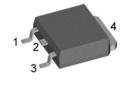
XPT IGBT

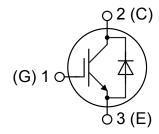
preliminary

1200 V V_{CES}

I_{C25} 9A


V_{CE(sat)} = 1.8V

Copack


Part number

IXA4IF1200UC

Marking on Product: X4TAUF

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- SONIC[™] diode
 - fast and soft reverse recovery
 - low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-252 (DPak)

- · Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

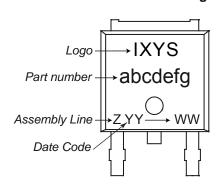
IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20111109a

preliminary

IGBT							Ratings	3	
Symbol	Definition		Condi	itions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage				$T_{VJ} = 25^{\circ}C$;		1200	V
V _{GES}	max. DC gate voltage							±20	V
V_{GEM}	max. transient gate emitter voltage							±30	V
I _{C25}	collector current				$T_{c} = 25^{\circ}C$			9	Α
I _{C 100}					$T_{\rm C} = 100^{\circ} \rm C$			5	Α
P _{tot}	total power dissipation				$T_C = 25^{\circ}C$			45	W
V _{CE(sat)}	collector emitter saturation voltage		I _C =	3A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
					$T_{VJ} = 125^{\circ}C$		2.1		V
V _{GE(th)}	gate emitter threshold voltage		I _C = 0	.1mA; $V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
I _{CES}	collector emitter leakage current		V _{CE} = \	V_{CES} ; $V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.1	mA
					$T_{VJ} = 125^{\circ}C$		0.1		mΑ
I _{GES}	gate emitter leakage current		V _{GE} =	±20 V				500	nA
Q _{G(on)}	total gate charge		V _{CE} =	600 V; V _{GE} = 15 V; I _C =	3 A		12		nC
t _{d(on)}	turn-on delay time	7					70		ns
tr	current rise time			P I I	T 40500		40		ns
t _{d(off)}	turn-off delay time			tive load	$T_{VJ} = 125^{\circ}C$		250		ns
t _f	current fall time	٦		$600 \text{ V}; I_{\text{C}} = 3 \text{ A}$			100		ns
E _{on}	turn-on energy per pulse		V _{GE} =	$\pm 15 \text{ V; R}_{G} = 330 \Omega$			0.4		mJ
E _{off}	turn-off energy per pulse	ノ					0.3		mJ
RBSOA	reverse bias safe operating area	7	V _{GE} =	±15 V; R _G =330 Ω	T _{VJ} = 125°C				! !
I _{CM}		ح	V_{CEmax}	= 1200 V				9	Α
SCSOA	short circuit safe operating area	7	V_{CEmax}	= 900 V					! ! !
tsc	short circuit duration	}	V_{CE} =	900 V; $V_{GE} = \pm 15 \text{ V}$	$T_{VJ} = 125^{\circ}C$			10	μs
Isc	short circuit current	J	$R_G = 3$	30 Ω; non-repetitive			12		Α
R _{thJC}	thermal resistance junction to case							2.7	K/W
R _{thCH}	thermal resistance case to heatsink						0.50		K/W
Diode									; ; ; ; ; ; ;
V _{RRM}	max. repetitive reverse voltage				T _{VJ} = 25°C			1200	V
I _{F25}	forward current				T _C = 25°C			10	Α
I _{F100}					$T_{\rm C} = 100^{\circ} \rm C$			6	Α
V _F	forward voltage		I _F =	3A	T _{VJ} = 25°C			2.20	V
					$T_{VJ} = 125^{\circ}C$		1.90		٧
I _R	reverse current		V _R = V	/ RRM	T _{VJ} = 25°C			*	mA
	* not applicable, see Ices value abov	e e			T _{VJ} = 125°C		*		mA
Q _{rr}	reverse recovery charge	``			· · · · · · · · · · · · · · · · · · ·		0.5		μC
I _{RM}	max. reverse recovery current		$V_R = 6$	600 V t = -150 A/µs 3A; V _{GE} = 0 V	_		5		· A
t _{rr}	reverse recovery time	>	-di _F /d	t = -150 A/µs	$T_{VJ} = 125^{\circ}C$		350		ns
E _{rec}	reverse recovery energy	J	I _F =	$3A; V_{GE} = 0 V$			0.1		mJ
R _{thJC}	thermal resistance junction to case							3	K/W
R _{thCH}	thermal resistance case to heatsink						0.50		K/W



preliminary

Package TO-252 (DPak)				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal			20	Α	
T _{VJ}	virtual junction temperature		-40		150	°C	
T _{op}	operation temperature		-40		125	°C	
T _{stg}	storage temperature		-40		150	°C	
Weight				0.3		g	
F _c	mounting force with clip		20		60	N	

Product Marking

Part number

I = IGBT

X = XPT IGBT

A = Gen 1 / std

4 = Current Rating [A] IF = Copack

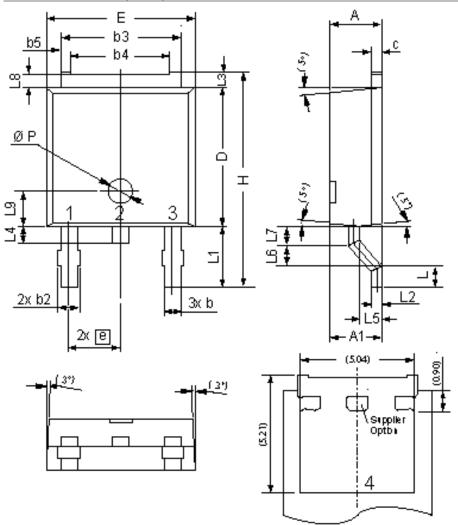
1200 = Reverse Voltage [V] UC = TO-252AA (DPak)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA4IF1200UC	X4TAUF	Tape & Reel	2500	510217

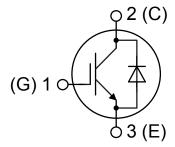
Similar Part	Package	Voltage class
IXA4IF1200TC	TO-268AA (D3Pak) (2)	1200

Equiva	alent Circuits for Simulation	* on die level		T _{VJ} = 15	50 °C
$I \rightarrow V_0$)R ₀		IGBT	Diode	
V _{0 max}	threshold voltage		1.1	1.25	V
R _{0 max}	slope resistance *		460	280	mΩ

IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747and per semiconductor unless otherwise specified

20111109a



preliminary

Outlines TO-252 (DPak)

Dim.	Millin	neters	Inches		
, ווזוט	min	max	min	max	
Α	2.20	2.40	0.087	0.094	
A1	2.10	2.50	0.083	0.098	
b	0.66	0.86	0.026	0.034	
b2	-	0.96	-	0.038	
b3	5.04	5.64	0.198	0.222	
b4	4.34	BSC	0.171	BSC	
b5	0.50	BSC	0.020	BSC	
С	0.40	0.86	0.016	0.034	
D	5.90	6.30	0.232	0.248	
Е	6.40	6.80	0.252	0.268	
е	2.10	2.50	0.083	0.098	
Н	9.20	10.10	0.362	0.398	
L	0.55	1.28	0.022	0.050	
L1	2.50	2.90	0.098	0.114	
L2	0.40	0.60	0.016	0.024	
L3	0.50	0.90	0.020	0.035	
L4	0.60	1.00	0.024	0.039	
L5	0.82	1.22	0.032	0.048	
L6	0.79	0.99	0.031	0.039	
L7	0.81	1.01	0.032	0.040	
L8	0.40	0.80	0.016	0.031	
L9	1.50	BSC	0.059 BSC		
ØР	1.00	BSC	0.039	BSC	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.