# ATC 700 A Series NPO Porcelain and Ceramic Multilayer Capacitors

- Case A Size (.055" x .055")
- Low ESR/ESL
- Low Noise
- Extended WVDC
- Capacitance Range 0.1 pF to 1000 pF
- Zero TCC
- High Self-Resonance
- Rugged Construction
   Established Reliability (QPL)
- up to 250 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 700 A Series RF/Microwave Capacitors. The superior high self- resonance and zero TCC characteristic of this Series provide excellent performance over a broad range of RF and microwave applications requiring minimum drift. High density porcelain and ceramic constructions provide a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning and DC Blocking.

Typical circuit applications: Filters, Oscillators and Timing

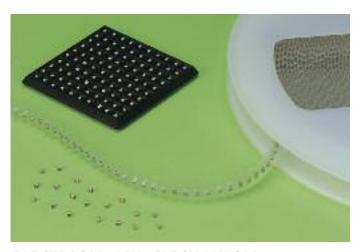
### **ENVIRONMENTAL TESTS**

ATC 700 A Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

#### THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

#### **MOISTURE RESISTANCE:**


MIL-STD-202, Method 106.

#### **LOW VOLTAGE HUMIDITY:**

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

#### LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.



### ELECTRICAL AND MECHANICAL **SPECIFICATIONS**

#### QUALITY FACTOR (Q):

Greater than 10,000 (0.1 pF to 100 pF) @ 1 MHz. Greater than 2000 (110 pF to 1000 pF) @ 1 MHz.

#### TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

0 ±30 PPM/°C (-55°C to +125°C)

#### **INSULATION RESISTANCE (IR):**

0.1 pF to 470 pF:

106 Megohms min. @ +25°C at rated WVDC.

10<sup>5</sup> Megohms min. @ +125°C at rated WVDC.

510 pF to 1000 pF:

10<sup>5</sup> Megohms min. @ +25°C at rated WVDC.

10<sup>4</sup> Megohms min. @ +125°C at rated WVDC.

**WORKING VOLTAGE (WVDC):** See Capacitance Values Table, p 2.

#### **DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

250% of rated WVDC for 5 secs.

**RETRACE:** Less than  $\pm (0.02\% \text{ or } 0.02 \text{ pF})$ , whichever is greater.

**AGING EFFECTS:** None

**PIEZOELECTRIC EFFECTS:** None

(No capacitance variation with voltage or pressure).

**CAPACITANCE DRIFT:** ±(0.02% or 0.02 pF), whichever is greater.

#### **OPERATING TEMPERATURE RANGE:**

From -55°C to +125°C (No derating of working voltage).

**TERMINATION STYLES:** Available in various surface mount styles. See Mechanical Configurations, page 3.

**TERMINAL STRENGTH:** Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.



TECHNICAL **ATC Europe** 

saleseur@atceramics.com

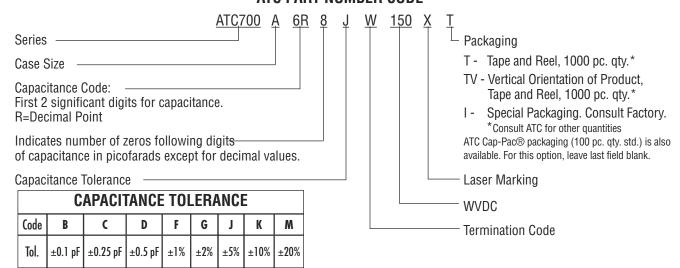
CERAMICS

ATC Asia sales@atceramics-asia.com



www.atceramics.com ATC # 001-813 Rev. N, 9/14

### ATC 700 A Capacitance Values


| CAP.       | CAP.       | TOL.  | RATED | WVDC                            |            | CAP.       | TOL.             | RATED       | WVDC                    | CAP.       | CAP.             | TOL.             | RATED | WVDC        | •          | CAP.       | TOL.                                   | RATED | WVDC |
|------------|------------|-------|-------|---------------------------------|------------|------------|------------------|-------------|-------------------------|------------|------------------|------------------|-------|-------------|------------|------------|----------------------------------------|-------|------|
| CODE       | (pF)       | IUL.  | STD.  | EXT.                            | CODE       | (pF)       | IUL.             | STD.        | EXT.                    | CODE       | (pF)             | TOL.             | STD.  | EXT.        | CODE       | (pF)       | IUL.                                   | STD.  | EXT. |
| OR1        | 0.1        | В     |       |                                 | 2R4        | 2.4        |                  |             |                         | 200        | 20               |                  |       |             | 151        | 150        |                                        |       |      |
| OR2        | 0.2        |       |       | EXTENDED VOLTAGE                | 2R7<br>3R0 | 2.7        | )                |             | VOLTAGE                 | 220        | 22               |                  |       | VOLTAGE     | 161        | 160<br>180 |                                        |       |      |
| OR3        | 0.3        | B, C  |       |                                 |            | 3.0        |                  |             |                         | 240        | 24               |                  |       |             | 181        |            |                                        |       |      |
| OR4        | 0.4        | _, -  |       |                                 | 3R3        | 3.3        |                  | 170         | 270                     | 27         |                  |                  | 170   | 201         | 200        |            |                                        |       |      |
| OR5        | 0.5        |       |       |                                 | 3R6        | 3.6        | B, C,            | - 150<br>I, | VOLTAGE 055 EXTENDED VA | 300        | 30               |                  |       | EXTENDED 52 | 221        | 220<br>240 | 240<br>270<br>300                      | 450   |      |
| OR6        | 0.6        |       |       |                                 | 3R9        | 3.9        |                  |             |                         | 330        | 33               |                  |       |             | 241        |            |                                        |       |      |
| OR7        | 0.7        |       |       |                                 | 4R3        | 4.3        |                  |             |                         | 360        | 36               |                  |       |             | 271        |            |                                        |       |      |
| OR8        | 8.0        |       |       |                                 | 4R7        | 4.7        |                  |             |                         | 390        | 39               |                  |       |             | 301        |            |                                        |       |      |
| 0R9        | 0.9        |       |       |                                 | 5R1        | 5.1        |                  |             |                         | 430        | 43<br>47         |                  |       |             | 331        | 330<br>360 | 150                                    |       |      |
| 1R0<br>1R1 | 1.0<br>1.1 |       |       |                                 | 5R6<br>6R2 | 5.6<br>6.2 |                  |             |                         | 470<br>510 | 4 <i>1</i><br>51 | F C 1            | 150   |             | 361<br>391 |            | 390 F, G,<br>430 J, K, M<br>470<br>510 |       | N/A  |
| 1R2        | 1.1        | В, С, | 150   |                                 | 6R8        | 6.8        |                  |             |                         | 560        | 56               | F, G, J,<br>K, M |       |             | 431        |            |                                        |       |      |
| 1R3        | 1.3        | D     |       |                                 | 7R5        | 7.5        | B, C, J,         |             |                         | 620        | 62               |                  |       | 70/1        | 471        |            |                                        |       |      |
| 1R4        | 1.4        |       |       | 120<br>110<br>120<br>130<br>130 |            |            | K, M             |             |                         | 680        | 68               |                  |       |             | 511        |            |                                        |       |      |
| 1R5        | 1.5        |       |       |                                 |            | 9.1        | 11, 11           |             |                         | 750        | 75               |                  |       |             | 561        | 560        |                                        |       |      |
| 1R6        | 1.6        |       |       |                                 | 100        |            | -                | 170.        | 820                     | 82         | 2                |                  | 200   | 621         | 620        |            |                                        |       |      |
| 1R7        | 1.7        |       |       |                                 | 110 11     |            |                  | 910 91      |                         |            |                  |                  | 681   | 680         |            |            |                                        |       |      |
| 1R8        | 1.8        |       |       |                                 | 120        | 12         | F, G, J,<br>K, M | ,           | EXTENDED                | 101        | 100              |                  | -     | EXT         | 751        | 750        |                                        | 50    |      |
| 1R9        | 1.9        |       |       |                                 | 130        | 13         |                  |             |                         | 111        | 110              |                  |       |             | 821        | 820        |                                        |       |      |
| 2R0        | 2.0        |       |       |                                 | 150        | 15         |                  |             |                         | 121        | 120              |                  |       | NA          | 911        | 910        |                                        |       |      |
| 2R1        | 2.1        |       |       |                                 | 160        | 16         |                  |             |                         | 131        | 130              |                  |       |             | 102        | 1000       |                                        |       |      |
| 2R2        | 2.2        |       |       |                                 | 180        | 18         |                  |             |                         |            |                  |                  |       |             |            |            |                                        |       |      |

#### $VRMS = 0.707 \times WVDC$

## SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY. NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

Capacitance values in **bold** type indicate porcelain dielectric. All other capacitance values indicate ceramic dielectric. All 700 A Capacitors are available laser marked with ATC's identification, capacitance code and tolerance.

#### ATC PART NUMBER CODE



The above part number refers to a 700 A Series (case size A) 6.8 pF capacitor,

J tolerance (±5%), 150 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Cap-Pac® packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN

T E C H N I C A L
ATC Europe

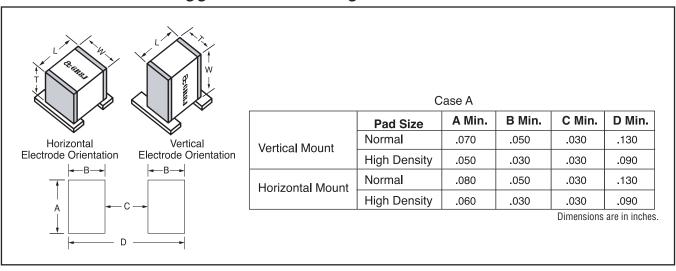
CERAMICS

ATC Asia

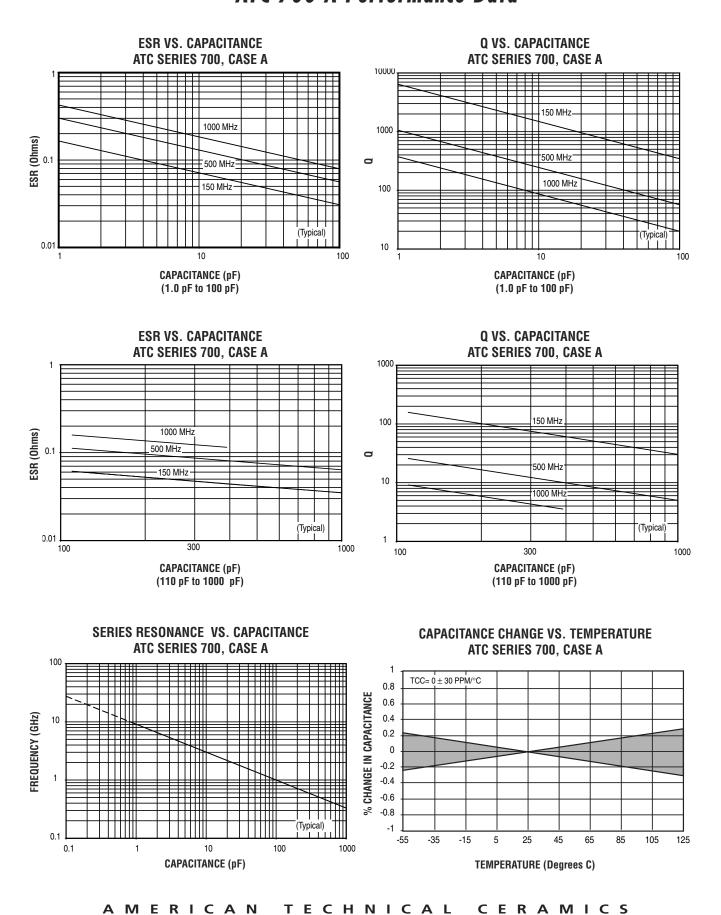
sales@atceramics-asia.com

## ATC 700 A Capacitors: Mechanical Configurations

| ATC<br>SERIES  | ATC<br>Term. | MIL-PRF- | CASE SIZE                   | OUTLINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ВС                                           | DDY DIMENSION<br>INCHES (mm) | NS                  | Lead and Termination<br>Dimensions and Materials |                                                                   |  |
|----------------|--------------|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|---------------------|--------------------------------------------------|-------------------------------------------------------------------|--|
| & CASE<br>SIZE | CODE         | 55681    | & TYPE                      | W/T IS A<br>Termination Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LENGTH<br>(L)                                | WIDTH<br>(W)                 | THICKNESS<br>(T)    | OVERLAP<br>(Y)                                   | MATERIALS                                                         |  |
| 700A           | W            | CDR12BP  | A Solder Plate              | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{w} \\  \to \left  L \right  \leftarrow \uparrow \to \left  T \right  \leftarrow \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .055<br>+.015010<br>(1.40<br>+0.38<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)        | Tin/Lead, Solder Plated<br>over<br>Nickel Barrier Termination     |  |
| 700A           | Р            | CDR12BP  | A Pellet                    | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{w} \\  & \downarrow \\  $ | .055<br>+.025010<br>(1.40<br>+0.64<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)        | Heavy Tin/Lead Coated,<br>over Nickel Barrier<br>Termination      |  |
| 700A           | Т            | N/A      | A Solderable Nickel Barrier | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{w} \\  & \downarrow \\  $ | .055<br>+.015010<br>(1.40<br>+0.38<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)        | <b>RoHS Compliant</b> Tin Plated over Nickel Barrier Termination  |  |
| 700A           | CA           | CDR11BP  | A Cold Chip                 | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{W} \\  \to \left  L \right  \leftarrow \uparrow \to \left  T \right  \leftarrow \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .055<br>+.015010<br>(1.40<br>+0.38<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)        | <b>RoHS Compliant</b> Gold Plated over Nickel Barrier Termination |  |


For a complete military catalog, request American Technical Ceramics document ATC 001-818.

## ATC 700 A Non-Magnetic Capacitors: Mechanical Configurations


| ATC<br>SERIES  | ATC<br>TERM.<br>CODE | MIL-PRF-                   | CASE SIZE                          | OUTLINES                                                                                                                                                                                                                                                                | ВС                                           | DDY DIMENSION<br>INCHES (mm) | NS                  | LEAD AND TERMINATION DIMENSIONS AND MATERIALS |                                                                        |  |
|----------------|----------------------|----------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|---------------------|-----------------------------------------------|------------------------------------------------------------------------|--|
| & CASE<br>SIZE |                      | 55681                      | & TYPE                             | W/T IS A<br>Termination Surface                                                                                                                                                                                                                                         | LENGTH<br>(L)                                | WIDTH<br>(W)                 | THICKNESS<br>(T)    | OVERLAP<br>(Y)                                | MATERIALS                                                              |  |
| 700A           | WN                   | Meets<br>Require-<br>ments | A Non-Mag<br>Solder Plate          | $\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline  & w & \hline  & \downarrow \\  \to & \downarrow & \downarrow \\  & \downarrow & \downarrow & \downarrow \\  \to & \downarrow & \downarrow & \uparrow \to & \uparrow & \uparrow & \downarrow \end{array}$ | .055<br>+.025010<br>(1.40<br>+0.64<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)     | Tin/Lead, Solder Plated<br>over<br>Non-Magnetic Barrier<br>Termination |  |
| 700A           | PN                   | Meets<br>Require-<br>ments | A Non-Mag                          | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{w} \\  \to \left  \perp \left  \leftarrow \uparrow \rightarrow \right  T \right  \leftarrow \end{array}$                                                                               | .055<br>+.035010<br>(1.40<br>+0.89<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)     | Heavy Tin/Lead Coated,<br>over<br>Non-Magnetic Barrier<br>Termination  |  |
| 700A           | TN                   | Meets<br>Require-<br>ments | A Non-Mag<br>Solderable<br>Barrier | $\begin{array}{c c} Y \to \left  \leftarrow & \downarrow \\ \hline  & \underline{W} \\  \to \left  L \right  \leftarrow \uparrow \to \left  T \right  \leftarrow \end{array}$                                                                                           | .055<br>+.025010<br>(1.40<br>+0.64<br>-0.25) | .055 ±.015<br>(1.40 ±0.38)   | .057 (1.45)<br>max. | .010<br>+.010005<br>(0.25<br>+0.25 -0.13)     | <b>RoHS Compliant</b> Tin Plated over Non-Magnetic Barrier Termination |  |

<sup>\*</sup>Capacitors with values greater than 100 pF contain a trace magnetic element that may exhibit weak magnetic properties.

### Suggested Mounting Pad Dimensions



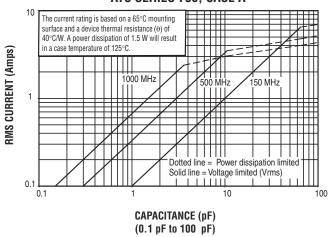
### ATC 700 A Performance Data



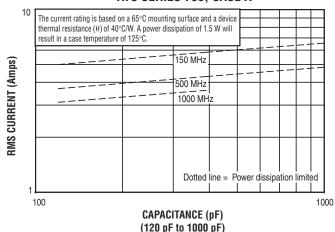
ATC North America

sales@atceramics.com

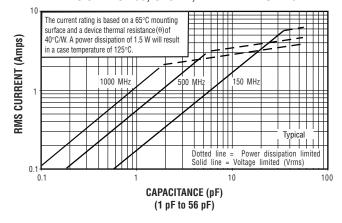
**ATC Europe** 


saleseur@atceramics.com

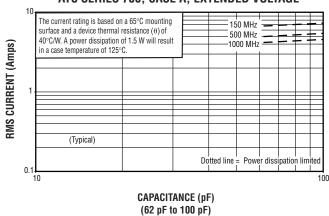
ATC Asia


sales@atceramics-asia.com

### ATC 700 A Performance Data


## CURRENT RATING VS. CAPACITANCE ATC SERIES 700, CASE A




#### CURRENT RATING VS. CAPACITANCE ATC SERIES 700, CASE A



#### CURRENT RATING VS. CAPACITANCE ATC SERIES 700. CASE A. EXTENDED VOLTAGE



## CURRENT RATING VS. CAPACITANCE ATC SERIES 700, CASE A, EXTENDED VOLTAGE



Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-813 Rev. N, 9/14



TECHNICAL

ATC Europe saleseur@atceramics.com

CERAMICS

ATC Asia sales@atceramics-asia.com

