

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

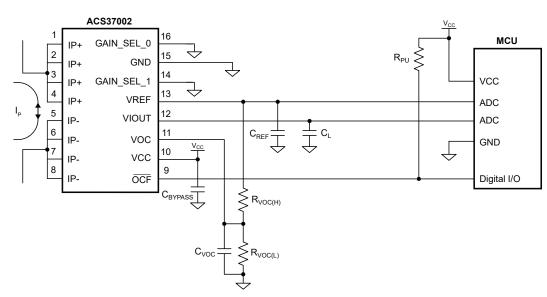
FEATURES AND BENEFITS

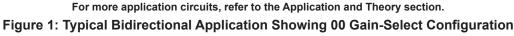
- High operating bandwidth for fast control loops or for applications where high-speed currents are monitored
 400 kHz bandwidth
 - \Box 1.1 µs typical response time
- High accuracy
 - $\Box \pm 1\%$ maximum sensitivity error over temperature (K series)
 - $\Box \pm 8$ mV maximum offset voltage over temperature
 - \square Nonratiometric operation with V_{REF} output
 - □ Low-noise LA package
 - \diamond 160 mV_{RMS} for 3.3 V supply
 - $\diamond~124~mV_{RMS}$ for 5 V supply
 - Differential sensing for high immunity to external magnetic fields
 - □ Absence of magnetic hysteresis
- Adjustable fast overcurrent fault
 - \square 1 µs typical response time
 - □ Pin-adjustable threshold
- Externally configurable gain settings using two logic pins
 Four adjustable gain levels for increased design flexibility

Continued on the next page

PACKAGE: 16-Pin SOICW (suffix MA/LA)

Not to scale

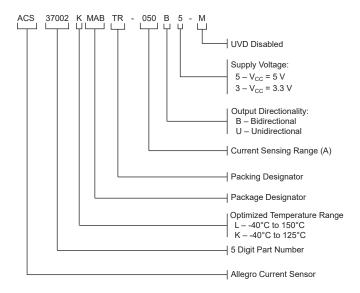



The ACS37002 is a fully integrated Hall-effect current sensor in an SOICW-16 package that is factory-trimmed to provide high accuracy over the entire operating range without the need for customer programming. The current is sensed differentially by two Hall plates that subtract the interfering external commonmode magnetic fields.

The package construction provides high isolation by magnetically coupling the field generated by the current in the conductor to the monolithic Hall sensor integrated circuit (IC), which does not have a physical connection to the integrated current conductor. The MA package is optimized for higher isolation, with dielectric withstand voltage (V_{RMS}) of 5000 V and conductor resistance of 0.85 m Ω . The LA package is optimized for lower noise with V_{RMS} of 4242 V and conductor resistance of 1 m Ω .

The ACS37002 has functional features that are externally configurable and robust without the need for programming. Two logic gain selection pins can be used to configure the device to one of four defined sensitivities and corresponding current ranges. A fast overcurrent fault output provides shortcircuit detection for system protection with a fault threshold that is proportional to the current range and can be set with an analog input. The reference pin provides a stable voltage that corresponds to the 0 A output voltage. This reference voltage allows for differential measurements as well as a device-referred voltage to set the overcurrent fault threshold.

Devices are RoHS compliant and lead (Pb) free with 100% matte-tin-plated leadframes.


400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

FEATURES AND BENEFITS (continued)

- □ Enabling measurement ranges from 10 to 133 A in both unidirectional and bidirectional modes
- Low internal primary conductor resistance 0.85 mΩ (MA package) and 1 mΩ (LA package) for better power efficiency
- UL 62368-1:2014 (edition 3) certification, highly isolated compact SOICW-16 surface-mount package (MA package)
 5000 V_{RMS} rated dielectric withstand voltage
 1097 V_{RMS} / 1550 V_{DC} basic insulation voltages
 565 V_{RMS} / 800 V_{DC} reinforced insulation voltages
- Wide operating temperature, -40° C to 150° C
- AEC-Q100 Grade 0, automotive qualified

SELECTION GUIDE

Part Number ^[1]	Current Sensing Range, I _{PR} (A)	Sensitivity ^[2] (mV/A)	Nominal V _{CC} (V)	Optimized Temp. Range T _A (°C)	Packing ^[3]
	MA	Package, 16-Pin SOICW	~		·
ACS37002LMABTR-050B5-M	±33, ±40, ±50, ±66	60, 50, 40, 30			
ACS37002LMABTR-066B5-M	±66, ±80 ±100, ±133	30, 25, 20, 15]		
ACS37002LMABTR-050U5-M	33, 40, 50, 66	120, 100, 80, 60	- 5		
ACS37002LMABTR-066U5-M	66, 80, 100, 133	60, 50, 40, 30		-40 to 150	
ACS37002LMABTR-050B3	±33, ±40, ±50, ±66	39.6, 33, 26.4, 19.8		40 10 150	1000 pieces
ACS37002LMABTR-066B3	±66, ±80, ±100, ±133	19.8, 16.5, 13.2, 9.9	3.3		per 13-inch reel
ACS37002LMABTR-050U3	33, 40, 50, 66	79.2, 66, 52.8, 39.6	- 3.3		
ACS37002LMABTR-066U3	66, 80, 100, 133	39.6, 33, 26.4, 19.8			
ACS37002KMABTR-050B5-M	±33, ±40, ±50, ±66	60, 50, 40, 30	5	40 to 405 [3]	
ACS37002KMABTR-050B3	±33, ±40, ±50, ±66	39.6, 33, 26.4, 19.8	3.3	40 to 125 ^[3]	
	LA	Package, 16-Pin SOICW	~		
ACS37002LLAATR-015B5	±10, ±12, ±15, ±20	200,166.6,133.3,100	_		
ACS37002LLAATR-025B5	±25, ±30, ±37.5, ±50	80, 66.6, 53.3, 40	- 5	10 to 150	1000 pieces
ACS37002LLAATR-015B3	±10, ±12, ±15, ±20	132, 110, 88, 66	2.2	–40 to 150	per 13-inch reel
ACS37002LLAATR-025U3	25, 30, 37.5, 50	105.6, 88, 70.4, 52.8	- 3.3		

^[1] All parts have UVD functionality disabled.

^[2] For the GAIN_SEL configuration, refer to the relevant part-specific section of the Performance Characteristics table.

[3] Device performance is optimized from -40°C to 125°C; however, the device can operate to an ambient temperature of 150°C. The device shares the same qualifications as the -L temperature devices, unless stated otherwise.

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

Table of Contents

Features and Benefits	
Packages	
Selection Guide	
Absolute Maximum Ratings	
Thermal Characteristics	
Isolation and Package Characteristics	
5	
MA Package-Specific Performance LA Package-Specific Performance	
Pinout Diagram and Terminal List Table	
Functional Block Diagram	
Common Electrical Characteristics	
Performance Characteristics	
Functional Description	
Power-On Reset Operation	
Power-On/Power-Off	
Overvoltage Detection (OVD)	
Absolute Maximum Ratings	
Supply Zener Clamp Voltages	
Forward and Reverse Supply Voltages	
Forward and Reverse Output Voltages	
Forward and Reverse Reference/Fault Voltages	
Output Source and Sink Current	
Ambient Temperature (T _A)	
Definitions of Operating and Performance Characteristics	
Zero-Current Voltage Output (V _{IOUT(Q)} , QVO)	
QVO Temperature Drift (V _{QE})	. 28
Reference Voltage (V _{REF})	. 28
Reference Voltage Temperature Drift (V _{RE})	. 28
Offset Voltage (V _{OE})	
Output Saturation Voltage (V _{SAT(HIGH/LOW)})	
Output Voltage Operating Range (V _{OOR})	. 28
Sensitivity (Sens)	. 29
Sensitivity Error (E _{Sens})	
Gain Selection Pins	. 29
Full Scale (FS)	. 29
Nonlinearity (É _{LIN})	. 29

Total Output Error (E _{TOT})	30
Power Supply Offset Error (V _{PS})	30
Offset Power Supply Rejection Ratio (PSRR _O)	
Power Supply Sensitivity Error (E _{PS})	
Sensitivity Power Supply Rejection Ratio (PSRR _S)	
Fault Behavior	
Overcurrent Fault (OCF)	31
Overcurrent Fault Operating Range/Point	~ 4
(I _{OCF-OR} , I _{OCF-OP})	31
Overcurrent Fault Hysteresis (I _{OCF-Hyst})	
Voltage Overcurrent Pin (VOC)	
Overcurrent Fault Error (E _{OCF})	
Overcurrent Fault Response Time (t _{OCF})	
Overcurrent Fault Reaction Time (t _{OCF-R})	
Overcurrent Fault Mask Time (t _{OCF-MASK})	
Overcurrent Fault Hold Time (t _{OCF-HOLD})	
Overcurrent Fault Persist OCF Disable	
Response Characteristics Definitions and Performance Data	
Response Time (t _{RESPONSE}) Propagation Time (t _{pd})	
Rise Time (t_p)	33
Output Slew Rate (SR)	
Temperature Compensation	
Temperature Compensation Update Rate	
Application and Theory	
Application Circuits	
Theory and Functionality—VOC and OCF	
VOC Driven by NonInverting Buffered V _{REF}	
Power Supply Decoupling Capacitor and Output	
Capacitive Loads	36
Dynamically Changing Gain in a System	
Thermal Performance	
Thermal Rise vs. Primary Current	38
Evaluation Board Layout	
Package Outline Drawings	
MA Package	39
LA Package	40

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Forward Supply Voltage	V _{FCC}		6.5	V
Reverse Supply Voltage	V _{RCC}		-0.5	V
Forward Output Voltage	V _{FIOUT}	Applies to V_{IOUT} , V_{OCF} , and V_{REF}	(V _{CC} + 0.7) ≤ 6.5	V
Reverse Output Voltage	V _{RIOUT}	Applies to V_{IOUT} , V_{OCF} , and V_{REF}	-0.5	V
Forward Input Voltage	V _{FI}	Applies to GAIN_SEL_0, GAIN_SEL_1, and VOC	(V _{CC} + 0.7) ≤ 6.5	V
Reverse Input Voltage	V _{RI}	Applies to GAIN_SEL_0, GAIN_SEL_1, and VOC	-0.5	V
Operating Ambient Temperature	T _A		-40 to 150	°C
Storage Temperature	T _{stg}		-65 to 165	°C
Maximum Junction Temperature	T _{J(max)}		165	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Notes	Value	Unit
·		MA Package, 16-Pin SOICW		
Package Thermal Resistance (Junction to Ambient)	R_{\thetaJA}	Mounted on the standard MA/LA Current Sensor	20	°C/W
Package Thermal Metric (Junction to Top)	Ψ_{JT}	Mounted on the standard MA/LA Current Sensor Evaluation Board (ACSEVB-MA16-LA16) Simulated per the methods in JESD51-1 Simulated per the methods in JESD51-8 LA Package, 16-Pin SOICW	2.4	°C/W
Package Thermal Resistance (Junction to Case)	$R_{ extsf{ heta}JC}$	Simulated per the methods in JESD51-1	14	°C/W
Package Thermal Resistance (Junction to Board)	R _{θJB}	Simulated per the methods in JESD51-8	14	°C/W
· · · · · · · · · · · · · · · · · · ·		LA Package, 16-Pin SOICW		
Package Thermal Resistance (Junction to Ambient)	R_{\thetaJA}	Mounted on the standard MA/LA Current Sensor	16	°C/W
Package Thermal Characterization (Junction to Top)	Ψ_{JT}	Evaluation Board (ACSEVB-MA16-LA16)	-1.7	°C/W
Package Thermal Resistance (Junction to Case)	$R_{ extsf{ heta}JC}$	Simulated per the methods in JESD51-1	10	°C/W
Package Thermal Resistance (Junction to Board)	R _{θJB}	Simulated per the methods in JESD51-8	8	°C/W

ISOLATION AND PACKAGE CHARACTERISTICS

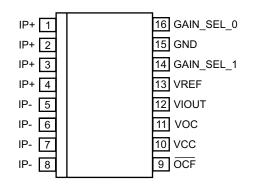
Characteristic	Symbol	Notes	Rating	Unit
Dielectric Surge Voltage	V _{SURGE}	Tested in oil, ±5 pulses at 2/minute in compliance with IEC 61000-4-5 1.2 μs (rise) / 50 μs (width)	10	kV
Moisture Sensitivity Level	MSL	Per IPC/JEDEC J-STD-020	3	-

MA PACKAGE-SPECIFIC PERFORMANCE

Characteristic	Symbol	Notes	Rating	Unit
Withstand Voltage [1][2]	V _{ISO}	Agency rated for 60 seconds per UL 62368-1 (edition 3) [1][2]	5000	V _{RMS}
Working Voltage for Basic Insulation [2]	Maximum approved working voltage for basic insulation according		1550	V _{PK or} V _{DC}
	V _{WVBI}	to UL 62368-1 (edition 3)	1097	V _{RMS}
Working Voltage for Reinforced	V	Maximum approved working voltage for reinforced insulation	800	V _{PK or} V _{DC}
Insulation ^[2]	V _{WVRI}	according to UL 62368-1 (edition 3)	565	V _{RMS}
Clearance	D _{CL}	Minimum distance through air from IP leads to signal leads	8	mm
Creepage	D _{CR}	Minimum distance along package body from IP leads to signal leads	8	mm
Distance Through Insulation	DTI	Minimum internal distance through insulation	90	μm
Comparative Track Index	CTI	Material Group II	400 to 599	V

^[1] Production tested for 1 second in accordance with UL 62368-1 (edition 3).

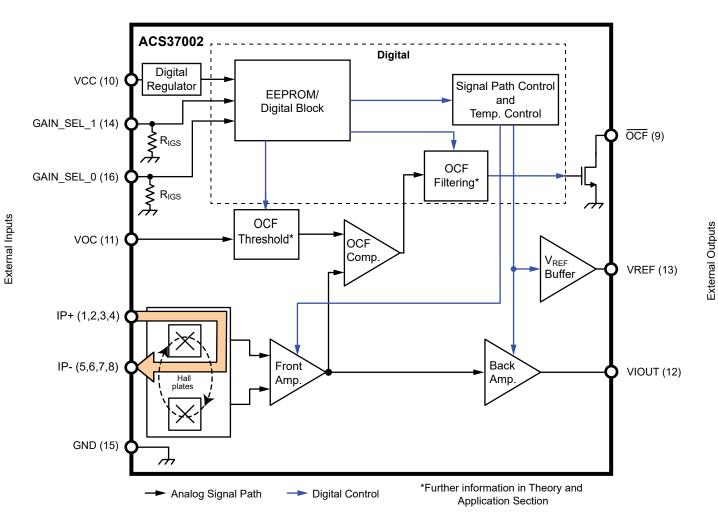
^[2] Certification pending.


LA PACKAGE-SPECIFIC PERFORMANCE

Characteristic	Symbol	Notes	Rating	Unit
Withstand Voltage [1][2]	V _{ISO}	Agency rated for 60 seconds per UL 62368-1 (edition 3) ^{[1][2]}	4242	V _{RMS}
Working Voltage for Basic Insulation [2]	Voltage for Basic Insulation [2] Maximum approved working voltage for basic insulation according		1414	V _{PK or} V _{DC}
	V _{WVBI}	to UL 62368-1 (edition 3)	1000	V _{RMS}
Working Voltage for Reinforced	M	Maximum approved working voltage for reinforced insulation	707	V _{PK or} V _{DC}
Insulation ^[2]	V _{WVRI}	according to UL 62368-1 (edition 3)	500	V _{RMS}
Impulse Withstand Voltage ^[1]	VIMPULSE	Tested in air, ± 5 pulses at 2/minute in compliance with IEC 61000-4-5 1.2 μ s (rise) / 50 μ s (width)	6000	V _{PK}
Clearance	D _{cl}	Minimum distance through air from IP leads to signal leads	7.9	mm
Creepage	D _{cr}	Minimum distance along package body from IP leads to signal leads	7.9	mm
Distance Through Insulation	DTI	Minimum internal distance through insulation	64	μm
Comparative Track Index	CTI	Material Group II	400 to 599	V

^[1] Production tested for 1 second in accordance with UL 62368-1 (edition 3). ^[2] Certification pending.

PINOUT DIAGRAM AND TERMINAL LIST TABLE



Terminal List Table

Number	Name	Description
1, 2, 3, 4	IP+	Terminals for current being sensed; fused internally
5, 6, 7, 8	IP-	Terminals for current being sensed; fused internally
9	OCF	Overcurrent fault, open-drain
10	VCC	Device power supply terminal
11	VOC	Overcurrent fault operation point input
12	VIOUT	Analog output representing the current flowing through I_P
13	VREF	Zero-current voltage reference
14	GAIN_SEL_1	Gain selection bit 1
15	GND	Device ground terminal
16	GAIN_SEL_0	Gain selection bit 0

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

Figure 3: Functional Block Diagram

COMMON ELECTRICAL CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \mu$ F, and $V_{CC} = 5 V$ or 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Ourse had to be an		5 V devices only	4.5	5	5.5	V
Supply Voltage	V _{CC}	3.3 V devices only	3.15	3.3	3.6	V
Our hard of the output		Load not present on VIOUT or VREF; V _{CC} = 5 V	_	13	18	mA
Supply Current	I _{CC}	Load not present on VIOUT or VREF; V _{CC} = 3.3 V	_	12	15	mA
Supply Bypass Capacitor	CBYPASS	VCC to GND recommended	0.1	-	-	μF
Output Resistive Load	RL	VIOUT to GND, VIOUT to VCC	10	_	_	kΩ
Output Capacitive Load	CL	VIOUT to GND	_	1	6	nF
Reference Resistive Load	R _{VREF}	VREF to GND (recommended to supply VOC); VREF to VCC	10	_	-	kΩ
Reference Capacitive Load	C _{VREF}	VREF to GND	_	_	6	nF
Fault Pull-Up Resistance	R _{PU}		4.7	-	500	kΩ
Drimen Wanducter Desistance	D	MA,T _A = 25°C	_	0.85	-	mΩ
Primary Conductor Resistance	R _{IP}	$LA, T_A = 25^{\circ}C$	_	1	-	mΩ
Driver and Canady at an Industry and	1	MA package	_	4.2	-	nH
Primary Conductor Inductance	L _{IP}	LA package	_	5	-	nH
Output Buffer Resistance	R _{OUT}	Internal output buffer resistance on VIOUT and VREF	_	7	-	Ω
	V _{POR(H)}	V _{CC} rising ^[1]	2.6	2.9	3.1	V
Power-On Reset voltage	V _{POR(L)}	V _{CC} falling ^[1]	2.2	2.5	2.8	V
POR Hysteresis	V _{POR(HYS)}		250	-	-	mV
Power-On Time	t _{POD}	Time from V _{CC} rising ≥ V _{POR(H)} after a POR event until power-on; VREF, OCF, VIOUT	100	_	-	μs
Overvoltage Detection (OVD)	V _{OVD(H)}	$T_A = 25^{\circ}C, V_{CC} rising$ ^[1]	6.1	6.3	6.8	V
Threshold	V _{OVD(L)}	$T_A = 25^{\circ}C, V_{CC}$ falling ^[1]	5.6	5.8	6.1	V
Overvoltage Detection Hysteresis	V _{OVD(HYS)}		_	660	_	mV
	t _{dOVD(E)}	Time from V _{CC} rising ≥ V _{OVD(EN)} until OVD asserts	35	90	120	μs
Primary Conductor Resistance Primary Conductor Inductance Dutput Buffer Resistance Power-On Reset Voltage POR Hysteresis Power-On Time Dvervoltage Detection (OVD) Threshold Dvervoltage Detection	t _{dOVD(D)}	Time from V _{CC} falling ≤ V _{OVD(DIS)} until OVD clears	_	7	_	μs

Continued on the next page ...

COMMON PERFORMANCE CHARACTERISTICS (VIOUT): Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \mu$ F, and $V_{CC} = 5 V$ or 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions		Min.	Тур.	Max.	Units
OUTPUT SIGNAL CHARACT	TERISTICS	V _{IOUT})					
Osternation Maltana	V _{SAT(H)}	R_L = 10 kΩ to GND		V _{CC} – 0.25	_	_	V
Saturation Voltage	V _{SAT(L)}	R _L = 10 kΩ to V _{CC}		-	_	0.15	V
Outrout On exeting Dense		5 V linear operating range		0.5	_	4.5	V
Output Operating Range	V _{OOR}	3.3 V linear operating range		0.3	_	3	V
Output Current Limit	I _{OUT(src)}	V _{IOUT} shorted to GND		-	25	_	mA
Output Current Limit	I _{OUT(snk)}	V _{IOUT} shorted to V _{CC}		-	25	_	mA
Bandwidth	BW	Small signal –3 dB, C _L = 6 nF		-	400	_	kHz
Rise Time	t _R	T _A = 25°C, C _L = 6 nF		-	0.7	2.5	μs
Response Time	t _{RESPONSE}	T _A = 25°C, C _L = 6 nF		-	1.1	2.5	μs
Propagation Delay	t _{pd}	T _A = 25°C, C _L = 6 nF		-	0.7	2	μs
		Input-referenced noise density; $T_A = 25^{\circ}C, C_L = 6 \text{ nF}; V_{CC} = 5 \text{ V}$	MA package	-	350	_	µA/√Hz
Noise Density	I _{ND}		LA package	-	155	_	µA/√Hz
		Input-referenced noise density; T _A = 25°C, C _L = 6 nF; V _{CC} = 3.3 V	MA package	-	450	_	µA/√Hz
			LA package	_	200	_	µA/√Hz
		Input-referenced noise at 400 kHz; T _A = 25°C, C _L = 6 nF; V _{CC} = 5 V	MA package	-	277	_	mA _{RMS}
Noice			LA package	-	124	_	mA _{RMS}
Noise	I _N	Input-referenced noise at 400 kHz;	MA package	-	357	_	mA _{RMS}
		$T_A = 25^{\circ}C, C_L = 6 \text{ nF}; V_{CC} = 3.3 \text{ V}$	LA package	-	160	_	mA _{RMS}
Nonlinearity	E _{LIN}			-	±0.75	_	%
Power Supply Rejection Ratio	PSRRo	$T_A = 25^{\circ}C$, DC to 1 kHz, 100 mV pk-pk t $V_{CC(typ)}$, $I_P = 0 A$	ripple around V _{CC} =	-	-40	_	dB
Offset	PORRO	$T_A = 25^{\circ}$ C, 1 to 100 kHz, 100 mV pk-pk r V _{CC(typ)} , I _P = 0 A	ripple around V _{CC} =	-	-30	_	dB
Power Supply Rejection Ratio	5055	$T_A = 25^{\circ}C$, DC to 1 kHz, 100 mV pk-pk l $V_{CC(typ)}$, $I_P = I_{PR(MAX)}$	ripple around V _{CC} =	-	-15	_	dB
Sens	PSRR _S	$T_A = 25^{\circ}C$, 1 to 100 kHz, 100 mV pk-pk r V _{CC(typ)} , I _P = I _{PR(MAX)}	ripple around V _{CC} =	-	6	_	dB
		Bidirectional; V _{CC} at V _{CC(MIN)} or V _{CC(MAX)}		-10	_	10	mV
Power Supply Offset Error	V _{OE(PS)}	Unidirectional; V_{CC} at $V_{CC(MIN)}$ or	MA Package	-18	_	18	mV
	()	V _{CC(MAX)}	LA Package	-10	_	10	mV
Power Supply Sensitivity Error	E _{SENS(PS)}	V _{CC} at V _{CC(MIN)} or V _{CC(MAX)}		-1.5	_	1.5	%
Common-Mode Field Rejection	CMFR	Input-referred error due to common-mo	de field	_	4	_	mA/G

Continued on the next page ...

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

COMMON PERFORMANCE CHARACTERISTICS (VREF, FAULT, GAIN_SEL): Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \mu$ F, and $V_{CC} = 5 V$ or 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
REFERENCE OUTPUT CHAR	ACTERISTIC	CS (VREF)		^		
		Bidirectional; V _{CC} = 5 V	2.49	2.5	2.51	V
Zero-Current Reference	V _{REF(BI)}	Bidirectional; V _{CC} = 3.3 V	1.64	1.65	1.66	V
Voltage	M	Unidirectional; V _{CC} = 5 V	0.49	0.5	0.51	V
	V _{REF(UNI)}	Unidirectional; V _{CC} = 3.3 V	0.32	0.33	0.34	V
Reference Source Current Limit	I _{REF(SRC)}	Maximum current V _{REF} can passively source	_	25	_	mA
Reference Source Current Limit	I _{REF(SNK)}	Maximum current V _{REF} can passively sink	_	-25	_	mA
Reference Slew Rate	SR _{REF}	C_{VREF} = 0 nF, R_{VREF} = 0 Ω	0.8	-	_	V/µs
OVERCURRENT FAULT CH	ARACTERIS	STICS (OCF)				
OCF On Voltage [3]	V _{FAULT-ON}	$R_{PU} = 4.7 \text{ k}\Omega$, under fault condition	_	0.07	0.4	V
OCF Sink Current [3]		Fault not asserted	_	100	_	nA
	I _{OCF(SNK)}	Fault asserted	0.01	-	1.1	mA
VOC Operating Voltage Range	V _{VOC}	$V_{CC} = 5 V$	0.5	-	2	V
		V _{CC} = 3.3 V	0.33	_	1.32	V
Fault Error	E _{OCF}		-10	±3	10	%I _{OCF-OP}
OOF Usetana is	1	V _{CC} = 5 V	_	6	_	%FS
OCF Hysteresis	I _{OCF(HYS)}	V _{CC} = 3.3 V	_	9	_	%FS
OCF Reaction Time [3]	t _{OCF-R}	Time from I_{OCF-OP} , with a 1.2 × I_{OCF-OP} until fault asserts	_	1	1.5	μs
OCF Mask [3]	t _{OCF-MASK}	Time I _{OCF-OP} must be present after t _{OCF-R} for fault assertion [3]	0	0	3	μs
OCF Response Time [3]	t _{OCF}	t _{OCF-MASK} = 0 μs	_	1	1.5	μs
OCF Hold Time [3]	t _{OCF-HOLD}	Minimum duration of fault assertion ^[2]	0	0	5	ms
GAIN SELECTION PIN CHA	RACTERIST	TICS (GAIN_SEL_0, GAIN_SEL_1)	~		<u>`</u>	
Gain Select Internal Resistor	R _{GSint}		_	1	_	MΩ
		V _{CC} = 5 V	3.75	_	_	V
GAIN_SEL Logic Input Voltage	$V_{H(SEL)}$	V _{CC} = 3.3 V	2.25	_	_	V
	V _{L(SEL)}		_	_	0.5	V
Leakage Current [3]	I _{SEL(SNK)}		_	_	±10	μA

[1] V_{CC} rate +1 V/ms, for best accuracy.
 [2] Typical value is factory default.

^[3] Guaranteed by design and bench validated.

ACS37002LMABTR-050B5-M

ACS37002LMABTR-050B5-M	CS37002LMABTR-050B5-M GAIN_SEL Pin Performance Key GAIN SEL 1 GAIN SEL 0					
Parameter (Units)	GAIN_SEL_1 (Boolean)	Max IP (A)				
Туре	Digital Input	Digital Input	Calculation	Bidirectional		
	0	0	40	50		
Selection	0	1	50	40		
Combination	1	0	60	33.3		
	1	1	30	66.7		

 $\textbf{ACS37002LMABTR-050B5-M PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, the temperature range and temperature rand temperature range and temperature range$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-50	-	-	-	50	A
		GAIN_SEL 01	-40	-	-	-	40	Α
Current Sensing Range	IPR	GAIN_SEL 10	-33.3	-	-	-	33.3	Α
	IPR IOCF-OR VIOUT(Q) Sens(IDEAL) × IP ETOT ESENS VRE VOE VOE ETOT_LTD ESENS_LTD VRE_LTD	GAIN_SEL 11	-66.7	-	-	-	66.7	Α
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	40	-	-	mV/A
Constitute	Sama	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	50	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	60	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	30	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	2.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	$_{PR}$ + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	I _P = I _{PR(max)}	-1.75	-1.1	_	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	-	1.1	1.5	%
	N/	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
Zero-Current Reference Error	VRE	$V_{REFactual} - V_{REFideal}$, $I_{P} = 0 \text{ A}$, $T_{A} = -40^{\circ}\text{C}$ to 25°C	-10	-4	-	- - 40 - - 33.3 - - 66.7 40 - - 50 - - 50 - - 60 - - 30 - - 100 - 200 2.5 - - - 1.1 1.75 - 1.1 1.5	10	mV
05.15		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	-	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-8	-4	-	4	+30 (2) Max. [1] - 50 - 40 - 33.3 - 66.7 - - 1.1 1.75 10	mV
01/0 5		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	-	8	Absolute Max. [1] 50 40 33.3 66.7 - 200 - 200 - 1.75 1.75 1.75 10 10 3.6 3.4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 3.6 3.14 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5		mV
TOTAL ERROR AND TOTAL ERRO	R COMPON	IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.6	-2.8	_	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 150°C or -40°C to 25°C	-3.4	-2.6	-	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-7	_	7	10	mV
otal Error Including Lifetime Drift ensitivity Error Including Lifetime rift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = -40^{\circ}$ C to 25°C	-10	-5	-	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	_	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	8	_	8	10	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-7	_		10	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3σ and +3σ are mean ± 3σ values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-066B5-M

ACS37002LMABTR-066B5-M	S37002LMABTR-066B5-M GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Bidirectional		
	0	0	30	66.7		
Selection	0	1	25	80		
Combination	1	0	20	100		
	1	1	15	133.3		

 $\textbf{ACS37002LMABTR-066B5-M PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_A = -40^{\circ}C \text{ to } 150^{\circ}C, to the temperature range and temperature range$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

			Minim	num		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-66.7	-	-	-	66.7	A
Current Sensing Banga		GAIN_SEL 01	-80	-	-	-	80	A
ero-Current Output Voltage OTAL ERROR (V _{IOUT(ACTUAL)} – (S ND TOTAL ERROR COMPONEN Dtal Error	I _{PR}	GAIN_SEL 10	-100	-	-	-	100	A
		GAIN_SEL 11	-133.3	-	-	-	Absolute Max. [1] 66.7 80 100 133.3 - - 200 - 200 - 1.75 1.6 10 10 3.6 3.4 10	Α
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-	-	30	-	-	mV/A
Constituity	Sama	GAIN_SEL 01; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	25	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	20	-	-	mV/A
rercurrent Fault Operating Range ro-Current Output Voltage OTAL ERROR (V _{IOUT(ACTUAL)} – (Sens ND TOTAL ERROR COMPONENTS tal Error ensitivity Error		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	15	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; I _P = 0 A, T _A = 25°C	-	-	2.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	-	1.1	1.5	%
,		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_{P} = 0 A$, $T_{A} = -40^{\circ}C$ to 25°C	-10	-4	-	4	10	mV
0		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	_	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-8	-4	-	4	+30 ⁽¹²⁾ Max. [1] - 66.7 - 80 - 100 - 133.3 - - 10<	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	-	8	10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	Absolute Max. [1] 66.7 80 100 133.3 - - 200 - 200 - 10.75 1.5 10 10 8 10 10 3.6 3.4 10 10 10 10 10 10 10 10 10	mV
TOTAL ERROR AND TOTAL ERRO	R COMPON	IENTS INCLUDING LIFETIME DRIFT [1][2]				·		
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-3.4	-2.6	_	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-7	_	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_{P} = 0 \text{ A}$, $T_{A} = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
Offeet Error Including Lifeting - Duift	N	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-14	-10	-	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-7	_	7	10	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3σ and +3σ are mean ± 3σ values and are determined such that 99.73% of devices lie within the interval during initial characterization.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-050U5-M

ACS37002LMABTR-050U5-M	CS37002LMABTR-050U5-M GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Unidirectional		
	0	0	80	50		
Selection	0	1	100	40		
Combination	1	0	120	33.3		
	1	1	60	66.7		

 $\textbf{ACS37002LMABTR-050U5-M PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, the temperature range and temperature$ C_{BYPASS} = 0.1 µF, and V_{CC} = 5 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ [2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	0	-	-	-	50	А
Current Sensing Range		GAIN_SEL 01	0	-	-	-	40	А
Current Sensing Range	I _{PR}	GAIN_SEL 10	0	-	-	-	33.3	А
		GAIN_SEL 11	0	-	-	-	66.7	А
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	80	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 01; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	100	-	-	mV/A
Sensitivity	Jens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	120	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	60	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	25	-	50	-	100	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Unidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	0.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	-	1.1	1.5	%
		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = -40^{\circ}C$ to 25°C	-10	-4	_	4	10	mV
07.15		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	-	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-8	-4	-	4	8	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	-	8	10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
TOTAL ERROR AND TOTAL ERRO	R COMPON	IENTS INCLUDING LIFETIME DRIFT [1][2]	·					
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 150°C or -40°C to 25°C	-3.4	-2.6	_	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	_	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-5	-	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-14	-10	-	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-7	_	7	10	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed. ^[2] -3σ and $+3\sigma$ are mean $\pm 3\sigma$ values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-066U5-M

ACS37002LMABTR-066U5-M	CS37002LMABTR-066U5-M GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Unidirectional		
	0	0	60	66.7		
Selection	0	1	50	80		
Combination	1	0	40	100		
	1	1	30	133.3		

 $\textbf{ACS37002LMABTR-066U5-M PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, the temperature range and temperature rang$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	0	-	-	-	66.7	Α
Current Sensing Range		GAIN_SEL 01	0	-	-	-	80	Α
Current Sensing Range	I _{PR}	GAIN_SEL 10	0	-	-	-	100	А
		GAIN_SEL 11	0	-	-	-	Absolute Max. [1] - 66.7 - 80 - 100 - 100 - 133.3 - - - 133.3 - - - - - - - - - - - - - - - - - - - 100 - - 1.1 1.75 1.1 1.5 5 10 4 10 5 8 4 8 8 10 5 3.6 2.6 3.4 7 10 5 10 7 10 4 10 10 14	А
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	60	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 01; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	50	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	40	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	30	-	Absolute Max. [1] - 66.7 - 80 - 100 - 100 - - - - - - - - - - - - - - - - - - - - - 100 - - - 100 - - - 100 - - - 100 - -	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	25	-	50	-	100	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Unidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	0.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens(IDFAL) × I	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	_	1.1	1.5	%
	V	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
Zero-Current Reference Error	V _{RE}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-4	_	4	10	mV
Offect Fraz	N	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	-	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-8	-4	-	4	8	mV
QVO Error		$V_{IOUT(Q)}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-8	-	8	10	mV
	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-5	-	5	Absolute Max. [1] 66.7 80 100 133.3 - - - 100 133.3 - - 100 133.3 - - 100 100 10 8 10 10 3.6 3.4 10 10 10 10 10	mV
TOTAL ERROR AND TOTAL ERRO	OR COMPON	IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C \text{ or } -40^{\circ}C \text{ to } 25^{\circ}C$	-3.4	-2.6	_	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-7	_	7	10	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3\circ and +3\circ are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-050B3

ACS37002LMABTR-050B3 GA	S37002LMABTR-050B3 GAIN_SEL Pin Performance Key					
Parameter (Units)	(Boolean) (Boolean)		Sens (mV/A)	Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Bidirectional		
	0	0	26.4	50		
Selection	0	1	33	40		
Combination	1	0	39.6	33.3		
	1	1	19.8	66.7		

 $\textbf{ACS37002LMABTR-050B3 PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_A = -40^{\circ}C \text{ to } 150^{\circ}C, to the temperature range and temperature range a$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

				num		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-50	-	-	-	50	А
Current Sensing Range		GAIN_SEL 01	-40	-	-	-	40	А
Current Sensing Range	I _{PR}	GAIN_SEL 10	-33.3	-	-	-	33.3	А
		GAIN_SEL 11	-66.7	-	-	-	66.7	А
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	26.4	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	33	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	39.6	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	19.8	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	1.65	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	I _P = I _{PR(max)}	-1.75	-1.1	_	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	_	1.1	1.5	%
		$V_{REFactual} - V_{REFideal}$, $I_{P} = 0 A$, $T_{A} = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
Zero-Current Reference Error	V _{RE}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-4	_	4	10	mV
	N	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	_	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	4	8	mV
	N	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	_	8	+30 (2) Max. [1] - 50 - 40 - 33.3 - 66.7 - - -	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5		mV
TOTAL ERROR AND TOTAL ERRO		IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C \text{ or } -40^{\circ}C \text{ to } 25^{\circ}C$	-3.4	-2.6	_	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	_	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = -40^{\circ}$ C to 25°C	-10	-5	-	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-4	_	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-7	_	7	10	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3\circ and +3\circ are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-066B3

ACS37002LMABTR-066B3 GA	S37002LMABTR-066B3 GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Max IP (A)			
Туре	Digital Input	Digital Input	Calculation	Bidirectional		
	0	0	19.8	66.7		
Selection	0	1	16.5	80		
Combination	1	0	13.2	100		
	1	1	9.9	133.3		

 $\textbf{ACS37002LMABTR-066B3 PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_A = -40^{\circ}C \text{ to } 150^{\circ}C, to the temperature range and temperature range a$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-66.7		-	-	66.7	А
Current Sensing Denge		GAIN_SEL 01	-80		-	-	80	А
Current Sensing Range	I _{PR}	GAIN_SEL 10	-100		-	-	100	А
		GAIN_SEL 11	Absolute Min. [1] 66.7 80 100 133.3 - </td <td></td> <td>-</td> <td>-</td> <td>133.3</td> <td>А</td>		-	-	133.3	А
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-		19.8	-	-	mV/A
Considuate	Cana	GAIN_SEL 01; $I_{PR(min)} < I_P < I_{PR(max)}$	-		16.5	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; $I_{PR(min)} < I_P < I_{PR(max)}$	-		13.2	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-		9.9	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50		100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-		1.65	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	_	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	-	1.1	1.5	%
	V	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	_	5	10	mV
Zero-Current Reference Error	V _{RE}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-4	_	4	10	mV
0#	N	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	_	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-8	-4	-	4	8	mV
QVO Error	N	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	-	8	10	mV
QVO ENSI	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-5	-	5	²¹ Max. [1] 66.7 80 100 133.3 - - - 200 - 200 - - 200 - 1.75 1.5 1.5 10 10 8 8 8	mV
TOTAL ERROR AND TOTAL ERRO	OR COMPON	IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $150^{\circ}C$ or $-40^{\circ}C$ to $25^{\circ}C$	-3.4	-2.6	-	2.6	3.4	%
Zero-Current Reference Error	V	$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = -40^{\circ}C$ to 25°C	-10	-5	-	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	_	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-14	-10	-	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-7	_	7	10	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3 o and +3 o are mean ± 3 o values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-050U3

ACS37002LMABTR-050U3 GA	CS37002LMABTR-050U3 GAIN_SEL Pin Performance Key						
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)			
Туре	Digital Input	Digital Input	Calculation	Unidirectional			
	0	0	52.8	50			
Selection	0	1	66	40			
Combination	1	0	79.2	33.3			
	1	1	39.6	66.7			

 $\label{eq:acs37002LMABTR-050U3} \mbox{ PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}C$ to $150^{\circ}C$, $T_A = -40^{\circ}C$, $T_A = -40^{\circ}$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

			Minim	Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	0		-	-	50	A
Current Sensing Dense		GAIN_SEL 01	0		-	-	40	A
Current Sensing Range	I _{PR}	GAIN_SEL 10	0		-	-	33.3	A
		GAIN_SEL 11	0		-	-	66.7	A
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-		52.8	-	-	mV/A
Considuate	Sens	GAIN_SEL 01; $I_{PR(min)} < I_P < I_{PR(max)}$	-		66	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-		79.2	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-		39.6	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	25		50	-	100	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Unidirectional; I _P = 0 A, T _A = 25°C	-		0.33	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I	_{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	I _P = I _{PR(max)}	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	_	1.1	1.5	%
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = -40^{\circ}C$ to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	_	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-8	-4	_	4	8	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-8	_	8	10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5	10	mV
TOTAL ERROR AND TOTAL ERRO		IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT LTD}	$I_{P} = I_{PR(max)}$	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 150°C or -40°C to 25°C	-3.4	-2.6	-	2.6	3.4	%
Zero-Current Reference Error	N	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-7	-	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-5	-	5	10	mV
Offect Freez Including Lifeting - Duit	N	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	-	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-4	_	4	10	mV
		V _{IOUT(Q)} , I _P = 0 A, T _A = 25°C to 150°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-7	_	7	10	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed. ^[2] -3σ and $+3\sigma$ are mean $\pm 3\sigma$ values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LMABTR-066U3

ACS37002LMABTR-066U3	S37002LMABTR-066U3 GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)	(Boolean) (Boolean) Sens (mv/A)		Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Unidirectional		
	0	0	39.6	66.7		
Selection	0	1	33	80		
Combination	1	0	26.4	100		
	1	1	19.8	133.3		

 $\textbf{ACS37002LMABTR-066U3 PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, the temperature range and temperature rand temperature range and temperature range a$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

			Minim	num		Max	cimum	
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	0	-	-	-	66.7	А
Current Sensing Range		GAIN_SEL 01	0	-	-	-	80	А
Current Sensing Kange	I _{PR}	GAIN_SEL 10	0	-	-	-	100	А
		GAIN_SEL 11	0	-	-	-	133.3	А
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-	-	39.6	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	33	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	26.4	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	19.8	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	25	-	50	-	100	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Unidirectional; $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$	-	-	0.33	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	$_{PR}$ + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C or -40°C to 25°C	-1.5	-1.1	_	1.1	1.5	%
	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-5	-	5	10	mV
Zero-Current Reference Error		$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-8	-5	-	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-8	-4	-	4	8	mV
		$V_{IOUT(Q)}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-10	-8	-	8	10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
TOTAL ERROR AND TOTAL ERRO		IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.6	-2.8	-	2.8	3.6	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 150°C or -40°C to 25°C	-3.4	-2.6	_	2.6	3.4	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-10	-7	_	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0 \text{ A}$, $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C	-10	-7	_	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-4	-	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-7	-	7	10	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3σ and +3σ are mean ± 3σ values and are determined such that 99.73% of devices lie within the interval during initial characterization.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002KMABTR-050B5-M

AACS37002KMABTR-050	ACS37002KMABTR-050B5-M GAIN_SEL Pin Performance Key						
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Max IP (A)				
Туре	Digital Input	Digital Input	Calculation	Bidirectional			
	0	0	40	50			
Selection	0	1	50	40			
Combination	1 0 60		60	33.3			
	1	1	30	66.7			

 $\textbf{ACS37002KMABTR-050B5-M PERFORMANCE CHARACTERISTICS:} Valid through full operating temperature range, T_A = -40^{\circ}C \text{ to } 125^{\circ}C, to the temperature range and temperature range$ C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

			Minim	Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-50	-	-	-	50	А
Current Sensing Range		GAIN_SEL 01	-40	-	-	-	40	А
Current Sensing Range	I _{PR}	GAIN_SEL 10	-33.3	-	-	-	33.3	А
		GAIN_SEL 11	-66.7	-	-	-	66.7	А
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	40	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	50	-	-	mV/A
	Sens	GAIN_SEL 10; $I_{PR(min)} < I_P < I_{PR(max)}$	-	-	60	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	30	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	2.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	ens _(IDEAL) × I TS	_{PR} +V _{REF})) / (Sens _(IDEAL) × I _{PR})× 100						
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}$	-1.75	-1.1	-	1.1	1.75	%
Sensitivity Error	E _{SENS}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$, $T_A = -40^{\circ}C$ to $25^{\circ}C$	-1	-1.1	-	1.1	1	%
	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-10	-5	_	5	10	mV
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = -40^{\circ}C$ to 25°C	-10	-4	_	4	10	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 125° C	-8	-5	_	5	8	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-8	-4	-	4	8	mV
0V/0 F		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-10	-8	-	8	10	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5	10	mV
TOTAL ERROR AND TOTAL ERRO		IENTS INCLUDING LIFETIME DRIFT [1][2]						
Total Error Including Lifetime Drift	E _{TOT_LTD}	I _P = I _{PR(max)}	-3.4	-2.8	-	2.8	3.4	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}$ C to 125°C or -40°C to 25°C	-3.2	-2.6	-	2.6	3.2	%
Zero-Current Reference Error		$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-10	-7	_	7	10	mV
Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
		V _{IOUT(O)} – V _{REF} , I _P = 0 A, T _A = 25°C to 125°C	-10	-7	_	7	10	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-4	_	4	10	mV
		$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 125°C	-14	-10	_	10	14	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{\text{IOUT}(Q)}$, $P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-10	-7	_	7	10	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed. ^[2] -3σ and $+3\sigma$ are mean $\pm 3\sigma$ values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002KMABTR-050B3

ACS37002KMABTR-050B3	CS37002KMABTR-050B3 GAIN_SEL Pin Performance Key						
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Max IP (A)				
Туре	Digital Input	Digital Input	Calculation	Bidirectional			
	0	0	26.4	50			
Selection	0	1	33	40			
Combination	1	0	39.6	33.3			
	1	1	19.8	66.7			

ACS37002KMABTR-050B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 125°C, C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

			um		Maximum		
Symbol	Test Conditions	Absolute Min. ^[1]	- 3 σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
	GAIN_SEL 00	-50	-	-	-	50	A
	GAIN_SEL 01	-40	-	-	-	40	A
IPR	GAIN_SEL 10	-33.3	-	-	-	33.3	A
	GAIN_SEL 11	-66.7	-	-	-	66.7	A
	GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-	-	26.4	-	-	mV/A
Sono	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	33	-	-	mV/A
Sells	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	39.6	-	-	mV/A
	GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	19.8	-	-	mV/A
I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-	-	1.65	-	-	V
ens _(IDEAL) × Ι ΓS	$_{PR}$ + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
E _{TOT}	I _P = I _{PR(max)}	-1.75	-1.1	-	1.1	1.75	%
E _{SENS}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $125^{\circ}C$, $T_A = -40^{\circ}C$ to $25^{\circ}C$	-1	-1.1	-	1.1	1	%
V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-10	-5	-	5	10	mV
	$V_{REFactual} - V_{REFideal}$, $I_P = 0 A$, $T_A = -40^{\circ}C$ to 25°C	-10	-4	_	4	10	mV
	$V_{IOUT(O)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-8	-5	_	5	8	mV
V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-8	-4	_	4	8	mV
		-10	-8	_	8	10	mV
V _{QE}		-10	-5	_	5	10	mV
					,		
E _{TOT LTD}	$I_{P} = I_{PR(max)}$	-3.4	-2.8	_	2.8	3.4	%
E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 125°C or -40°C to 25°C	-3.2	-2.6	-	2.6	3.2	%
	V _{REFactual} – V _{REFideal} , I _P = 0 A, T _A = 25°C to 125°C	-10	-7	_	7	10	mV
V _{RE_LTD}		-10	-5	_	5	10	mV
		-10	-7	_	7	10	mV
V _{OE_LTD}			-4	_		10	mV
		-		_			mV
V_{QE_LTD}			-	_	-		mV
	I _{PR} Sens I _{OCF-OR} V _{IOUT(Q)} ens(IDEAL) × I E _{SENS} V _{RE} V _{RE} V _{OE} V _{QE} V _{QE}	$\label{eq:hardenergy} \begin{split} \begin{array}{ c c c c c } & GAIN_SEL 00 \\ \hline & GAIN_SEL 01 \\ \hline & GAIN_SEL 10 \\ \hline & GAIN_SEL 10 \\ \hline & GAIN_SEL 11 \\ \hline & GAIN_SEL 00; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 01; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 01; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 01; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 10; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 10; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 11; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 11; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 11; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 11; \ _{PR(min)} < l_P < l_{PR(max)} \\ \hline & GAIN_SEL 11; \ _{PR(max)} = 0 A, T_A = 25^{\circ}C \\ \hline & Houtomore \\ \hline & Houtomodel{eq:houtomatrix} \\ \hline & Houtomath{Prime} = HPR(max) \\ \hline & Houtomath{Prime} = HPR(max), \ T_A = 25^{\circ}C \ to 125^{\circ}C, \ T_A = -40^{\circ}C \ to 25^{\circ}C \\ \hline & V_{RE} \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{OE} \\ \hline & V_{IOUT(Q)} - V_{REF}, \ l_P = 0 A, T_A = -40^{\circ}C \ to 25^{\circ}C \\ \hline & V_{IOUT(Q)}, \ l_P = 0 A, T_A = -40^{\circ}C \ to 25^{\circ}C \\ \hline & V_{OE} \\ \hline & V_{IOUT(Q)}, \ l_P = 0 A, T_A = -40^{\circ}C \ to 25^{\circ}C \\ \hline & V_{IOUT(Q)}, \ l_P = 0 A, T_A = -40^{\circ}C \ to 25^{\circ}C \\ \hline & V_{IOUT(Q)}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{IOUT(Q)}, \ l_P = I_{PR(max)}, \ T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{REFactual} - V_{REFideal}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{IOUT(Q)}, \ V_{REF}, \ l_P = 0 A, T_A = 25^{\circ}C \ to 125^{\circ}C \\ \hline & V_{IOUT(Q)}, \ V_{REF}, \ l_P = 0 A, T_A = 2$	$\begin{tabular}{ c c c c c } \hline Symbol & Test Conditions & Absolute Min. [1] \\ \hline & GAIN_SEL 00 & -50 \\ \hline & GAIN_SEL 01 & -40 \\ \hline & GAIN_SEL 10 & -33.3 \\ \hline & GAIN_SEL 10 & -33.3 \\ \hline & GAIN_SEL 11 & -66.7 \\ \hline & GAIN_SEL 11 & -66.7 \\ \hline & GAIN_SEL 00; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 01; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 01; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 10; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 10; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 11; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 11; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 11; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & GAIN_SEL 11; I_{PR(min)} < I_P < I_{PR(max)} & - \\ \hline & I_{OCF-OR} & Typ. = factory-programmed default, FS = full-scale & 50 \\ \hline & V_{IOUT(Q)} & Bidirectional; I_P = 0 A, T_A = 25^{\circ}C & - \\ \hline & OBS(DEAL) \times I_{PR} + V_{REF}) / (SenS(IDEAL) \times I_{PR}) \times 100 \\ \hline & S \\ \hline & V_{IOUT(Q)} & I_{PE} - I_{PR(max)}, T_A = 25^{\circ}C to 125^{\circ}C, T_A = -40^{\circ}C to 25^{\circ}C & -10 \\ \hline & V_{RE} & V_{REFactual} - V_{REFideal}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{OE} & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -38 \\ \hline & V_{OE} & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = -40^{\circ}C to 25^{\circ}C & -3.2 \\ \hline & V_{IOUT(Q)} - I_P = 0 A, T_A = -40^{\circ}C to 25^{\circ}C & -3.2 \\ \hline & V_{OE} - ITD & I_P = I_{PR(max)}, T_A = 25^{\circ}C to 125^{\circ}C c & -3.2 \\ \hline & V_{REF_actual} - V_{REFideal}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -3.2 \\ \hline & V_{OE_LTD} & I_P = I_{PR(max)}, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{OE_LTD} & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - V_{REF}, I_P = 0 A, T_A = 25^{\circ}C to 125^{\circ}C & -10 \\ \hline & V_{IOUT(Q)} - $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{split} \hline \textbf{Symbol} & \hline \textbf{Test Conditions} & \hline \textbf{Absolute} \\ \textbf{Min. (1)} & -3\sigma [2] & \textbf{Typ.} & +3\sigma [2] & \hline \textbf{Max. (1)} \\ \hline Max.$

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3σ and +3σ are mean ± 3σ values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LLAATR-015B5

ACS37002LLAATR-015B5	S37002LLAATR-015B5 GAIN_SEL Pin Performance Key					
Parameter (Units)	GAIN_SEL_1 (Boolean)) (Boolean) Sens (mv/A)		Max IP (A)		
Туре	Digital Input	Digital Input	Calculation	Bidirectional		
	0	0	133.3	15		
Selection	0	1	166.6	12		
Combination	1	0	200	10		
	1	1	100	20		

ACS37002LLAATR-015B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

				um		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-15	-	-	-	15	Α
Current Sensing Range		GAIN_SEL 01	-12	-	-	-	12	А
Current Cenaing Range	I _{PR}	GAIN_SEL 10	-10	-	-	-	10	А
		GAIN_SEL 11	-20	-	-	-	20	А
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-	-	133.3	-	-	mV/A
Sensitivity Se	Sens	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	166.6	-	-	mV/A
Sensitivity	Sells	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	200	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	100	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50	-	100	-	200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; I _P = 0 A, T _A = 25°C	-	-	2.5	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	Sens _(IDEAL) × ITS	I _{PR} + V _{REF})) / (Sens _(IDEAL) × I _{PR}) × 100						
Total Error	-	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-1.75	-1.2	-	1.2	1.75	%
Total Error	E _{TOT}	$I_{P} = I_{PR(max)}, T_{A} = -40^{\circ}C \text{ to } 25^{\circ}C$	-1.75	-1.4	-	1.4	1.75	%
Sensitivity Error	E _{SENS}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $150^{\circ}C$, $T_A = -40^{\circ}C$ to $25^{\circ}C$	-1.5	-1.2	-	1.2	1.5	%
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C, $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-3	-	3	10	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C, $T_A = -40^{\circ}$ C to 25°C	-8	-5	-	5	8	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C, $T_A = -40^{\circ}$ C to 25° C	-10	-5	_	5	10	mV
TOTAL ERROR AND TOTAL ERR	OR COMPO	NENTS INCLUDING LIFETIME DRIFT [1]					<u>`</u>	
	_	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.7	-2.5	-	2.5	3.7	%
Total Error Including Lifetime Drift	E _{TOT_LTD}	$I_{P} = I_{PR(max)}, T_{A} = -40^{\circ}C \text{ to } 25^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
Sensitivity Error Including Lifetime		$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to 150°C	-3.5	-2.4	_	2.4	3.5	%
Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}$ C to 25°C	-3.4	-2.3	_	2.3	3.4	%
Zero-Current Reference Error Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = 25^{\circ}$ C to 125°C, $T_{\text{A}} = -40^{\circ}$ C to 25°C	-11	-7	-	7	11	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-15	-9	_	9	15	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-11	-7	_	7	11	mV
		$V_{\text{IOUT}(Q)}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = 25^{\circ}$ C to 125°C	-17	9	_	9	17	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{\text{IOUT}(Q)}$, $P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-14	-8	_	8	14	mV
		VIOUT(Q), P - 07, A 0 0 10 20 0	-14	-0	_	U	14	111.0

[1[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3\overlap and +3\overlap are used as a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LLAATR-025B5

ACS37002LLAATR-025B5	CS37002LLAATR-025B5 GAIN_SEL Pin Performance Key						
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)			
Туре	Digital Input	Digital Input	Calculation	Bidirectional			
	0	0	80	25			
Selection	0	1	66.6	30			
Combination	1	0	53.3	37.5			
	1	1	40	50			

ACS37002LLAATR-025B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 5 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Test Conditions	Absolute Min. ^[1]	-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE								
		GAIN_SEL 00	-25		-		25	A
Current Sensing Range		GAIN_SEL 01	-30		-		30	A
Current Sensing Range	I _{PR}	GAIN_SEL 10	-37.5		-		37.5	A
		GAIN_SEL 11	-50		-		50	A
		GAIN_SEL 00; $I_{PR(min)} < I_P < I_{PR(max)}$	-		80		-	mV/A
		GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-		66.6		-	mV/A
Sensitivity	Sens	GAIN_SEL 10; $I_{PR(min)} < I_P < I_{PR(max)}$	-		53.3		-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-		40		-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50		100		200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; $I_P = 0 A$, $T_A = 25^{\circ}C$	-		2.5		-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	Sens _(IDEAL) × ITS	$I_{PR} + V_{REF})) / (Sens_{(IDEAL)} \times I_{PR}) \times 100$						
	E _{TOT}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-1.75	-1.2	-	1.2	1.75	%
Total Error		$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-1.75	-1.4	-	1.4	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C, $T_{A} = -40^{\circ}$ C to 25°C	-1.5	-1.2	-	1.2	1.5	%
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-3	_	3	10	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C, $T_A = -40^{\circ}$ C to 25°C	-8	-5	_	5	8	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	-	5	10	mV
TOTAL ERROR AND TOTAL ERR	OR COMPO	NENTS INCLUDING LIFETIME DRIFT [1]						
	_	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.7	-2.5	-	2.5	3.7	%
Total Error Including Lifetime Drift	E _{TOT_LTD}	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-3.5	-2.4	_	2.4	3.5	%
Sensitivity Error Including Lifetime	_	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-3.4	-2.3	_	2.3	3.4	%
Zero-Current Reference Error Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = 25^{\circ}\text{C}$ to 125°C , $T_{\text{A}} = -40^{\circ}\text{C}$ to 25°C	-11	-7	_	7	11	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-15	-9	_	9	15	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-11	-7	_	7	11	mV
		$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-17	-9	_	9	17	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{\text{IOUT}(Q)}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = -40^{\circ}$ C to 25°C	-14	8	_	8	14	mV

^[1]Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3\u03c3 and +3\u03c3 are at a based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.
 [3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LLAATR-015B3

ACS37002LLAATR-015B3	Selection Identifier			
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)
Туре	Digital Input	Digital Input	Calculation	Bidirectional
Selection Combination	0	0	88	15
	0	1	110	12
	1	0	132	10
	1	1	66	20

ACS37002LLAATR-015B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

				Minimum		Maximum		
Characteristic	Symbol	Symbol Test Conditions		- 3 σ [2]	Тур.	+3σ ^[2]	Absolute Max. ^[1]	Units
NOMINAL PERFORMANCE		·						
		GAIN_SEL 00	-15		_		15	A
Current Sensing Denge		GAIN_SEL 01	-12		-		12	A
Current Sensing Range	I _{PR}	GAIN_SEL 10	-10		-		10	A
		GAIN_SEL 11	-20		-		20	A
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-		88		-	mV/A
	0	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-		110		-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	_		132		-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-		66		-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	50		100		200	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Bidirectional; I _P = 0 A, T _A = 25°C	-		1.65		-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	Sens _(IDEAL) × ITS	$I_{PR} + V_{REF})) / (Sens_{(IDEAL)} \times I_{PR}) \times 100$						
	E _{TOT}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-1.75	-1.2	-	1.2	1.75	%
Total Error		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-1.75	-1.4	_	1.4	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C, $T_{A} = -40^{\circ}$ C to 25°C	-1.5	-1.2	-	1.2	1.5	%
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-3	-	3	10	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C, $T_A = -40^{\circ}$ C to 25°C	-8	-5	-	5	8	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150° C, $T_A = -40^{\circ}$ C to 25° C	-10	-5	-	5	10	mV
TOTAL ERROR AND TOTAL ERR	OR COMPO	NENTS INCLUDING LIFETIME DRIFT ^{[2][3]}						
Total Error Including Lifetime Drift	E _{TOT_LTD}	$I_P = I_{PR(max)}$, $T_A = 25^{\circ}C$ to $150^{\circ}C$	-3.7	-2.5	-	2.5	3.7	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_P = I_{PR(max)}, T_A = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
		$I_P = I_{PR(max)}, T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	-3.4	-2.3	-	2.3	3.4	%
Zero-Current Reference Error Including Lifetime Drift	V _{RE_LTD}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-11	-7	-	7	11	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}C$ to $125^{\circ}C$	-15	-9	_	9	15	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-11	-7	_	7	11	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 125°C	-17	-9	_	9	17	mV
	VQE_LTD	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-14	-8		8	14	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

[2] -3 o and +3 o are mean ± 3 o values and are determined such that 99.73% of devices lie within the interval during initial characterization.

[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

ACS37002LLAATR-025U3

ACS37002LLAATR-025U3	Selection Identifier			
Parameter (Units)	GAIN_SEL_1 (Boolean)	GAIN_SEL_0 (Boolean)	Sens (mV/A)	Max IP (A)
Туре	Digital Input	Digital Input	Calculation	Unidirectional
	0	0	105.6	25
Selection	0	1	88	30
Combination	1	0	70.4	37.5
	1	1	52.8	50

ACS37002LLAATR-025U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, C_{BYPASS} = 0.1 $\mu\text{F},$ and V_{CC} = 3.3 V, unless otherwise specified

			Minimum			Maximum		
Characteristic	Symbol	Symbol Test Conditions		-3σ ^[2]	Тур.	+3σ ^[2]	Absolute Max. [1]	Units
NOMINAL PERFORMANCE	`							
		GAIN_SEL 00	0	-	_	-	25	A
		GAIN_SEL 01	0	-	_	-	30	A
Current Sensing Range	I _{PR}	GAIN_SEL 10	0	-	_	-	37.5	A
		GAIN_SEL 11	0	-	-	-	50	A
		GAIN_SEL 00; I _{PR(min)} < I _P < I _{PR(max)}	-	-	105.6	-	-	mV/A
Constitutty	Sens	GAIN_SEL 01; I _{PR(min)} < I _P < I _{PR(max)}	-	-	88	-	-	mV/A
Sensitivity	Sens	GAIN_SEL 10; I _{PR(min)} < I _P < I _{PR(max)}	-	-	70.4	-	-	mV/A
		GAIN_SEL 11; I _{PR(min)} < I _P < I _{PR(max)}	-	-	52.8	-	-	mV/A
Overcurrent Fault Operating Range	I _{OCF-OR}	Typ. = factory-programmed default, FS = full-scale	25	-	50	-	100	%FS
Zero-Current Output Voltage	V _{IOUT(Q)}	Unidirectional; I _P = 0 A, T _A = 25°C	-	-	0.33	-	-	V
TOTAL ERROR (V _{IOUT(ACTUAL)} – (S AND TOTAL ERROR COMPONEN	Sens _(IDEAL) × ITS	I_{PR} + V_{REF})) / (Sens _(IDEAL) × I_{PR}) × 100						
	E _{TOT}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-1.75	-1.2	_	1.2	1.75	%
Total Error		$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 25°C	-1.75	-1.4	-	1.4	1.75	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = 25^{\circ}$ C to 150°C, $T_{A} = -40^{\circ}$ C to 25°C	-1.5	-1.2	-	1.2	1.5	%
Zero-Current Reference Error	V _{RE}	$V_{REFactual} - V_{REFideal}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-3	_	3	10	mV
Offset Error	V _{OE}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 150°C, $T_A = -40^{\circ}$ C to 25°C	-8	-5	_	5	8	mV
QVO Error	V _{QE}	$V_{IOUT(Q)}$, $I_P = 0 \text{ A}$, $T_A = 25^{\circ}\text{C}$ to 150°C , $T_A = -40^{\circ}\text{C}$ to 25°C	-10	-5	_	5	10	mV
TOTAL ERROR AND TOTAL ERRO	OR COMPO	NENTS INCLUDING LIFETIME DRIFT [2][3]						
Total Error Including Lifetime Drift	E _{TOT_LTD}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.7	-2.5	_	2.5	3.7	%
		$I_{P} = I_{PR(max)}, T_{A} = -40^{\circ}C \text{ to } 25^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
Sensitivity Error Including Lifetime Drift	E _{SENS_LTD}	$I_{P} = I_{PR(max)}, T_{A} = 25^{\circ}C \text{ to } 150^{\circ}C$	-3.5	-2.4	_	2.4	3.5	%
		$I_{P} = I_{PR(max)}, T_{A} = -40^{\circ}C \text{ to } 25^{\circ}C$	-3.4	-2.3	_	2.3	3.4	%
Zero-Current Reference Error Including Lifetime Drift	V _{RE_LTD}	$V_{\text{REFactual}} - V_{\text{REFideal}}$, $I_{\text{P}} = 0$ A, $T_{\text{A}} = 25^{\circ}$ C to 125°C, $T_{\text{A}} = -40^{\circ}$ C to 25°C	-11	-7	_	7	11	mV
Offset Error Including Lifetime Drift	V _{OE_LTD}	$V_{IOUT(Q)} - V_{REF}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 125°C	-15	-9	_	9	15	mV
		$V_{IOUT(Q)} - V_{REF}$, $I_P = 0 \text{ A}$, $T_A = -40^{\circ}\text{C}$ to 25°C	-11	-7	_	7	11	mV
		$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = 25^{\circ}$ C to 125°C	-17	-9	_	9	17	mV
QVO Error Including Lifetime Drift	V _{QE_LTD}	$V_{IOUT(Q)}$, $I_P = 0$ A, $T_A = -40^{\circ}$ C to 25°C	-14	8	_	8	14	mV

^[1] Absolute minimum (min) and absolute maximum (max) are the production limits that the device must not exceed.

(2) -35 and +35 are maximum (mm) and absolute maximum (max) are the production interactive content into concerning initial characterization.
 (3) Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

FUNCTIONAL DESCRIPTION

Power-On Reset Operation

The descriptions in this section assume: temperature = 25° C, with the labeled test conditions. The provided graphs in this section show V_{IOUT} moving with V_{CC}. The voltage of V_{IOUT} during a high-impedance (high-Z) state is most consistent with a known load (R_L, C_L).

POWER-ON/POWER-OFF

As V_{CC} ramps up, the V_{IOUT} and V_{REF} outputs are high impedance until V_{CC} reaches and surpasses $V_{POR(H)}$ [1] in Figure 4. V_{REF} and V_{IOUT} continue to report until V_{CC} is less than $V_{POR(L)}$ [5] in Figure 4, at which point V_{REF} and V_{IOUT} go to the high-Z state.

NOTE: The time it takes for the output to reach a steady state depends on the external circuitry used.

POWER-ON DELAY (t_{POD})

When the supply ramps to $V_{POR(H)}$ [2] in Figure 4, the device requires a finite duration to power its internal components before the outputs are released from the high-z state and can respond to an input magnetic field. Power-on time, t_{POD} , is defined as the time it takes for the output voltage to settle to within $\pm 10\%$ of its steady-state value under an applied magnetic field, which can be observed in Figure 5 as the duration from [1] until [A]. After this delay, the output quickly approaches $V_{IOUT(IP)}$ = Sens \times IP + V_{REF} .

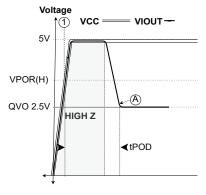
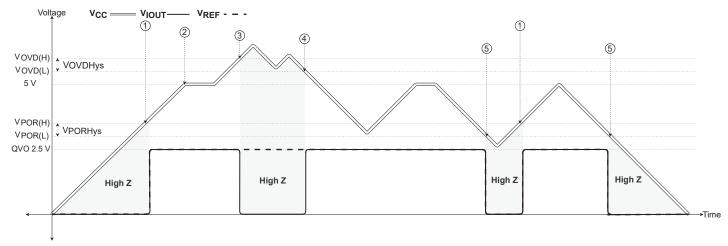



Figure 5: t_{POD}, R_L = Pull-Up

Overvoltage Detection (OVD)

To ensure that the device output reports accurately, the device contains an overvoltage detection flag. This flag on V_{IOUT} can be used to alert the system that the supply voltage is not within the operational limits. When V_{CC} increases to greater than V_{OVD(H)} ([3] in Figure 6), V_{IOUT} goes to the high-Z state, and the load resistor pulls V_{IOUT} to V_{CC} or GND. V_{REF} continues to output as per typical operations.

To reduce nuisance flagging and clears, hysteresis is included between the OVD enable and disable thresholds.

The enable time for OVD, $t_{OVD(E)}$, is the duration from $V_{OVD(H)}$ ([4] in Figure 6) until the OVD flag ([B] in Figure 6). The enable flag for OVD has a counter to reduce transients faster than 64 µs from triggering nuisance flags.

The disable time for OVD, $t_{OVD(D)}$, is the duration from $V_{OVD(L)}$ ([5] in Figure 6) until the device returns to typical operation ([C] in Figure 6). The OVD disable time does not have a counter.

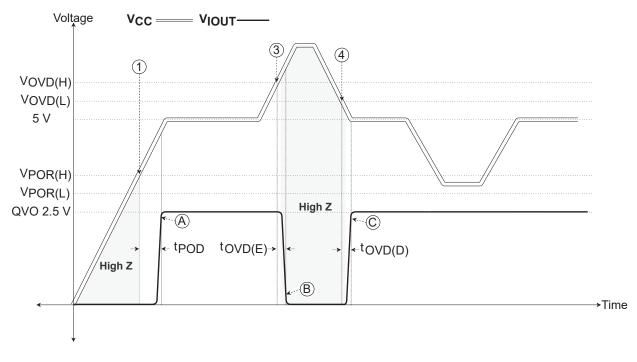


Figure 6: t_{POD} and $t_{OVD(E/D)}$ with R_L = Pull-Up

Absolute Maximum Ratings

These are the maximum application or environmental conditions that the device can withstand before damage might occur.

SUPPLY ZENER CLAMP VOLTAGES

If the voltage applied to the device increases to greater than the overvoltage detection, there is a point at which the Zener diodes turns on. These internal diodes are in place to protect the device from short-duration high-voltage or electrostatic discharge (ESD) events and should not be used as a feature to reduce the voltage on a line. Continued exposure to voltages that exceed the typical operating voltage, V_{CC} , can weaken or damage the Zener diodes, which has the potential to damage the part.

FORWARD AND REVERSE SUPPLY VOLTAGES

The forward and reverse supply voltages are the largest voltage magnitudes that can be supplied to V_{CC} from GND during programming or transient switching. These voltages should not be used as a DC voltage bias for an extended duration.

FORWARD AND REVERSE OUTPUT VOLTAGES

The forward output voltage, V_{FIOUT} , cannot exceed $V_{CC} + 0.5$, up to 6.5 V; this is the highest voltage that can be used during programming or transient switching to bias the output from GND. During programming or transient switching, the reverse output voltage, V_{RIOUT} , should not reduce to less than -0.5 V. These voltages should not be used as a DC voltage bias for an extended duration.

FORWARD AND REVERSE REFERENCE/FAULT VOLTAGES

The forward reference/fault voltage, V_{F-RF} , cannot exceed V_{CC} + 0.5, up to 6.5 V; this is the highest voltage that can be used during programming or transient switching to bias V_{REF} and V_{OCF} from GND. During programming or transient switching, the reverse output voltage, V_{R-RF} , should not reduce to less than -0.5 V. These voltages should not be used as a DC voltage bias for an extended duration.

OUTPUT SOURCE AND SINK CURRENT

This is the maximum current that $\rm V_{\rm IOUT}$ can passively sink or source before damage might occur.

AMBIENT TEMPERATURE (T_A)

This is the ambient temperature of the device. The operating ambient temperature range is the ambient temperature range for which the common electrical and common performance characteristics limits are valid. The optimized ambient temperature range is the ambient temperature range for which the device-specific performance characteristics limits are valid. ACS37002L devices have optimized performance in the -40°C to 150°C ("L" temperature) range. ACS37002K devices have optimized performance in the -40°C to 125°C ("K" temperature) range. The -40°C to 125°C ("K" temperature) range devices have device-specific performance optimized within the -40°C to 125°C temperature range but continue to operate in the -40°C to 150°C ("L" temperature) range.

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

DEFINITIONS OF OPERATING AND PERFORMANCE CHARACTERISTICS

Zero-Current Voltage Output (VIOUT(Q), QVO)

Zero-current voltage output, $V_{IOUT(Q)}$ (also called QVO), is defined as the voltage on the output, V_{IOUT} when zero amperes are applied through I_{p} .

QVO Temperature Drift (V_{QE})

QVO temperature drift, V_{QE} , is defined as the drift of QVO from room to hot or room to cold (25°C to 125°C/150°C or 25°C to -40°C, respectively). To improve overtemperature performance, the temperature drift is compensated with Allegro factory trim to remain within the limits across temperature.

Reference Voltage (V_{REF})

The voltage reference output, (V_{REF}), on the ACS37002 reports the zero-current voltage for the output channel, V_{IOUT} , to allow for a differential measurement and a device-referred supply for the VOC pin.

Reference Voltage Temperature Drift (V_{RE})

Reference voltage temperature drift, V_{RE} , is defined as the drift of V_{REF} from room to hot or room to cold (25°C to 125°C/150°C or 25°C to -40°C, respectively).

Offset Voltage (V_{OE})

Offset voltage, V_{OE} , is defined as the difference between QVO and V_{REF} (see Figure 7). V_{OE} includes the drift of QVO minus V_{REF} from room to hot or room to cold (25°C to 125°C/150°C or 25°C to -40°C, respectively).

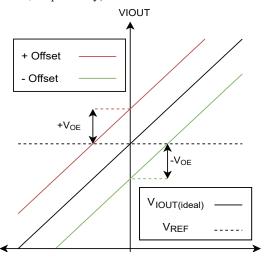


Figure 7: Offset (V_{OE}) Between V_{IOUT} and V_{REF}

Output Saturation Voltage (V_{SAT(HIGH/LOW)})

Output saturation voltage, V_{SAT} , is defined as the voltage that the V_{IOUT} does not pass as a result of an increasing magnitude of current. The highest voltage to which the output can drive is $V_{SAT(HIGH)}$; the lowest is $V_{SAT(LOW)}$. This can be observed in Figure 8.

NOTE: A change in sensitivity does not change the V_{SAT} points.

OUTPUT VOLTAGE OPERATING RANGE (VOOR)

The output voltage operating range, V_{OOR} , is the functional range for linear performance of V_{IOUT} and its related datasheet parameters. This can be observed in Figure 8. The V_{OOR} is the output region in which the performance accuracy parameters are valid. It is possible for the output to report beyond these voltages until V_{SAT} , but certain parameters cannot be guaranteed. The output performance is demonstrated in Figure 8 through and beyond the V_{OOR} .

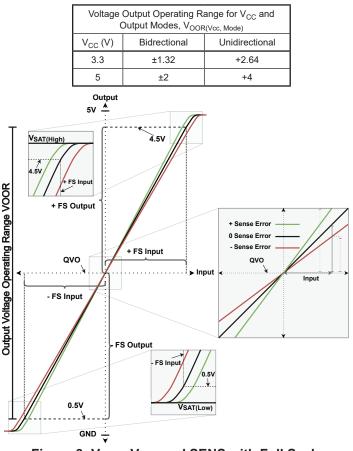


Figure 8: V_{OOR}, V_{SAT} and SENS with Full Scale

Sensitivity (Sens)

Sensitivity, or Sens, is the ratio of the output swing versus the applied current through the primary conductor, Ip. This current causes a voltage deviation away from QVO on the V_{IOUT} output until V_{SAT}. The magnitude and direction of the output voltage swing is proportional to the magnitude and direction of the applied current. This proportional relationship between output and input is sensitivity, defined as:

$$Sens = \frac{V_{\rm IOUT(I1)} - V_{\rm IOUT(I2)}}{I_1 - I_2}$$

where I_1 and I_2 are two different currents, and $V_{IOUT(I1)}$ and V_{IOUT(I2)} are the voltages of the device at the applied currents. V_{IOUT} , I_1 , or I_2 can be QVO with zero current.

Sensitivity Error (E_{Sens})

Sensitivity temperature drift, or $\mathrm{E}_{\mathrm{Sens}}$, is the drift of Sens from room to hot or room to cold (25°C to 125°C/150°C or 25°C to -40°C, respectively). Trimming/Programming is not needed because temperature drift is compensated with Allegro factory trim.

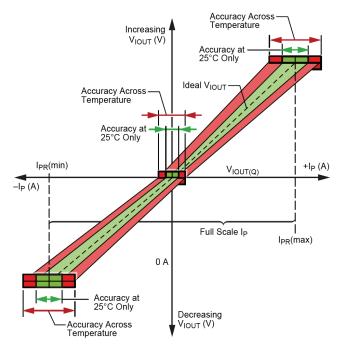


Figure 9: Output Accuracy Pocket for Room and **Across Temperature**

Gain Selection Pins

The ACS37002 features external gain selection pins that configure the device sensitivity. The gain-select logic is latched based on the pin voltage at startup. Either pin can be shorted directly to VCC or GND, which is logic 1 or 0 respectively. Both pins include an internal 1 M Ω pull-down resistor to GND. Externally floating pins are interpreted as logic 0; if both pins are floating, the device is in the 00 configuration. Specific gain-select performance can be found in the device-specific Performance Characteristics table. To change the gain of the device, refer to Figure 18 in the Application and Theory section.

Full Scale (FS)

Full scale, FS, is a method to relate an input and/or output to the maximum input and/or output of the device. For example, 50%FS of a 10 A sensor is 5 A, or 50% of its maximum input current. The 50% input of 5 A causes the output to move 50%, or 50%FS. FS is used interchangeably to refer to input and output deviations when discussing input steps, fault trip thresholds, and input to output performance. FS_{INPUT} is the input bias that results in FS_{OUTPUT}, and these two parameters are directly related by the actual sensitivity of the device. Both FS input and output can be observed in Figure 8, labeled as positive or negative FS input and FS output. The equation for input-referred FS for a 5 V bidirectional device is:

$$FS = \frac{V_{OOR(5V,Bi)}}{Sens_{Actual}} = \pm \frac{2V}{Sens_{Actual}}$$

NOTE: A percentage change in FS_{INPUT} is equivalent to a resultant percentage change in FS_{OUTPUT}, and vice versa.

Nonlinearity (ELIN)

As the amount of field applied to the part changes, the sensitivity of the device can also change slightly. This is referred to as linearity error, E_{LIN} (see Figure 10). Consider two currents, I_1 (1/2 FS) and I_2 (FS). Ideally, the sensitivity of the device is the same for both fields. Linearity error is calculated as the percent of change in sensitivity from one field to another. Error is calculated separately for positive $(E_{LIN(+)})$ and negative $(E_{LIN(-)})$ currents, and the percent errors are defined as:

$$E_{\text{LIN}(\pm)} = \left(1 - \frac{\text{Sense}_{I2\pm}}{\text{Sens}_{I1\pm}}\right) \times 100\%$$

where:

- Sens_{IX+} = $\frac{V_{IOUT(IX+)} V_{REF}}{I_{X+}}$, Sens_{IX-} = $\frac{V_{IOUT(IX-)} V_{REF}}{I_{..}}$, and
- Ix are positive and negative currents through I_P, such that $|I_{+2}| = 2 \times |I_{+1}|$, and $|I_{-2}| = 2 \times |I_{-1}|$. $E_{LIN} = max(E_{LIN(+)}, E_{LIN(-)})$.

Total Output Error (E_{TOT})

The total output error is the current measurement error from the sensor IC as a percentage of the actual applied current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current applied to the device, or simplified to:

$$E_{TOT} = \frac{V_{IOUT(ACTUAL)} - (Sens_{(IDEAL)} \times I_{PR} + V_{REF})}{(Sens_{(IDEAL)} \times I_{PR})} \times 100$$

Total output error incorporates all sources of error and is a function of current. At relatively high currents, total output error is mostly due to sensitivity error. At relatively low inputs, total output error is mostly due to offset voltage (V_{OE}). At I = 0 A, total output error approaches infinity due to the offset. An example of total error at FS can be observed in Figure 10.

NOTE: Total output error approaches infinity as the amount of applied field approaches 0 A.

Power Supply Offset Error (V_{PS})

Power supply offset error or $V_{OE(PS)}$ is defined as the offset error in mV between V_{CC} and $V_{CC}\pm10\%$ V_{CC} . For a 5 V device, this is 5 to 4.5 V and 5 to 5.5 V. For a 3.3 V device, this is 3.3 to 3 V and 3.3 to 3.6 V.

Offset Power Supply Rejection Ratio (PSRR₀)

The offset power supply rejection ratio, PSRR_O, is defined as 20 × log of the ratio of the change of QVO in volts over a $\pm 100 \text{ mV}$ variable AC V_{CC} centered at 5 V, reported as dB in a specified frequency range. This is an AC version of the V_{OE(PS)} parameter. The equation is:

$$PSRR_{O} = 20 \times \log\left(\frac{\Delta QVO}{\Delta V_{CC}}\right)$$

Power Supply Sensitivity Error (E_{PS})

Power supply sensitivity error, $E_{Sens(PS)}$, is defined as the percentage of sensitivity error measured between V_{CC} and $V_{CC} \pm 10\%$. For a 5 V device, this is 5 to 4.5 V and 5 to 5.5 V. For a 3.3 V device, this is 3.3 to 3 V and 3.3 to 3.6 V.

Sensitivity Power Supply Rejection Ratio (PSRR_s)

The sensitivity power supply rejection ratio, PSRR_S, is defined as 20 × log of the ratio of the percentage of change in sensitivity over the percentage of change in V_{CC} (±100 mV variable AC V_{CC} centered at 5 V), reported as dB in a specified frequency range. This is the AC version of the $E_{Sens(PS)}$ parameter. The equation is:

$$PSRR_{S} = 20 \times \log\left(\frac{\Delta\%Sens}{\Delta V_{CC}}\right)$$

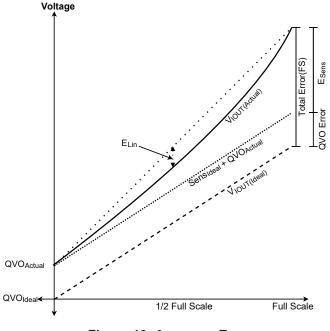


Figure 10: Accuracy Error

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

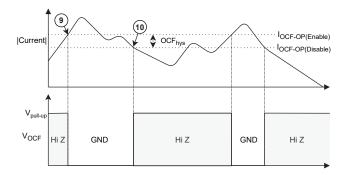
FAULT BEHAVIOR

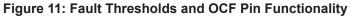
Overcurrent Fault (OCF)

As the output swings, if the sensed current exceeds its comparator threshold, the overcurrent fault pin triggers with an active low flag. This is internally compared with either the factory-programmed thresholds or the VOC voltage when $V_{VOC} > 0.1$ V. This flag trips symmetrically for the positive and negative OCF operating point.

The implementation for the OCF circuitry is accurate over temperature and does not require further temperature compensation because it is dependent on the Sens and V_{OFF} parameters that are factory-trimmed flat over temperature.

OVERCURRENT FAULT OPERATING RANGE/POINT


(I_{OCF-OR}, I_{OCF-OP})


Overcurrent fault operating range is the functional range in which the OCF thresholds can be set in terms of percentage of full-scale output swing. The overcurrent fault operating point is the specific point at which the OCF trigger occurs, and it is set by either V_{VOC} or the factory default setting. The I_{OCF-OP} can be observed in Figure 11 as [9] along with the fault pin functionality.

OVERCURRENT FAULT HYSTERESIS (IOCF-HYST)

Overcurrent fault hysteresis, I_{OCF-HYST}, is defined as the magnitude of the percentage of FS that must be reduced before a fault assertion is cleared. This can be observed as the separation between voltages [9] and [10] in Figure 11.

NOTE: The mask and hold functions are independent of each other. The ACS37002 comes standard with an OCF_{HYS} of 120 mV (on the output), or 6%FS for a 5 V device and 9%FS for a 3.3 V device.

VOLTAGE OVERCURRENT PIN (VOC)

The fault trip points can be set using the VOC pin as the direct analog input for the fault trip point. For bidirectional devices, the VOC pin voltage can be set using resistor dividers from V_{REF} . The fault performance is valid when V_{VOC} is within the VOC operating voltage range or < 0.1 V. If voltage is beyond the defined valid performance region, the device responds with varied results. For a 5 V bidirectional device: If the VOC pin is set to 0.5 V, the minimum trip point, $I_{FAULT(min)}$, is selected; if the VOC pin is set to 2 V, the maximum trip point, $I_{FAULT(max)}$, is selected, as defined in the Performance Characteristic table. All voltages between 0.5 and 2 V for the 5 V option, and between 0.33 and 1.321 V for the 3.3 V option, can be used to linearly select a trip point between the minimum and maximum levels, as shown in Figure 12. When $V_{OC} < 0.1$ V, the internal EEPROM fault level is used.

The resulting equation for the fault is:

$$OCF_{\%FS} [\%] = \frac{V_{OC(V_{CC})} [V]}{V_{OC(V_{CC})100\%} [V]} \times 100 [\%]$$
$$I_{OCF} [A] = OCF_{\%FS} [\%] \times I_{PR} [A]$$

Table 1: $V_{OC(Vcc)}$ Thresholds and Corresponding Percentage of the Full-Scale Output for Bidirectional and Unidirectional Operational Modes

•					
V 00	N 00	Fault Operation Point %FS			
V _{OC(3.3V)} (V)	V _{OC(5 V)} (V)	Bidirectional	Unidirectional		
<0.1		100% (factory default)	50% (factory default)		
0.330	0.5	50%	25%		
0.466	0.75	75%	37.5%		
0.661	1	100%	50%		
0.826	1.25	125%	62.5%		
0.991	1.5	150%	75%		
1.156	1.75	175%	85%		
1.321	2	200%	100%		

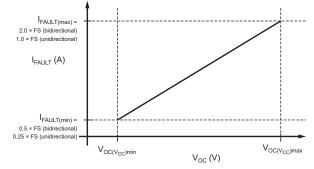
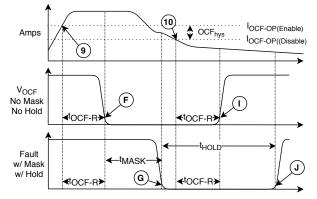


Figure 12: VOC Functional Range

OVERCURRENT FAULT ERROR (E_{OCF})

Fault error, E_{OCF} , is the error between $I_{OCF-OP(actual)}$ and $I_{OCF-OP(ideal)}$.

OVERCURRENT FAULT RESPONSE TIME (t_{OCF})


Overcurrent fault response time, t_{OCF} , is defined as the duration from when the input reaches the operating point [9] (see Figure 13), until the OCF pin reduces to less than the V_{FAULT-ON} point [G]. If the OCF mask is disabled, t_{OCF} is equal to t_{OCF-R} , which is the duration from [9] until [F].

OVERCURRENT FAULT REACTION TIME (t_{OCF-R})

Overcurrent reaction time, t_{OCF-R} , is defined as the duration from when the current input increases to greater than the I_{OCF-OP} point [9] (see Figure 13), until the OCF pin reaches the V_{OCF-ON} point [F] with the OCF mask disabled. This is the time required for the device to recognize and clear the fault, which is the duration from [10] until [I].

OVERCURRENT FAULT MASK TIME (t_{OCF-MASK})

Overcurrent fault mask time, $t_{OCF-MASK}$, is defined as the additional duration the OCF must be present beyond the t_{OCF-R} time (see Figure 13, from [F] until [G]). The purpose is to reduce nuisance tripping of the fault pin. If an OCF occurs but does not persist beyond $t_{OCF-R} + t_{OCF-MASK}$, it is not reported by the device (see Figure 14). This prevents short transient spikes from causing an erroneous OCF flag. The factory default setting is $t_{OCF-MASK} = 0 \ \mu s$.

NOTE: Mask and hold function independent of each other. Figure 13: General Fault Timing

OVERCURRENT FAULT HOLD TIME (t_{OCF-HOLD})

Overcurrent fault hold time, t_{OCF-HOLD}, is defined as the minimum OCF flag assertion duration after a sufficient OCF event. After the hold time is reached: If the OCF condition has ended (see Figure 13, from [G] until [J]), the OCF releases; if the OCF condition remains present (see Figure 15, from [G] until [J]), the fault persists. The factory default is 0 ms.

OVERCURRENT FAULT PERSIST

If a flag occurs and the fault-persist option is selected, the OCF flag is maintained until a POR event.

OCF DISABLE

If the disable overcurrent fault function is disabled, the OCF pin remains in the high-Z state.

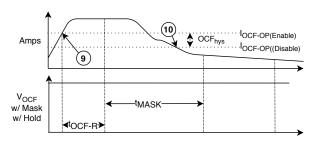


Figure 14: Fault Condition Clearing Before Mask Time Is Reached

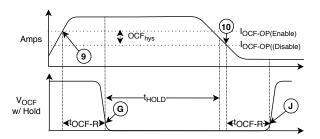


Figure 15: Fault Hold with Clear Fault After Hold Time

400 kHz, High Accuracy Current Sensor

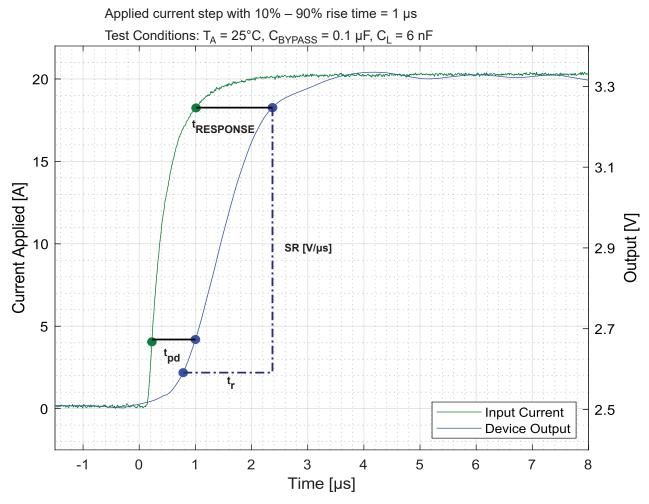
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

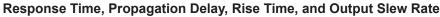
RESPONSE CHARACTERISTICS DEFINITIONS AND PERFORMANCE DATA

Response Time (t_{RESPONSE})

The time interval between a) when the sensed input current reaches 90% of its final value, and b) when the sensor output reaches 90% of its full-scale value.

Propagation Delay (t_{pd})


The time interval between a) when the sensed input current reaches 20% of its full-scale value, and b) when the sensor output reaches 20% of its full-scale value.


Rise Time (t_r)

The time interval between a) when the sensor reaches 10% of its full-scale value, and b) when the sensor reaches 90% of its full-scale value.

Output Slew Rate (SR)

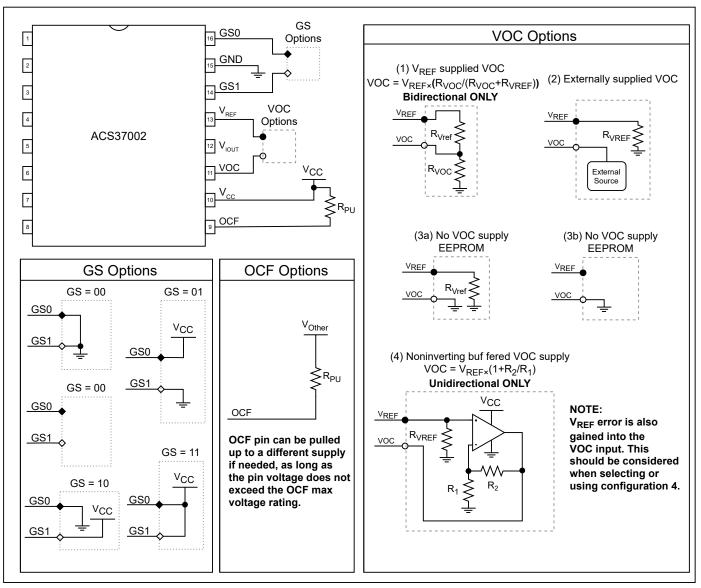
The rate of change $[V/\mu s]$ in the output voltage from a) when the sensor reaches 10% of its full-scale value, and b) when the sensor reaches 90% of its full-scale value.

Temperature Compensation

To help compensate for the effects of temperature on performance, the ACS37002 has an integrated internal temperature sensor. This sensor and compensation algorithms help to standardize device performance over the full range of optimized temperatures. This allows for room-temperature system calibration and validation of end-of-line modules.

Temperature Compensation Update Rate

A valid temperature-compensated output requires an update duration of 8 ms; that is, temperature compensations are calculated and applied every 8 ms.



400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

APPLICATION AND THEORY

Application Circuits

These configurations are simplified to the network required for functionality. For best performance, bypass and load capacitors are recommended.

Figure 16: Applications Circuits for GAIN_SEL (GSx), VOC, and Fault Pins

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

Theory and Functionality—VOC and OCF

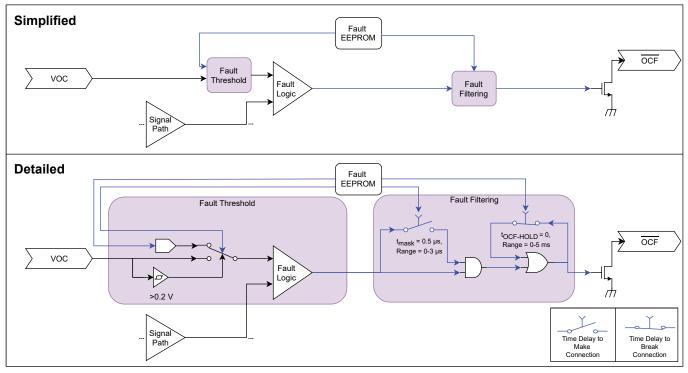


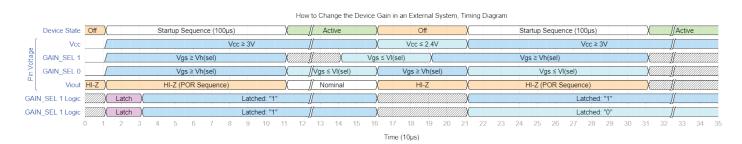
Figure 17: OCF Signal Path Simplified and Detailed Blocks of Functionality

VOC DRIVEN BY NONINVERTING BUFFERED VREF

If the VOC pin is driven by a noninverted buffered V_{REF} , it is important to consider that any error from the V_{REF} pin is gained as well. For instance, if V_{REF} error is +10 mV and gain = 4 for the noninverting operational amplifier, the VOC pin is 40 mV from the expected target. For unidirectional devices, OCF is subjected to an additional 4% error due to the error propagation from V_{REF} through the gain stage.

POWER SUPPLY DECOUPLING CAPACITOR AND OUTPUT CAPACITIVE LOADS

To maintain performance, the higher the capacitive load on the outputs (V_{REF} and V_{IOUT}), the larger the decoupling capacitor should be on the power supply (V_{CC}).


C _{LOAD}	C _{BYPASS}
0 nF	>100 nF
1 nF	>100 nF
3 nF	>1 µF
6 nF	>10 µF

Dynamically Changing Gain in a System

The ACS37002 has GAIN_SEL pins that are used to change the gain of the device on startup. If a more-dynamic gain is desired, reduce V_{CC} to less than $V_{POR(L)}$, and restart the device by returning V_{CC} to the nominal voltage with the new desired GAIN_SEL configuration. To successfully change the device gain, the GAIN_

SEL pin voltage must exceed the desired configuration voltage $(V_{H(SEL)} \text{ or } V_{L(SEL)})$ at or before $V_{CC} > V_{POR(H)}$. The GAIN_SEL pin voltage is latched at startup. After the device V_{IOUT} exits the high-Z state, a change to the pin voltage does not affect gain. The cycle time to complete this operation is up to $2 \times t_{POD}$.

400 kHz, High Accuracy Current Sensor

with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

THERMAL PERFORMANCE

Thermal Rise vs. Primary Current

Self-heating due to the flow of current should be considered during the design of any current-sensing system. As current moves through the system, the sensor, printed circuit board (PCB), and contacts to the PCB generate heat.

The thermal response is highly dependent on the PCB layout, copper thickness, cooling techniques, and profile of the injected current. The current profile includes peak current, current ontime, and duty cycle. While the data presented in this section were collected with direct current (DC), the values presented in this section can be used to approximate thermal response for both AC signals and current pulses.

The measured rise in steady-state die temperature of the ACS37002 versus continuous current at an ambient temperature, T_A , of 25 °C is shown in Figure 19. The thermal offset curves can be applied directly to other values of T_A . Conversely, the maximum continuous current at a given T_A is shown in Figure 20. The device can withstand a surge beyond the maximum current listed in Figure 21 only if such a surge does not cause the maximum junction temperature, $T_{J(MAX)}$ (165°C), to be exceeded.

The thermal capacity of the ACS37002 should be verified by the end user and is specific to the application. The maximum junction temperature, $T_{J(MAX)}$ (165°C), should not be exceeded. Further information about this application testing is available in the DC and Transient Current Capability application note on the Allegro website (https://www.allegromicro.com/en/insights-and-innovations/technical-documents/hall-effect-sensor-ic-publications/dc-and-transient-current-capability-fuse-characteristics).

Evaluation Board Layout

Thermal data collected using the ASEK37002 Evaluation Board (TED-0002825) is shown in Figure 19 and Figure 20. This board includes 750 mm² of 4 oz. copper (0.1388 mm) connected to pins 1 through 4, and to pins 5 through 8, with thermal vias connecting the layers. The top and bottom layers of the PCB are shown in Figure 21.

Gerber files for the ASEK37002 evaluation board are available for download from the Allegro website. See the Design Tools section of the ACS37002 webpage (https://www.allegromicro.com/ en/products/sense/current-sensor-ics/zero-to-fifty-amp-integratedconductor-sensor-ics/acs37002).

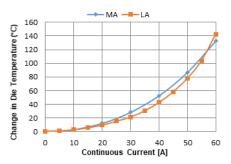
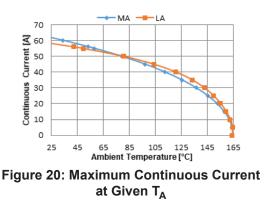
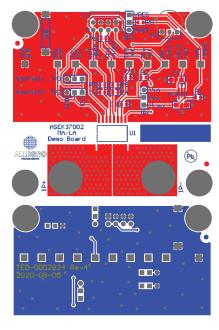




Figure 19: Self-Heating Due to Current Flow in MA and LA Packages

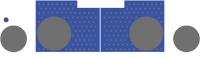


Figure 21: Top and Bottom Layers of ASEK37002 Evaluation Board

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

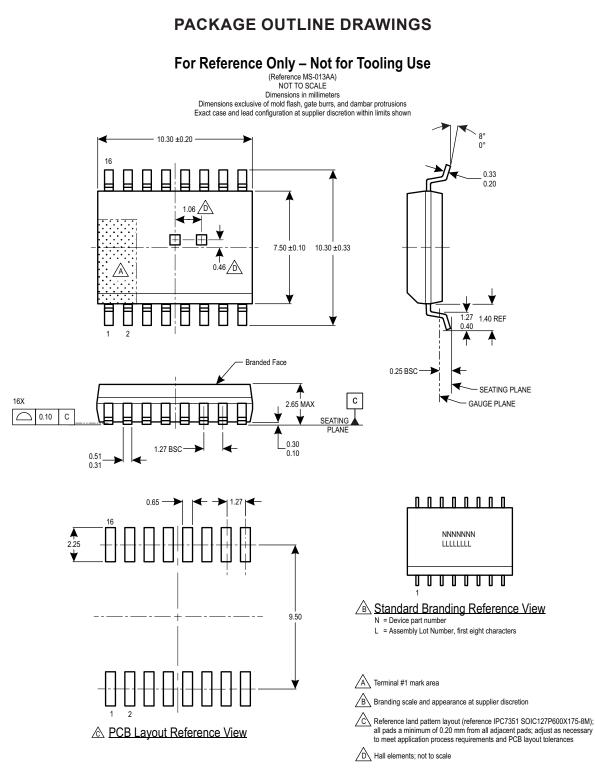
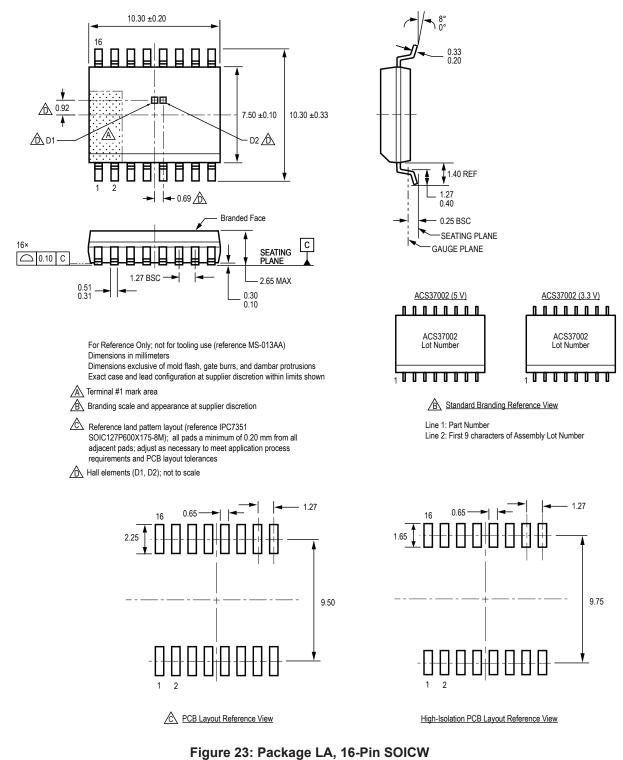
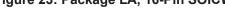




Figure 22: Package MA, 16-Pin SOICW

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

400 kHz, High Accuracy Current Sensor with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package

Revision History

Number	Date	Description
-	June 24, 2020	Initial release
1	July 8, 2020	Updated Features and Benefits, Selection Guide (page 2), Working Voltage values (page 4), Footnote 2 (pages 10-19), Voltage Overcurrent Pin section (page 30), and Branding (page 38)
2	October 16, 2020	Updated Features and Benefits, Description, and Figure 1 (page 1); added UL certification (page 2); updated Selection Guide table (page 2), Forward Output Voltage and Reverse Output Voltage symbols (page 3), Isolation Characteristics and MA Package Specific Performance tables (page 4), Supply Voltage, Supply Bypass Capacitor, Primary Conductor Resistance, Power-On Reset Voltage, Power-On Time, Undervoltage and Undervoltage Detection Threshold (page 7), Rise Time, Response Time, Propagation Delay Time, Noise Density (page 8), VOC Operating Voltage Range, OCF Reaction Time, OCF Mask, OCF Response Time (page 9); added footnote 4 (page 9); Performance Characteristic tables (pages 10-19); updated Current Sensing Range and Sensitivity values (pages 21-23); added Functional Description (pages 24-27), Definitions of Operating and Performance Characteristics (pages 28-32); updated Figure 20 (page 34),Theory and Functionality (pages 35-36).
3	December 16, 2020	Updated UVD and OVD Threshold test conditions (page 7); removed Overshoot and Settling Time sections and Figure 19 (page 33); fixed Figure 18 (page 33) graphical issue; updated Figure 19 (page 34), and other minor editorial updates.
4	May 14, 2021	Updated Features and Benefits, Description, Figure 1 caption (pages 1-2), Table of Contents (page 3); added Maximum Continuous Current (page 4), MSL Rating (page 5); updated Dielectric Strength Test Voltage (page 5), Reference Resistive Load, Primary Conductor Inductance, Typical Buffer Resistance (page 8), Internal Bandwidth, Rise Time, Response Time, Propagation Delay, Noise Density, Noise, Power Supply Rejection Ratio Offset, and Power Supply Rejection Ratio Sens test conditions (page 9), OCF Response Time test conditions and footnote 2 (page 10), Zero Current Output Voltage (page 23), Current Sensing Range, Overcurrent Fault Operating Range, and Zero Current Output Voltage (page 24), Functional Description Diagrams (pages 25-29), Definition of Operating and Performance Characteristics diagrams and equations (pages 30-32), Fault Behavior Diagrams (page 34), Response Characteristics Definitions and Performance Data section (pages 35-36), Application and Theory diagram (page 38), Thermal Performance diagram (page 40), and other minor editorial updates.
5	June 24, 2021	UVD functionality disabled (all pages); updated part numbers (pages 2, 11-14, 19); updated Isolation and Package Characteristics tables (page 5)
6	September 14, 2021	Updated part numbering schematic (page 2) and other minor editorial updates (pages 2, 4, 9, 38)
7	November 10, 2021	Removed footnote 4 (page 2); updated Power Supply Offset Error (page 9), Total Error and Total Error Components and Total Error and Total Error Components Including Lifetime Drifts values and footnotes (pages 21-24); updated Total Output Error equation (page 30), and package drawing (page 40).
8	January 19, 2024	Added Thermal Characteristics (page 4); updated MA and LA Isolation Characteristics tables (page 5); removed Output Drive characteristic (page 9); added mean ±3 sigma values to Performance Characteristics tables (pages 11-24); updated Selection Guide (page 2); removed Maximum Continuous Current from Absolute Maximum Ratings table (page 3); minor editorial updates (all pages)
9	August 6, 2024	Updated Output Buffer Resistance in Common Electrical Characteristics table (page 8)
10	February 6, 2025	Corrected withstand voltages (pages 1 and 2), corrected UL62368-1:2014 edition (changed edition 2 to edition 3, page 2), corrected descriptions of hot and cold conditions for sensitivity error (page 29), and made minor editorial changes throughout, including use of all capitals for register address and minimization of capitalization elsewhere, removal of future tense, and removal of archaic terminology ("normal" changed to "typical")

Copyright 2025, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

