

Three phase full Bridge

with Trench MOSFETs in DCB-isolated high-current package V_{DSS} = 100 V= 120 A $R_{DSon typ.} = 3.2 \text{ m}\Omega$

Part number MTI85W100GC

Surface Mount Device

Features / Advantages:

- MOSFETs in trench technology:
 - low R_{DSon}
 - optimized intrinsic reverse diode
- Package:
 - high level of integration
 - high current capability (300 A max.)
 - aux. terminals for MOSFET control
 - terminals for soldering or welding connections
 - isolated DCB ceramic base plate with optimized heat transfer
- · Space and weight savings

Applications:

AC drives

- · in automobiles
 - electric power steering
 - starter generator
- · in industrial vehicles
 - propulsion drives
 - fork lift drives
- in battery supplied equipment

Package: ISOPLUS-DIL®

- · High level of integration
- · RoHS compliant
- · High current capability
- · Aux. Terminals for MOSFET control
- · Terminals for soldering or welding connections
- · Space and weight savings

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of The data contained in this product data sheet is exclusively interface to reclaim day in the product for an interface application. The specifications of our components may not be considered as an assurance of component component contained application. The information in the valid application and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales

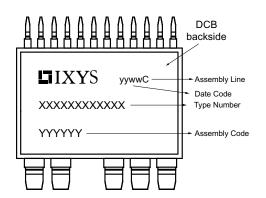
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
 the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures

IXYS reserves the right to change limits, test conditions and dimensions.



MOSFETs			Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 2$	5°C to 150°C			100	V
V _{GS}	gate source voltage max. transient gate source voltage					±15 ±20	V V
I _{D25} I _{D90}	continuous drain current		$T_{C} = 25^{\circ}C$ $T_{C} = 90^{\circ}C$			120 90	A A
I _{F25}	forward current		$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 90^{\circ}{\rm C}$				A A
R _{DS(on)} 1)	static drain source on resistance	on-chip level at I _D = 80 A; V _{GS} = 10 V	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		3.2 5.4	4	mΩ
V _{GS(th)}	gate threshold voltage	$I_{D} = 150 \ \mu A; V_{DS} = V_{GS}$	$T_{VJ} = 25^{\circ}C$	2.0		3.5	V
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS}$; $V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		10	1 100	μ Α μ Α
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				500	nA
R _G	gate resistance	on-chip level					Ω
$egin{array}{l} oldsymbol{Q}_{g} \ oldsymbol{Q}_{gs} \ oldsymbol{Q}_{gd} \end{array}$	total gate charge gate source charge gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V}; I_D = 80 \text{ A}$			88 30 18		nC nC nC
t _{d(on)} t _r t _{d(off)} t _f E _{on}	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse	inductive load $V_{GS} = 10 \text{ V; } V_{DS} = 50 \text{ V}$ $I_D = 80 \text{ A; } R_G = 39 \Omega$	T _{VJ} = 125°C		90 55 480 40 130		ns ns ns ns
∟ _{on} E _{off}	turn-off energy per pulse	.b			390		μJ
E _{rec(off)}	turn-off reverse recovery losses				10		μJ
R_{thJC}	thermal resistance junction to case					1.2	K/W
R_{thJH}	thermal resistance junction to heatsink	with heat transfer paste (IXYS tes	st setup)		1.5		K/W
		¹⁾ $V_{DS} = I_D \cdot (R_{DS(on)} + 2 \cdot R_{Pin \text{ to Chip}})$					
Source-E	Drain Diode						!
V _{SD}	source drain voltage	$I_F = 80 \text{ A}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		0.9	1.2	V
Q _{RM} I _{RM} t _{rr}	reverse recovery charge max. reverse recovery current reverse recovery time	$V_R = 50 \text{ V}; I_F = 80 \text{ A}; R_G = 39 \Omega$ di/dt = 1500 A/ μ s	T _{VJ} = 125°C		1.3 44 45		μC A ns

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions and dimensions.

Package ISOPLUS-DIL®					Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin in main co may be additiona (PCB tracks)			300	А		
T _{stg}	storage temperature			-55		125	°C	
T_{op}	operation temperature			-55		150	°C	
T_{VJ}	virtual junction temperature			-55		175	°C	
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS, I _{ISOL} ≤ 1 mA	1200			V	
		t = 1 minute		1000			V	
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{pin \text{ to chip}})$			0.6		mΩ	
C _P	coupling capacity	between shorted pins and back side metallization			160		pF	
F _c	mounting force with clip			50		250	N	
Weight					13		g	

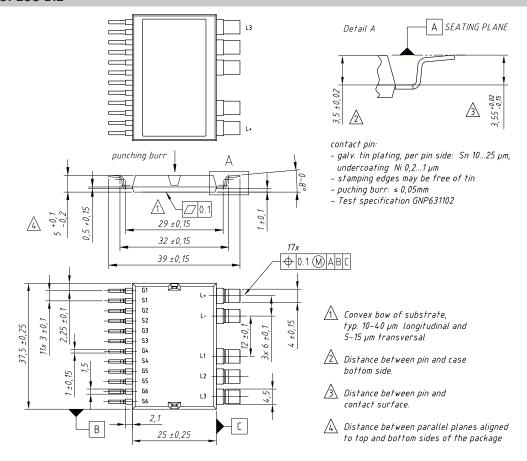
Part number

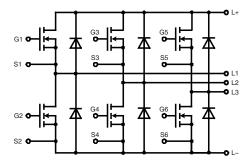
M = MOSFET

T = Trench

I = Infineon Trench

85 = Current Rating [A]


W = 6-Pack


100 = Reverse Voltage [V] GC = ISOPLUS-DIL

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MTI85W100GC-SMD	MTI85W100GC	Tube	13	516941

Outlines ISOPLUS-DIL®

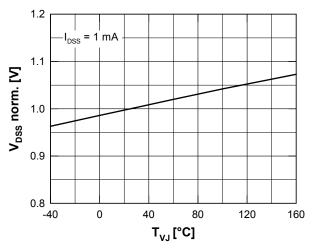


Fig. 1 Drain source breakdown voltage $V_{\rm DSS}$ vs. junction temperature $T_{\rm VJ}$

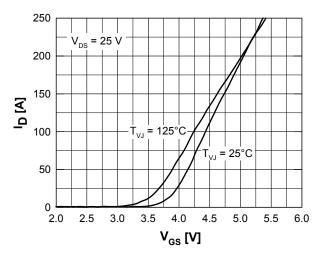


Fig. 2 Typ. transfer characteristics

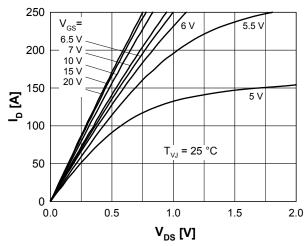


Fig. 3 Typ. output characteristics (25 °C)

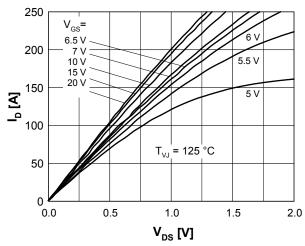


Fig. 4 Typ. output characteristics (125 °C)

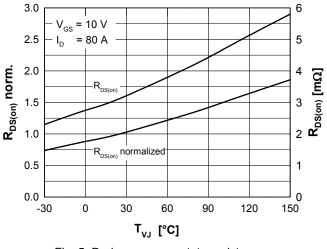


Fig. 5 Drain source on-state resistance versus junction temperature

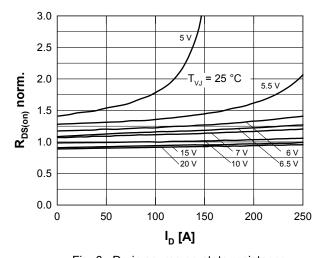


Fig. 6 Drain source on-state resistance versus I_D

IXYS reserves the right to change limits, test conditions and dimensions.

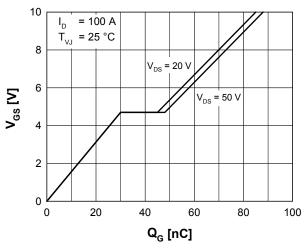


Fig. 7 Typical turn on gate charge

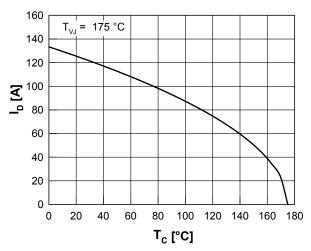


Fig. 8 Drain current I_D vs. case temperature T_C (chip capability)

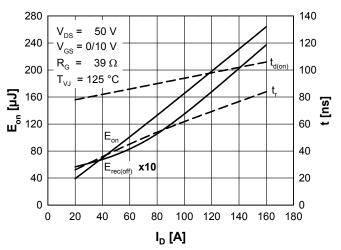


Fig. 9 Typ. turn-on energy and switching times versus drain current, inductive switching

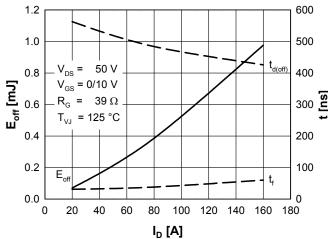


Fig. 10 Typ. turn-off energy and switching times versus drain-current, inductive switching

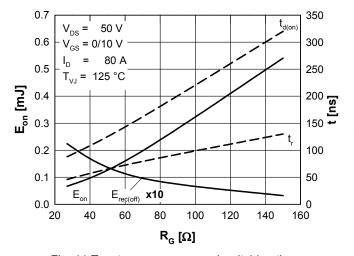


Fig. 11 Typ. turn-on energy and switching times versus gate resistor, inductive switching

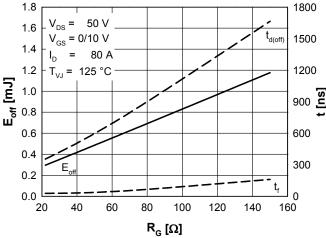


Fig. 12 Typ. turn-off energy and switching times versus gate resistor, inductive switching

IXYS reserves the right to change limits, test conditions and dimensions.

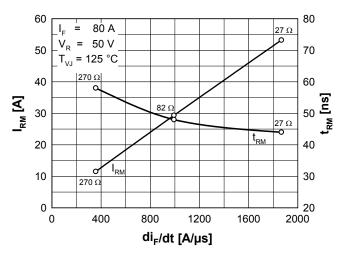


Fig. 13 Reverse recovery time t_{RM} of the body diode vs. di_{r}/dt

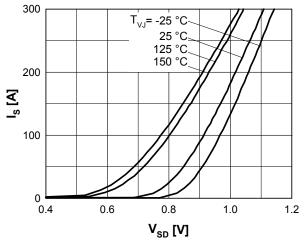


Fig.15 Source current I_S vs. source drain voltage V_{SD} (body diode)

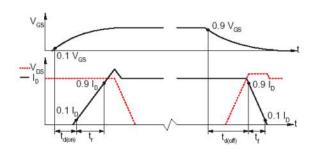


Fig. 17 Definition of switching times

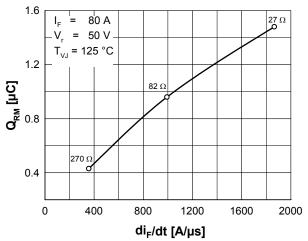


Fig. 14 Reverse recovery charge Q_{RM} of the body diode vs. di_F/dt

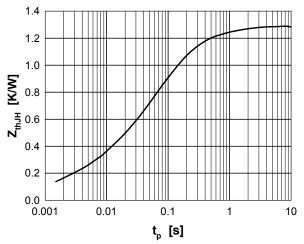


Fig. 16 Typ. thermal impedance junction to heatsink Z_{thJH} with heat transfer paste (IXYS test setup)