

MOSFET - Power, Single, P-Channel, TSOP-6 -30 V, -4.7 A NTGS4111P, NVGS4111P

Features

- Leading -30 V Trench Process for Low R_{DS(on)}
- Low Profile Package Suitable for Portable Applications
- Surface Mount TSOP-6 Package Saves Board Space
- Improved Efficiency for Battery Applications
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Package is Available

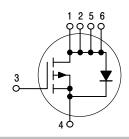
Applications

- · Battery Management and Switching
- Load Switching
- Battery Protection

MAXIMUM RATINGS (T_J = 25 °C unless otherwise noted)

Ratir	ng		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	T _A = 25 °C	I _D	-3.7	Α
Current (Note 1)	State	T _A = 85 °C		-2.7	
	t ≤ 5 s	T _A = 25 °C		-4.7	
Power Dissipation (Note 1)	Steady State	T _A = 25 °C	P _D	1.25	W
	t ≤ 5 s			2.0	
Continuous Drain	Steady	T _A = 25 °C	I _D	-2.6	Α
Current (Note 2)	State	T _A = 85 °C		-1.9	
Power Dissipation (Note 2)		T _A = 25 °C	P _D	0.63	W
Pulsed Drain Current	tp =	= 10 μs	I _{DM}	-15	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			Is	-1.7	Α
Lead Temperature for So (1/8" from case for 10 s)	ldering Pu	rposes	T_L	260	°C

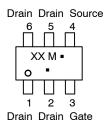
THERMAL RESISTANCE RATINGS


Rating	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 1)	$R_{\theta JA}$	100	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	62.5	
Junction-to-Ambient – Steady State (Note 2)	$R_{\theta JA}$	200	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.006 in sq).

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-30 V	38 mΩ @ −10 V	-4.7 A
00 1	68 mΩ @ -4.5 V	4.77


P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 CASE 318G STYLE 1

XX = Specific Device Code

M = Date Code*= Pb-Free Package

(Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information ion page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise noted)

Characteristic	Symbol	Test Co	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•			-	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _E	₀ = -250 μA	-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 25 °C T _J = 125 °C			-1.0 -100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V				±100	nA
ON CHARACTERISTICS (Note 3)	<u></u>					1	ı
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{I}$	_O = -250 μA	-1.0		-3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V,	I _D = -3.7 A		38	60	mΩ
		V _{GS} = -4.5 V	I _D = -2.7 A		68	110	
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, I_D = -3.7 \text{ A}$			6.0		S
CHARGES, CAPACITANCES AND GATE RI	SISTANCE	•				•	•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -15 V			750		pF
Output Capacitance	C _{OSS}				140		
Reverse Transfer Capacitance	C _{RSS}				105		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = -3.7 \text{ A}$			15.25	32	nC
Threshold Gate Charge	Q _{G(TH)}				0.8		-
Gate-to-Source Charge	Q_{GS}				2.6		
Gate-to-Drain Charge	Q_{GD}				3.4		
SWITCHING CHARACTERISTICS, VGS = -	10 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}				9.0	17	ns
Rise Time	t _r	$V_{GS} = -10 \text{ V}, \text{ V}$ $I_{D} = -1.0 \text{ A}, \text{ A}$	/ _{DD} = -15 V,		9.0	18	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 A,$	$R_G = 6.0 \Omega$		38	85	
Fall Time	t _f				22	45	
SWITCHING CHARACTERISTICS, VGS = -4	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}				11	20	ns
Rise Time	t _r	$V_{GS} = -4.5 \text{ V}, \text{ V}$	V _{DD} = −15 V,		15	28	
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = -4.5 \text{ V}, \text{ V}$ $I_D = -1.0 \text{ A}, \text{ A}$	$R_G = 6.0 \Omega$		28	56	
Fall Time	t _f	1 !			22	50	
DRAIN - SOURCE DIODE CHARACTERIST	ics						
Characteristic	Symbol	Test Co	ndition	Min	Тур	Max	Unit


Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
Forward Diode Voltage	V _{DS}	V _{GS} = 0 V,	T _J = 25 °C		-0.76	-1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = -1.0 \text{ A}$	T _J = 125 °C		-0.60		
Reverse Recovery Time	t _{RR}				17	40	ns
Charge Time	t _a	V _{GS} = dI _S /dt = 1 I _S = -	= 0 V		9.0		
Discharge Time	t _b	I _S = -	1.0 Α		8.0		
Reverse Recovery Charge	Q _{RR}	1			8.0		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

 $V_{DS} \ge -10 \text{ V}$ 11 -ID, DRAIN CURRENT (AMPS) 10 8 3 2 $T_J = -55^{\circ}C$ 1.5 2 3 3.5 4 4.5 1 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

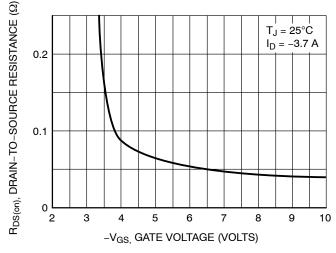
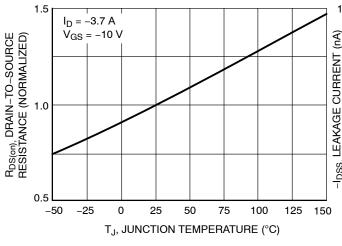



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

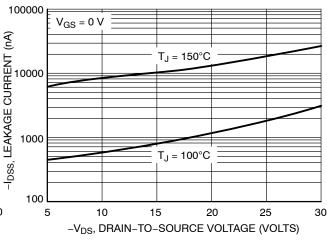
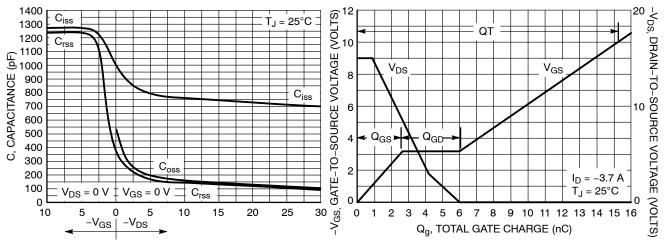



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

-GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total **Gate Charge**

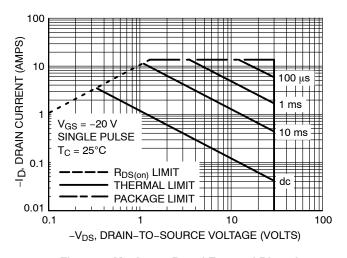


Figure 9. Maximum Rated Forward Biased Safe Operating Area

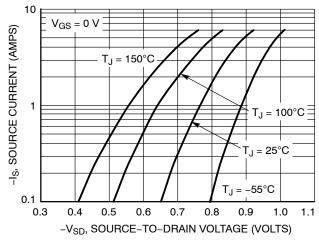
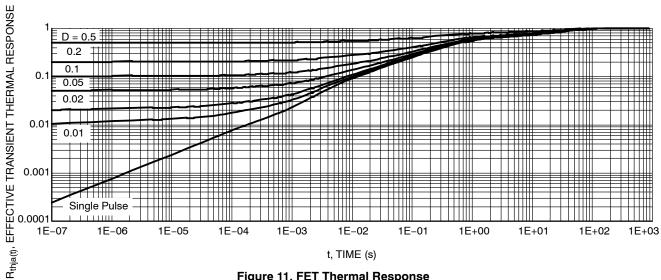



Figure 10. Diode Forward Voltage vs. Current

Table 1. ORDERING INFORMATION

Part Number	Marking (XX)	Package	Shipping [†]
NTGS4111PT1G	TG	SC-88 (Pb-Free)	3000 / Tape & Reel
NVGS4111PT1G	VTG	SC-88 (Pb-Free)	3000 / Tape & Reel

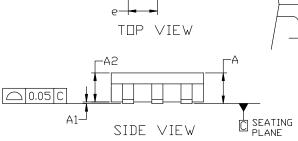
DISCONTINUED (Note 5)

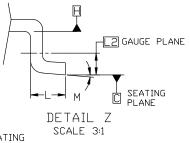
ļ			
NTGS4111PT1	TG	SC-88	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

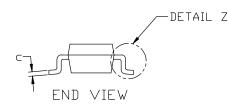
^{5.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.

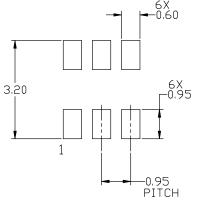
NOTE 5


TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W**


DATE 26 FEB 2024

NOTES


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.


 5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

\	MILLIM	IETER:	2	
DIM	MIN	NDM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
A2	0.80	0.90	1.00	
b	0.25	0.38	0.50	
\subset	0.10	0.18	0.26	
D	2.90	3.00	3.10	
Ε	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1,05	
L	0.20	0.40	0.60	
L2	0,25 BSC			
М	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	TSOP-6 3.00x1.50x0.90, 0.95P		

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

XXX M=
O =
1 U U
STANDARD

XXX = Specific Device Code

XXX = Specific Device Code

A =Assembly Location

M = Date Code

Y = Year

= Pb-Free Package

W = Work Week

r.

- 1 5 11001 401

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	2. GND ' 3. D(OUT)- 4. D(IN)- 5. VBUS	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN		/LE 16: N 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	TSOP-6 3.00x1.50x0.90, 0.95P		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales