

ing to transponder-type, transponder-state and transponder-command. In addition, data

encryption and decryption is also handled by the API (if necessary).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITBASEAPIFKT_TRANSMITRECEIVE

Device See Table 30, page 124. The immobilizer transponder

used as communication counter-

part.

State See Table 19, page 99. The state in which the transpond-

er is expected to (for evaluation

purposes only).

Command See Table 20, page 99. The command to be executed by

the transponder.

TxData1 See Table 29, page 124. XSlot/ XBoard for transmission.

TxData2 See Table 29, page 124. XSlot/ XBoard for reception.

TxTime1 ResetDuration, set to 0 to prevent field reset. The duration of the field turned off

in TED-Kit 2 ticks.

TxTime2 ResetDelay, set to 0 to prevent field reset. The time to be waited after a re-

set until a new transponder com-

munication can be started in ticks.

TxBuf1 TxData, array of unsigned 8 bit. data organiza-

tion is like this:

The data bits send to the trans-

ponder. Bit 7 of byte 0 is send first

followed by bit 6 and so on.

See [1] for details.
Byte 0 1 …

Bit 7 6 5 4 3 2 1 0 7 6 …

Order 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. …

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII charac-

ters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxData1 RxDataLength in bits The number of bits being re-

ceived.

RxBuf1 RxData, array of unsigned 8 bit. data organi-

zation is like this:

The data bits received from the

transponder. Bit 7 of byte 0 is

received first followed by bit 6 and

so on.

See [1] for details.

Byte 0 1 …

Bit 7 6 5 4 3 2 1 0 7 6 …

Order 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. …

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 99 of 132

Table 19. Immobilizer State(-machine) Codes

Value Description

HITAG2, HITAG2+

PHTEDKITHITAG2STATE_WAIT The transponder’s immobilizer WAIT state.

PHTEDKITHITAG2STATE_AUTHORIZED The transponder’s immobilizer AUTHORIZED state

PHTEDKITHITAG2STATE_HALT The transponder’s immobilizer HALT state.

HITAG2+EE (in addition to HITAG2)

PHTEDKITHITAG2STATE_XMA The transponder’s immobilizer XMA state.

HITAG2-Extended (in addition to HITAG2+EE)

PHTEDKITHITAG2STATE_XMACFG The transponder’s immobilizer XMA config state.

PHTEDKITHITAG2STATE_TEST The transponder’s immobilizer TEST state.

PHTEDKITHITAG2STATE_HALT Not supported.

HITAG3, HITAG-AES (in addition to HITAG2-Extended)

PHTEDKITHITAG2STATE_USER

HITAG-Pro

PHTEDKITHITAGPROSTATE_WAIT The transponder’s immobilizer WAIT state.

PHTEDKITHITAGPROSTATE_AUTHENT The transponder’s immobilizer AUTHENT state.

PHTEDKITHITAGPROSTATE_CIPHER The transponder’s immobilizer CIPHER state.

PHTEDKITHITAGPROSTATE_PLAIN The transponder’s immobilizer PLAIN state.

PHTEDKITHITAGPROSTATE_CFG The transponder’s immobilizer CFG (config) state.

PHTEDKITHITAGPROSTATE_TEST The transponder’s immobilizer TEST state.

PHTEDKITHITAGPROSTATE_USER The transponder’s immobilizer USER state.

Table 20. Immobilizer Command Codes

Value Description

HITAG2

PHTEDKITHITAG2CMD_STARTAUTH

PHTEDKITHITAG2CMD_GETIDE64

PHTEDKITHITAG2CMD_READPAGE

PHTEDKITHITAG2CMD_READPAGEINV

PHTEDKITHITAG2CMD_WRITEPAGE

PHTEDKITHITAG2CMD_HALT

HITAG2+ (in addition to HITAG2)

PHTEDKITHITAG2CMD_BATTTEST

PHTEDKITHITAG2CMD_BUTTONTEST

PHTEDKITHITAG2CMD_SETXON

PHTEDKITHITAG2CMD_SETDOUT

PHTEDKITHITAG2CMD_SETLED

PHTEDKITHITAG2CMD_RESETALL

PHTEDKITHITAG2CMD_GETIDE64 Not supported

HITAG2+EE (in addition to HITAG2+)

PHTEDKITHITAG2CMD_XMAPLUS

PHTEDKITHITAG2CMD_INCBLKPTR

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 100 of 132

Value Description

PHTEDKITHITAG2CMD_DECBLKPTR

PHTEDKITHITAG2CMD_INITBLKPTR

HITAG2-Extended (in addition to HITAG2)

PHTEDKITHITAG2CMD_SOFTRESET

PHTEDKITHITAG2CMD_REFRESH

PHTEDKITHITAG2CMD_XMAWAIT

PHTEDKITHITAG2CMD_XMACFG

PHTEDKITHITAG2CMD_TEST

PHTEDKITHITAG2CMD_XMA

PHTEDKITHITAG2CMD_SELBLOCK

PHTEDKITHITAG2CMD_WRITECFGS

PHTEDKITHITAG2CMD_WRITECFGM

PHTEDKITHITAG2CMD_READCFG

PHTEDKITHITAG2CMD_THASHINIT

PHTEDKITHITAG2CMD_THASHGET

PHTEDKITHITAG2CMD_TWRITEPAGE

PHTEDKITHITAG2CMD_TREADPAGE

PHTEDKITHITAG2CMD_TGETCFG

HITAG3 (in addition to HITAG2-Extended)

PHTEDKITHITAG3CMD_USER

PHTEDKITHITAG3CMD_XMAWAIT

PHTEDKITHITAG3CMD_XMACFG

PHTEDKITHITAG3CMD_TEST

PHTEDKITHITAG3CMD_STARTAUTH

PHTEDKITHITAG3CMD_GETIDE64

PHTEDKITHITAG2CMD_XMAWAIT Not supported

PHTEDKITHITAG2CMD_XMACFG Not supported

PHTEDKITHITAG2CMD_TEST Not supported

PHTEDKITHITAG2CMD_STARTAUTH Not supported

PHTEDKITHITAG2CMD_GETIDE64 Not supported

HITAG-AES (in addition to HITAG2-Extended)

PHTEDKITHITAGAESCMD_STARTAUTH250

PHTEDKITHITAGAESCMD_STARTAUTH500

PHTEDKITHITAGAESCMD_TAESINIT

PHTEDKITHITAGAESCMD_TAESGET

PHTEDKITHITAGAESCMD_GETIDE64

PHTEDKITHITAG2CMD_STARTAUTH Not supported

PHTEDKITHITAG2CMD_GETIDE64 Not supported

HITAG-Pro

PHTEDKITHITAGPROCMD_SOFTRESET

PHTEDKITHITAGPROCMD_REFRESH

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 101 of 132

Value Description

PHTEDKITHITAGPROCMD_GETIDE

PHTEDKITHITAGPROCMD_AUTHENT

PHTEDKITHITAGPROCMD_PLAIN

PHTEDKITHITAGPROCMD_CFG

PHTEDKITHITAGPROCMD_SEQINC

PHTEDKITHITAGPROCMD_SELBLOCK

PHTEDKITHITAGPROCMD_READPAGE

PHTEDKITHITAGPROCMD_WRITEPAGE

PHTEDKITHITAGPROCMD_READBYTE

PHTEDKITHITAGPROCMD_WRITEBYTE

PHTEDKITHITAGPROCMD_TAESINIT

PHTEDKITHITAGPROCMD_TAESGET

PHTEDKITHITAGPROCMD_TREADBYTE

PHTEDKITHITAGPROCMD_TWRITEBYTE

PHTEDKITHITAGPROCMD_THASHINIT

PHTEDKITHITAGPROCMD_THASHGET

PHTEDKITHITAGPROCMD_TGETCFG

HITAG-Pro 2 (in addition to HITAG-Pro)

PHTEDKITHITAGPRO2CMD_WRITEDIST

PHTEDKITHITAGPRO2CMD_READDISTN

PHTEDKITHITAGPRO2CMD_READMPAGE

PHTEDKITHITAGPRO2CMD_SEQINC32

PHTEDKITHITAGPRO2CMD_GETIDE64

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 102 of 132

Example 12-7: TransmitReceive (extension-layer)

int main() {
 phTedKit_BaseData_t data;

 /* tick time for the default µC of 48 MHz */

 float tickTime = 0.0208333;

 /* get the API of the TED-Kit 2 being used. */

 void* api = getTEDKit2API();

 /* SET THE TX PARAMETERS … */

 /* SET THE RX PARAMETERS … */

 /* SET THE TX WORD SIZE TO 1 … */

 /* SET THE RX WORD SIZE TO 1 … */

 /* populate data structure to execute first step

 of authentication of a HITAG2 via XSlot #0 */
 data.Function = PHTEDKITBASEAPIFKT_TRANSMITRECEIVE;
 data.Device = PHTEDKITEXTAPIDEVICE_HITAG2;
 data.State = PHTEDKITHITAG2STATE_WAIT;
 data.Command = PHTEDKITHITAG2CMD_STARTAUTH;
 data.TxData1 = PHTEDKITXBOARD_XSLOT_0;
 data.TxData2 = PHTEDKITXBOARD_XSLOT_0;

 /* 2 repetitions of the command */

 data.TxData5 = 2;

 /* reset duration -> 5ms */

 data.TxTime1 = (uint32_t) (5000 / tickTime);

 /* reset delay -> 10ms */

 data.TxTime2 = (uint32_t) (15000 / tickTime);

 /* first step of the authentication sequence */

 data.TxBuf1[0] = 0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &data);

 /* evaluate status code returned */

 if (data.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */
 printf("failure %04X\n", data.StatusCode);
 } else {

 /* Print IDE */

 printf("IDE: %02X%02X%02X%02X\n",

 data.RxBuf1[0], data.RxBuf1[1], data.RxBuf1[2], data.RxBuf1[3]);

 }

}

For examples how to set the Tx and Rx parameters, refer to SetTransmissionParams (see

section 11.20, page 78) or SetReceptionParams (see section 11.19, page 76) respective-

ly.

For an example how to set the word size, refer to SetWordSize (see section 11.21,

page 80).

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 103 of 132

12.3 Passive Keyless Entry

The following functions can be used to interact with a NXP proprietary passive keyless

entry (PKE) system.

In order to execute the example code, several setups and helper functions are neces-

sary. A stub file containing all this is provided here:

[TED-Kit 2 installation]\Development\API\doc\examples\pke-example-stub.c

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 104 of 132

12.3.1 PkeAuthent

The function performs a PKE authentication using the HITAG2 crypto algorithm.

The crypto engine is fed with the tag’s IDE, the immobilizer secret key and a random

number. The value Signature1 is made from the first 16 output bits from the crypto en-

gine, and verified by the tag. After successful verification, the tag responds with another

48 bit value from the crypto engine, called Signature2.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEAUTHENT

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for trans-

mission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-

tion.

TxTime1 ResetDuration; depends on the trans-

ponder type, refer to transponder do-

cumentation [3], [4] and [5]

The duration of the reset sequence of

the transponder in ticks.

TxTime2 ResetDelay; depends on the trans-

ponder type, refer to transponder do-

cumentation [3], [4] and [5]

The time to be waited after a reset until a

new transponder communication can be

started in ticks.

TxBuf1 IDE, Bytes [0-3]

Random Number, Bytes [4-7]

encrypted Signature1, Bytes [8-9]

The Tags IDE, a Random Number and

an encrypted local Signature1.

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 encrypted Signature2, Bytes [0-5] The encrypted remote Signature2

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 105 of 132

Example 12-8: PkeAuthent

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEAUTHENT;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* set random number */

 longToBytes(0, baseData.TxBuf1, 0);

 /* signature 1 */

 baseData.TxBuf1[8] = 0;

 baseData.TxBuf1[9] = 0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("transponder signature := %02X %02X %02X %02X %02X %02X\n",

 baseData.RxBuf1[0], baseData.RxBuf1[1], baseData.RxBuf1[2],

 baseData.RxBuf1[3], baseData.RxBuf1[4], baseData.RxBuf1[5]);

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 106 of 132

12.3.2 PkePollEnable

This function enables the tag for reception of the following PkePollIde (see section

12.3.3, page 107) command.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEPOLLENABLE

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for

transmission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for

reception.

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

Example 12-9: PkePollEnable

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLENABLE;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 107 of 132

12.3.3 PkePollIde

This function scans available tags in range and receives their IDE (one at a time).

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEPOLLIDE

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for trans-

mission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-

tion.

TxBuf1 Random Number, Bytes [0-1] Random number to generate a timeslot

for the tag response.

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 IDE, Bytes [0-3] The PKE tag’s IDE

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 108 of 132

Example 12-10: PkePollIde

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLIDE;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* random number == 0 */

 baseData.TxBuf1[0] = 0;

 baseData.TxBuf1[1] = 0;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 } else {

 ide = bytesToLong(baseData.RxBuf1, 0);

 printf("IDE 0x%08X\n", ide);

 }

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 109 of 132

12.3.4 PkePollMute

This function "mutes" the one tag that is addressed by its own IDE, with respect to tag

scanning. This tag will not respond to PkePollIde (see section 12.3.3, page 107) any-

more, until another PkePollEnable (see section 12.3.2, page 106) command is issued.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEPOLLMUTE

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for trans-

mission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-

tion.

TxBuf1 IDE, Bytes [0-3] The IDE of the Tag which has to be

muted.

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 110 of 132

Example 12-11: PkePollMute

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEPOLLMUTE;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 longToBytes(ide, baseData.TxBuf1, 0);

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 111 of 132

12.3.5 PkeReadEeprom

Reads an EEPROM page of 32 bits.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEREADEEPROM

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for

transmission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for

reception.

TxBuf1 IDE, Bytes [0-3]

Page, Byte [4]

The Tags IDE and the selected page.

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 Page value, Bytes [0-3] The 32 Bit page value.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 112 of 132

Example 12-12: PkeReadEeprom

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* EXECUTE PKE AUTHENT … */

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEREADEEPROM;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* set page to read := 5 */

 baseData.TxBuf1[4] = 5;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("page #5 := %08X\n", bytesToLong(baseData.RxBuf1));

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 113 of 132

12.3.6 PkeReadVbat

Measures and returns the tag battery voltage index. The index is used together with a

transponder specific look-up table to get the actual voltage value.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEREADVBAT

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for trans-

mission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-

tion.

TxBuf1 IDE, Bytes [0-3]

LOAD SELECTION, Byte [4]

(1 – UHF, 2 – LED1, 4 – LED2)

The Tags IDE and the Load selection.

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1...PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 Battery voltage, Byte [0] The coded tag battery voltage.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 114 of 132

Example 12-13: PkeReadVbat

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* The VBat lookup table applicable for a PCF7953 */

 const double vbat[] = {

 1.83, 1.92, 2.02, 2.12, 2.21, 2.31, 2.41, 2.50,

 2.60, 2.70, 2.80, 2.89, 2.99, 3.09, 3.18, 3.28 };

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEREADVBAT;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* set load selection: LED1 + LED2 */

 baseData.TxBuf1[4] = 2 | 4;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("VBat index := %i, value := %fV\n",

 (baseData.RxBuf1[0] & 0x0F), vbat[baseData.RxBuf1[0] & 0x0F]);

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 115 of 132

12.3.7 PkeRssiAll

Performs RSSI measurements of all three axes, and calculates the squared vector length

(squared geometric mean) V
2
 = X

2
 + Y

2
 + Z

2
.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKERSSIALL

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for trans-

mission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for recep-

tion.

TxBuf1 IDE, Bytes [0-3]

ADC Resolution, Byte [4]

0…5  5 bit...10 bit

The tag’s IDE and the ADC resolution.

Output

StatusCode see Table 28, page 122 The status code informing about success

or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII

characters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 Sum, Bytes [0-2] The floating point value for the sum of

the 3 axis.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 116 of 132

Example 12-14: PkeRssiAll

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKERSSIALL;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* ADC resolution 10 bit */

 baseData.TxBuf1[4] = 5;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("RSSI := %f\n", bytesToDouble(baseData.RxBuf1));

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 117 of 132

12.3.8 PkeRssiSingle

Performs RSSI measurements of all three axes, and returns the three vector components

X, Y, Z.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKERSSISINGLE

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for

transmission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for

reception.

TxBuf1 IDE, Bytes [0-3]

ADC Resolution, Byte [4]

0…5  5 bit...10 bit

The tag’s IDE and the ADC resolu-

tion.

Output

StatusCode see Table 28, page 122 The status code informing about suc-

cess or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each call.

RxBuf1 X-Axis, Bytes [0-2]

Y-Axis, Bytes [3-5]

Z-Axis, Bytes [6-8]

The floating point values for the 3

axis.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 118 of 132

Example 12-15: PkeRssiSingle

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKERSSISINGLE;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* ADC resolution 10 bit */

 baseData.TxBuf1[4] = 5;

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("RSSI X:%f\n", bytesToDouble(baseData.RxBuf1 + 0));

 printf("RSSI Y:%f\n", bytesToDouble(baseData.RxBuf1 + 3));

 printf("RSSI Z:%f\n", bytesToDouble(baseData.RxBuf1 + 6));

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 119 of 132

12.3.9 PkeWriteEeprom

Writes an EEPROM page of 32 bits.

Data Structure Attributes Used

Structure

Attribute

Value(s) Description

Input

Function PHTEDKITEXTAPIFKT_PKEWRITEEEPROM

Device PHTEDKITEXTAPIDEVICE_PKE See also Table 30, page 124.

TxData1 See Table 29, page 124. The XSlot of the XBoard used for

transmission.

TxData2 See Table 29, page 124. The XSlot of the XBoard used for

reception.

TxBuf1 IDE, Bytes [0-3]

Page, Byte [4]

Page value [5-8]

The tag’s IDE, the selected page

and the Page value.

Output

StatusCode see Table 28, page 122 The status code informing about

success or failure.

TraceBuf 1..PHTEDKITTRACE_BUFSIZE ASCII cha-

racters, NULL terminated.

The human readable debug trace

created by the firmware for each

call.

RxBuf1 Page value, Bytes [0-3] The 32 Bit page value confirmation.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 120 of 132

Example 12-16: PkeWriteEeprom

int main(void) {

 /* An instance of the base data structure used to exchange data with

 the API Library. */

 phTedKit_BaseData_t baseData;

 /* The transponder's IDE */

 uint32_t ide;

 /* initialize the TED-Kit 2 and its components for PKE. */

 if (setup() == EXIT_FAILURE) {

 return EXIT_FAILURE;

 }

 /* EXECUTE PKE POLL ENABLE … */

 /* EXECUTE PKE POLL IDE … */

 ide = …;

 /* EXECUTE PKE AUTHENT … */

 /* populate data structure */

 baseData.Device = PHTEDKITEXTAPIDEVICE_PKE;

 baseData.Function = PHTEDKITEXTAPIFKT_PKEWRITEEEPROM;

 baseData.TxData1 = xSlotABICPort;

 baseData.TxData2 = xSlotLoPSTerPort;

 /* set IDE */

 longToBytes(ide, baseData.TxBuf1, 0);

 /* set page to write := 5 */

 baseData.TxBuf1[4] = 5;

 /* set value to write */

 longToBytes(0x12345678, baseData.TxBuf1, 5);

 /* call the API’s run(..) method */

 phcsApiInt_Run(api, PHTEDKITCOMPID_EXTAPI, &baseData);

 /* evaluate status code returned */

 if (baseData.StatusCode != PHTEDKITSTATUS_OK) {

 /* failure, handle error */

 printf("failure 0x%04X\n", baseData.StatusCode);

 return EXIT_FAILURE;

 }

 printf("page #5 written, transponder answered:= %08X\n",

 bytesToLong(baseData.RxBuf1));

 return shutdown();

}

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 121 of 132

13. API Reference – Common Constants

13.1 Places of Definition

This section lists the locations of all the elements of the TED-Kit 2 API required and used

throughout this manual. All locations given refer to the installation location of the TED-

Kit 2 software.

13.1.1 Function Declarations

The three functions to initialize, execute and shut down a TED-Kit 2 API are defined in

the following files:

Table 21. API Function Declarations

Programming Language

Interface

Declaration in File

C intfs\IphcsApiInt\inc\phIcsApiInt.h

C++ comps\phcsApiInt\inc\phcsApiInt.hpp

C# TED-Kit 2 API.cs

13.1.2 Function Codes

The function codes for the three layers of the TED-Kit 2 API can be found here:

Table 22. API Function Codes Definitions

Programming Language

Interface

Declaration in File Item

C
types\phTedKitCommands.h #define …

C++

C# TED-Kit 2 API.cs; phcs_TedKit2::Functions

13.1.3 Data Structures

The data structures needed to exchange data with the TED-Kit 2 API are defined here:

Table 23. API Data Structure Declaration

Programming Language

Interface

Declaration in File Item

C
types\phTedKitTypeDefs.h phTedKit_IoData_t

phTedKit_BaseData_t C++

C# TED-Kit 2 API.cs; phcs_TedKit2::IOData

phcs_TedKit2::BaseData

13.1.4 Status Codes

The status codes returned by the TED-Kit 2 API are defined here:

Table 24. API Status Code Definitions

Programming Language

Interface

Declaration in File Item

C
types\phTedKitStatus.h #define …

C++

C# TED-Kit 2 API.cs; phcs_TedKit2::ReturnCode

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 122 of 132

13.1.5 API Layer IDs

The IDs for the different API layers are defined here:

Table 25. API Layer IDs

Programming Language

Interface

Declaration in File Item

C
types\phTedKitStatus.h #define …

C++

C# TED-Kit 2 API.cs; phcs_TedKit2::Layer

13.1.6 Transponder Specifics

All transponder (NXP immobilizer) commands are defined here:

Table 26. Transponder Command Definitions

Programming Language

Interface

Declaration in File Item

C
types\phTedKitCommands.h #define …

C++

C# TED-Kit 2 API.cs; phcs_TedKit2::Command

All transponder (NXP immobilizer) states are defined here:

Table 27. Transponder State Definitions

Programming Language

Interface

Declaration in File Item

C
types\phTedKitCommands.h enum { … }

C++

C# TED-Kit 2 API.cs; phcs_TedKit2::State

13.2 Status Codes

The status codes are returned by API each time a function is called. It tells whether the

function call was successful or not as well as what went wrong. The following values are

defined:

Table 28. Status Code Values

Value Description

TED-Kit 2 Status Codes (prefix PHTEDKITSTATUS_)

OK Function was successful.

MSG_RX_TIMEOUT The base station was unable to receive anything within

a timeout period.

MSG_RX_ERROR The base station was able to receive data but they are

corrupted.

MSG_RX_FRAMESIZE The base station was able to receive something from

the transponder but the wrong number of bits.

ERR_INVALID_FUNCTION The run method was called with an undefined function

ID.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 123 of 132

Value Description

ERR_INVALID_CHECKSUM The communication from the API to the firmware is

corrupted; the checksum of the data exchanged does

not match.

ERR_MEM_ALLOC_COMMAND_RX The firmware is unable to allocate enough memory for

data received from the host/API.

ERR_INVALID_PARAM_RANGE One or more parameters used in the API call are out of

their specified range.

ERR_INVALID_PARAM_LENGTH The length of an (array) parameter does not match.

ERR_NO_XBOARD_IN_XSLOT Accessing an XBoard which is not available (broken

are not existing) in the given XSlot.

ERR_FUNCTION_NOT_SUPPORTED The function called is currently not supported.

ERR_XBOARD_COMM_FAILURE The communication with the given XBoard failed.

ERR_MEM_ALLOC_COMMAND_EXEC The memory allocation failed.

IO_READTIMEOUT Reading data via the I/O layer timed out.

IO_INVALID_FUNCTION An invalid I/O layer function was specified.

IO_DOWNLOADFILE_OPEN_ERROR The download-file could not be opened.

IO_DOWNLOADFILE_DOWNLOAD_ERROR The download-file could not be downloaded.

BASEAPI_INVALID_FUNCTION An invalid Base layer function was specified.

BASEAPI_RX_FRAMESIZE_INVALID The number of data received by the API from the firm-

ware is wrong.

BASEAPI_RX_CHECKSUM_INVALID The communication from the Firmware to the API is

corrupted; the checksum of the data received by the

API from the firmware does not match.

BASEAPI_INVALID_BOUNDARY Wrong usage of array size

EXTAPI_INVALID_DEVICE The given base station or transponder type during an

API call is invalid.

EXTAPI_INVALID_FUNCTION The run method of the EXT API Layer was called with

an undefined function ID (for that layer).

EXTAPI_INVALID_TRANSPONDER_CMD A bad transponder command was specified.

EXTAPI_INVALID_TRANSPONDER_CHK HITAG Pro Transponder checksum is not OK.

EXTAPI_INVALID_RX_LENGTH HITAG Pro Transponder length is not OK.

EXTAPI_INVALID_STATE Not existing Transponder state.

EXTAPI_INVALID_COMMAND_USE Not allowed Transponder command in actual Trans-

ponder state.

NO_TRANSPONDER_ANSWER The transponder did not answered on a communication

attempt made by the base station.

WRONG_API_LAYER Not existing API layer

FTDI Error Codes (prefix PHTEDKITSTATUS_FT_)

INVALID_HANDLE

DEVICE_NOT_FOUND

DEVICE_NOT_OPENED

IO_ERROR

INSUFFICIENT_RESOURCES

INVALID_PARAMETER

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 124 of 132

Value Description

INVALID_BAUD_RATE

DEVICE_NOT_OPENED_FOR_ERASE

DEVICE_NOT_OPENED_FOR_WRITE

FAILED_TO_WRITE_DEVICE

EEPROM_READ_FAILED

EEPROM_WRITE_FAILED

EEPROM_ERASE_FAILED

EEPROM_NOT_PRESENT

EEPROM_NOT_PROGRAMMED

INVALID_ARGS

NOT_SUPPORTED

OTHER_ERROR

13.3 XSlot Codes

To access the XSlot (the XBoard actually), a set of constants has been defined. The de-

finition locations are shown in the first table below:

Table 29. XSlot/XBoard Codes

Value Description

PHTEDKITXBOARD_XSLOT_0 Selects XBoard in XSlot 0.

PHTEDKITXBOARD_XSLOT_1 Selects XBoard in XSlot 1.

PHTEDKITXBOARD_XSLOT_2 Selects XBoard in XSlot 2.

PHTEDKITXBOARD_XSLOT_3 Selects XBoard in XSlot 3.

13.4 API Device Codes

The base and the extension layer of the TED-Kit 2 API use a device code to correctly

process and direct the data given via the phTedKit_BaseData_t data structure. The

following API devices are defined:

Table 30. API Device Codes

Value Description

Immobilizer Transponders

PHTEDKITEXTAPIDEVICE_HITAG2 Addresses HITAG2 and HITAG2+.

PHTEDKITEXTAPIDEVICE_HITAG2EXT Addresses HITAG 2 Extended.

PHTEDKITEXTAPIDEVICE_HITAGPRO Addresses HITAG Pro and HITAG-Pro 2.

PHTEDKITEXTAPIDEVICE_HITAG3 Addresses HITAG3.

PHTEDKITEXTAPIDEVICE_HITAGAES Addresses HITAG-AES.

PHTEDKITEXTAPIDEVICE_HITAG2PLUSEE Addresses HITAG2+EE.

Virtual Devices

PHTEDKITEXTAPIDEVICE_PKE Addresses the PKE feature block

PHTEDKITEXTAPIDEVICE_HITAG2CRYPTO Addresses the HITAG2 crypto unit.

PHTEDKITEXTAPIDEVICE_HITAG3CRYPTO Addresses the HITAG3 crypto unit.

PHTEDKITEXTAPIDEVICE_AESCRYPTO Addresses the AES crypto unit.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 125 of 132

Value Description

Base Stations

PHTEDKITEXTAPIDEVICE_ABIC1 Addresses ABIC1.

PHTEDKITEXTAPIDEVICE_ABIC2 Addresses ABIC2.

PHTEDKITEXTAPIDEVICE_LOPSTER Addresses LoPSTer.

13.5 Coding Schemes and Word Size

The µC of the TED-Kit 2 supports several coding schemes for data encoding and decod-

ing. The table below lists the coding scheme codes and corresponding word sizes sup-

ported:

Table 31. Coding Scheme Codes and Word Size

Value Word Size

(Bits per Value)

Description

PHTEDKITCODING_MANCHESTER 1 Manchester.

PHTEDKITCODING_CDP 1 Conditional De-Phase.

PHTEDKITCODING_BPLM 1 Binary coded Pulse Length Modulation.

PHTEDKITCODING_FREEWAVE 8 Arbitrary coded waveform (high and low

level alternate).

PHTEDKITCODING_ANALOG 8/16 Analogue signal with either 8 or 10 bit reso-

lution

PHTEDKITCODING_PLAIN 1 Free wave form signal (arbitrary order of

carrier on/off).

PHTEDKITCODING_GPIO 16 16 bits at a time (parallel) via GPIO.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 126 of 132

14. Document Management

14.1 Abbreviations and Terminology

The following abbreviations and terminology is used throughout this document:

Table 32. Abbreviations and Terminology

Abbreviation Description

µC Micro Controller

ABIC{1|2} Advanced Base station IC{1|2}

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BPLM Binary coded Pulse Length Modulation

CDP Conditional Dephase Encoding

DLL Dynamic Link Library

EEPROM Electrically Erasable Programmable Read-Only Memory

FTDI Future Technology Devices International Ltd., http://www.ftdichip.com, provid-

er of the UART/USB converter soft- and hardware.

GPIO General Purpose Input/Output

HW Hardware

I/O Input/Output

I
2
C Inter-Integrated Circuit; a multi-master serial single-ended computer bus in-

vented by Philips

IC Integrated Circuit

ID Identifier

IDE Identifier

LED Light-Emitting Diode

LF Low Frequency

LIN Local Interconnect Network

LoPSTer Low Power, Single-chip Transceiver

PKE Passive Keyless Entry

RSSI Received Signal Strength Indicator

Rx Reception

SPI Serial Peripheral Interface

SW Software

TED-Kit 2 Transponder Evaluation and Demonstration-Kit 2

Tx Transmission

UHF Ultra High Frequency

USB Universal Serial Bus

XBoard Extension Board

XMA Extended Memory Access

XSlot Extension Slot

Downloaded from Arrow.com.

http://www.ftdichip.com/
http://www.ftdichip.com/
http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 127 of 132

14.2 Referenced Documents

The following documents are referenced throughout this document:

Table 33. Referenced Documents

ID Title Version Issue Date

UM10278_1 TED-Kit 2 Firmware-to-Host Interface Specification 4.04 October 2
nd

, 2008

1 Run-Method Overview.xls n/a n/a

Downloaded from Arrow.com.

http://www.arrow.com

E
rro

r!

U
n

-

k
n

o
w

n

d
o

c
u

-

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 128 of 132

15. Legal Information

15.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in modifica-

tions or additions. NXP Semiconductors does not give any representations

or warranties as to the accuracy or completeness of information included

herein and shall have no liability for the consequences of use of such infor-

mation.

15.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the conse-

quences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of con-

tract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability to-

wards customer for the products described herein shall be limited in accor-

dance with the Terms and conditions of commercial sale of NXP Semicon-

ductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without limita-

tion specifications and product descriptions, at any time and without notice.

This document supersedes and replaces all information supplied prior to the

publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental dam-

age. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and there-

fore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP Semiconduc-

tors accepts no liability for any assistance with applications or customer

product design. It is customer’s sole responsibility to determine whether the

NXP Semiconductors product is suitable and fit for the customer’s applica-

tions and products planned, as well as for the planned application and use of

customer’s third party customer(s). Customers should provide appropriate

design and operating safeguards to minimize the risks associated with their

applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP Semiconduc-

tors products in order to avoid a default of the applications and the products

or of the application or use by customer’s third party customer(s). NXP does

not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express, im-

plied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or inciden-

tal damages (including without limitation damages for loss of business, busi-

ness interruption, loss of use, loss of data or information, and the like) arising

out the use of or inability to use the product, whether or not based on tort

(including negligence), strict liability, breach of contract, breach of warranty

or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by custom-

er for the product or five dollars (US$5.00). The foregoing limitations, exclu-

sions and disclaimers shall apply to the maximum extent permitted by appli-

cable law, even if any remedy fails of its essential purpose.

15.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

15.4 Patents
Notice is herewith given that the subject device uses one or more of the

following patents and that each of these patents may have corresponding

patents in other jurisdictions.

<Patent ID> — owned by <Company name>

15.5 Trademarks
Notice: All referenced brands, product names, service names and trade-

marks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 129 of 132

16. List of Examples

Example 9-1. Preamble for Example Code 34
Example 10-1: Close... 36
Example 10-2: EEUARead ... 38
Example 10-3: EEUASize ... 39
Example 10-4: EEUAWrite .. 40
Example 10-5: GetAPIVersion .. 41
Example 10-6: GetDeviceInfoDetail 43
Example 10-7: GetDeviceNumber 44
Example 10-8: GetDriverVersion 45
Example 10-9: GetLibraryVersion 46
Example 10-10: Open (Normal Operation) 47
Example 10-11: Open (Firmware Update) 48
Example 11-1: Delay... 50
Example 11-2: DeselectXSlot ... 51
Example 11-3: DisableContReception 52
Example 11-4: EditGPIOPin ... 54
Example 11-5: EnableContReception 55
Example 11-6: GetButtonStates 56
Example 11-7: GetContReceivedData 58
Example 11-8: GetDeviceStatus 60
Example 11-9: GetFWVersion .. 61
Example 11-10: GetLEDStates ... 62
Example 11-11: GetReceptionParams.............................. 64
Example 11-12: GetTransmissionParams 66
Example 11-13: GetWordSize .. 67
Example 11-14: GetXBoardConfig 69
Example 11-15: GetXSlotInfo ... 72
Example 11-16: ResetMainBoard 73
Example 11-17: ResetXBoard .. 74
Example 11-18: SetLEDStates ... 75
Example 11-19: SetReceptionParams 77
Example 11-20: GetTransmissionParams 79
Example 11-21: SetWordSize ... 80
Example 11-22: SetXBoardConfig 82
Example 11-23: TransmitReceive (base-layer) 84
Example 12-1: AESCryptoInit ... 87
Example 12-2: AESCryptoOperation 88
Example 12-3: HITAG2CryptoInit 90
Example 12-4: HITAG2CryptoOperation 92
Example 12-5: HITAG3CryptoInit 94
Example 12-6: HITAG3CryptoOperation 96
Example 12-7: TransmitReceive (extension-layer) 102
Example 12-8: PkeAuthent ... 105
Example 12-9: PkePollEnable .. 106
Example 12-10: PkePollIde ... 108
Example 12-11: PkePollMute .. 110

Example 12-12: PkeReadEeprom 112
Example 12-13: PkeReadVbat .. 114
Example 12-14: PkeRssiAll ... 116
Example 12-15: PkeRssiSingle 118
Example 12-16: PkeWriteEeprom 120

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

DOC-091497

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

User manual Rev. 1.29 — 22 June 2011 130 of 132

17. List of Tables

Table 1. Required Ingredients ... 4
Table 2. ABIC1 XBoard Configuration 20
Table 3. HITAG2-Extended Tx Parameter 21
Table 4. HITAG2-Extended Rx Parameter 22
Table 5. Functions for Tx/Rx .. 28
Table 6. Logging Data Storage Format 29
Table 7. API Initialization Function 31
Table 8. API Execution Function 31
Table 9. API Destruction Function 32
Table 10. Function Codes - I/O Layer 35
Table 11. Parameters of Method Run – I/O layer 35
Table 12. FTDI EEPROM layout 37
Table 13. Function Codes - Base Layer 49
Table 14. Parameters of Method Run – base layer 49
Table 15. XBoard Type Code Values.............................. 70
Table 16. XBoard Feature Code Values 70
Table 17. Function Codes - Extended Layer 85
Table 18. Parameters of Method Run – extended layer .. 85
Table 19. Immobilizer State(-machine) Codes 99
Table 20. Immobilizer Command Codes 99
Table 21. API Function Declarations............................. 121
Table 22. API Function Codes Definitions 121
Table 23. API Data Structure Declaration 121
Table 24. API Status Code Definitions 121
Table 25. API Layer IDs .. 122
Table 26. Transponder Command Definitions 122
Table 27. Transponder State Definitions 122
Table 28. Status Code Values 122
Table 29. XSlot/XBoard Codes 124
Table 30. API Device Codes ... 124
Table 31. Coding Scheme Codes and Word Size 125
Table 32. Abbreviations and Terminology 126
Table 33. Referenced Documents 127

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 June 2011

Document identifier: DOC-091497

18. Contents

1. Document Purpose ... 3
1.1 What this Document is Not 3
2. Introduction ... 4
2.1 Requirements ... 4
3. ―Hello World‖ in C ... 5
3.1 Epilog ... 5
3.2 Initialization .. 5
3.2.1 Count FTDI Devices ... 5
3.2.2 Get Device Details ... 6
3.2.3 Open Device .. 6
3.3 Calling API Functions ... 7
3.4 Clean-Up .. 7
4. ―Hello World‖ in C++ ... 8
4.1 Epilog ... 8
4.2 Initialization .. 8
4.2.1 Count FTDI Devices ... 8
4.2.2 Get Device Details ... 9
4.2.3 Open Device .. 10
4.3 Calling API Functions 10
4.4 Clean-Up .. 10
5. ―Hello World‖ in C# ... 12
5.1 Epilog ... 12
5.2 Initialization .. 12
5.2.1 Count FTDI Devices ... 12
5.2.2 Get Device Details ... 13
5.2.3 Open Device .. 14
5.3 Calling API Functions 14
5.4 Clean-Up .. 14
6. Handling Multiple Devices 16
6.1 One-after-Another .. 16
6.2 In Parallel ... 16
7. Interaction with a Transponder 18
7.1 Finding a TED-Kit 2 with an ABIC1 18
7.2 Enabling the TED-Kit 2 19
7.3 Configuring the ABIC1 XBoard 19
7.4 Configuring the Data Transmission 20
7.5 Configuring the Data Reception 22
7.6 Reading the XMA Configuration 22
7.6.1 Entering XMA/CFG .. 23
7.6.2 Reading the Configuration 23
7.7 Executing a Ciphered Authentication 24
7.7.1 Preparation... 24
7.7.2 Authentication Initialization 24
7.7.3 Authentication Execution 24
7.8 Selecting a XMA Segment and Block 25

7.9 Reading all Pages from a Block 25
7.10 Writing a Page of a Block 26
7.11 Read that Page Back 26
7.12 Shut Down .. 27
8. Transmit/Receive Logging 28
8.1 Storage and Format ... 28
8.2 Printing the data ... 29
9. API Reference - Overview 31
9.1 Functions .. 31
9.1.1 Initialization ... 31
9.1.2 Execution .. 31
9.1.3 Clean-Up .. 32
9.2 Common Attributes ... 32
9.2.1 Function ID ... 32
9.2.2 Status Code .. 32
9.2.3 Trace Buffer .. 32
9.2.4 Timings ... 33
9.3 Common Example Code 33
10. API Reference - I/O Functions 35
10.1 Close .. 36
10.2 EEUARead ... 37
10.3 EEUASize ... 39
10.4 EEUAWrite ... 40
10.5 GetAPIVersion .. 41
10.6 GetDeviceInfoDetail ... 42
10.7 GetDeviceNumber .. 44
10.8 GetDriverVersion .. 45
10.9 GetLibraryVersion .. 46
10.10 Open... 47
11. API Reference - Base Functions 49
11.1 Delay .. 50
11.2 DeselectXSlot ... 51
11.3 DisableContReception 52
11.4 EditGPIOPin ... 53
11.5 EnableContReception 55
11.6 GetButtonStates ... 56
11.7 GetContReceivedData...................................... 57
11.8 GetDeviceStatus .. 59
11.9 GetFWVersion .. 61
11.10 GetLEDStates .. 62
11.11 GetReceptionParams 63
11.12 GetTransmissionParams 65
11.13 GetWordSize .. 67
11.14 GetXBoardConfig ... 68
11.15 GetXSlotInfo ... 70
11.16 ResetMainBoard ... 73

Downloaded from Arrow.com.

http://www.arrow.com

NXP Semiconductors UM10277_1
 Programmer's Manual

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 June 2011

Document identifier: DOC-091497

11.17 ResetXBoard .. 74
11.18 SetLEDStates ... 75
11.19 SetReceptionParams 76
11.20 SetTransmissionParams 78
11.21 SetWordSize .. 80
11.22 SetXBoardConfig ... 81
11.23 TransmitReceive .. 83
12. API Reference - Extended Functions 85
12.1 Cryptography .. 86
12.1.1 AESCyrptoInit ... 87
12.1.2 AESCryptoOperation .. 88
12.1.3 HITAG2CryptoInit ... 89
12.1.4 HITAG2CryptoOperation 91
12.1.5 HITAG3CryptoInit ... 93
12.1.6 HITAG3CryptoOperation 95
12.2 Immobilizer ... 97
12.2.1 TransmitReceive .. 98
12.3 Passive Keyless Entry 103
12.3.1 PkeAuthent... 104
12.3.2 PkePollEnable .. 106
12.3.3 PkePollIde .. 107
12.3.4 PkePollMute ... 109
12.3.5 PkeReadEeprom .. 111
12.3.6 PkeReadVbat ... 113
12.3.7 PkeRssiAll .. 115
12.3.8 PkeRssiSingle .. 117
12.3.9 PkeWriteEeprom .. 119
13. API Reference – Common Constants 121
13.1 Places of Definition .. 121
13.1.1 Function Declarations 121
13.1.2 Function Codes .. 121
13.1.3 Data Structures .. 121
13.1.4 Status Codes .. 121
13.1.5 API Layer IDs ... 122
13.1.6 Transponder Specifics 122
13.2 Status Codes .. 122
13.3 XSlot Codes ... 124
13.4 API Device Codes .. 124
13.5 Coding Schemes and Word Size 125
14. Document Management 126
14.1 Abbreviations and Terminology 126
14.2 Referenced Documents 127
15. Legal Information .. 128
15.1 Definitions .. 128
15.2 Disclaimers... 128
15.3 Licenses ... 128
15.4 Patents ... 128
15.5 Trademarks .. 128
16. List of Examples .. 129

17. List of Tables ... 130
18. Contents ... 131

Downloaded from Arrow.com.

http://www.arrow.com

	1. Document Purpose
	1.1 What this Document is Not

	2. Introduction
	2.1 Requirements

	3. “Hello World” in C
	3.1 Epilog
	3.2 Initialization
	3.2.1 Count FTDI Devices
	3.2.2 Get Device Details
	3.2.3 Open Device

	3.3 Calling API Functions
	3.4 Clean-Up

	4. “Hello World” in C++
	4.1 Epilog
	4.2 Initialization
	4.2.1 Count FTDI Devices
	4.2.2 Get Device Details
	4.2.3 Open Device

	4.3 Calling API Functions
	4.4 Clean-Up

	5. “Hello World” in C#
	5.1 Epilog
	5.2 Initialization
	5.2.1 Count FTDI Devices
	5.2.2 Get Device Details
	5.2.3 Open Device

	5.3 Calling API Functions
	5.4 Clean-Up

	6. Handling Multiple Devices
	6.1 One-after-Another
	6.2 In Parallel

	7. Interaction with a Transponder
	7.1 Finding a TED-Kit 2 with an ABIC1
	7.2 Enabling the TED-Kit 2
	7.3 Configuring the ABIC1 XBoard
	7.4 Configuring the Data Transmission
	7.5 Configuring the Data Reception
	7.6 Reading the XMA Configuration
	7.6.1 Entering XMA/CFG
	7.6.2 Reading the Configuration

	7.7 Executing a Ciphered Authentication
	7.7.1 Preparation
	7.7.2 Authentication Initialization
	7.7.3 Authentication Execution

	7.8 Selecting a XMA Segment and Block
	7.9 Reading all Pages from a Block
	7.10 Writing a Page of a Block
	7.11 Read that Page Back
	7.12 Shut Down

	8. Transmit/Receive Logging
	8.1 Storage and Format
	8.2 Printing the data

	9. API Reference - Overview
	9.1 Functions
	9.1.1 Initialization
	9.1.2 Execution
	9.1.3 Clean-Up

	9.2 Common Attributes
	9.2.1 Function ID
	9.2.2 Status Code
	9.2.3 Trace Buffer
	9.2.4 Timings

	9.3 Common Example Code

	10. API Reference - I/O Functions
	10.1 Close
	10.2 EEUARead
	10.3 EEUASize
	10.4 EEUAWrite
	10.5 GetAPIVersion
	10.6 GetDeviceInfoDetail
	10.7 GetDeviceNumber
	10.8 GetDriverVersion
	10.9 GetLibraryVersion
	10.10 Open

	11. API Reference - Base Functions
	11.1 Delay
	11.2 DeselectXSlot
	11.3 DisableContReception
	11.4 EditGPIOPin
	11.5 EnableContReception
	11.6 GetButtonStates
	11.7 GetContReceivedData
	11.8 GetDeviceStatus
	11.9 GetFWVersion
	11.10 GetLEDStates
	11.11 GetReceptionParams
	11.12 GetTransmissionParams
	11.13 GetWordSize
	11.14 GetXBoardConfig
	11.15 GetXSlotInfo
	11.16 ResetMainBoard
	11.17 ResetXBoard
	11.18 SetLEDStates
	11.19 SetReceptionParams
	11.20 SetTransmissionParams
	11.21 SetWordSize
	11.22 SetXBoardConfig
	11.23 TransmitReceive

	12. API Reference - Extended Functions
	12.1 Cryptography
	12.1.1 AESCyrptoInit
	12.1.2 AESCryptoOperation
	12.1.3 HITAG2CryptoInit
	12.1.4 HITAG2CryptoOperation
	12.1.5 HITAG3CryptoInit
	12.1.6 HITAG3CryptoOperation

	12.2 Immobilizer
	12.2.1 TransmitReceive

	12.3 Passive Keyless Entry
	12.3.1 PkeAuthent
	12.3.2 PkePollEnable
	12.3.3 PkePollIde
	12.3.4 PkePollMute
	12.3.5 PkeReadEeprom
	12.3.6 PkeReadVbat
	12.3.7 PkeRssiAll
	12.3.8 PkeRssiSingle
	12.3.9 PkeWriteEeprom

	13. API Reference – Common Constants
	13.1 Places of Definition
	13.1.1 Function Declarations
	13.1.2 Function Codes
	13.1.3 Data Structures
	13.1.4 Status Codes
	13.1.5 API Layer IDs
	13.1.6 Transponder Specifics

	13.2 Status Codes
	13.3 XSlot Codes
	13.4 API Device Codes
	13.5 Coding Schemes and Word Size

	14. Document Management
	14.1 Abbreviations and Terminology
	14.2 Referenced Documents

	15. Legal Information
	15.1 Definitions
	15.2 Disclaimers
	15.3 Licenses
	15.4 Patents
	15.5 Trademarks

	16. List of Examples
	17. List of Tables
	18. Contents

