

N-channel 400 V, 4.5 Ω typ., 0.43 A, SuperMESH™ Power MOSFET in a PowerFLAT™ 5x5 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V_{DS}	$R_{DS(on)}$ max.	I_D	P_{TOT}
STL3NK40	400 V	5.5 Ω	0.43 A	2.5 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized

Applications

- Switching applications

Description

This high voltage device is an N-channel Power MOSFET developed using the SuperMESH™ technology by STMicroelectronics, an optimization of the well-established PowerMESH™. In addition to a significant reduction in on-resistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1: Device summary

Order code	Marking	Package	Packing
STL3NK40	3NK40	PowerFLAT™ 5x5	Tape and reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves)	6
3	Test circuits	8
4	Package information	9
4.1	PowerFLAT™ 5x5 package information	10
5	Revision history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	400	V
V_{DGR}	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	400	V
V_{GS}	Gate-source voltage	± 20	V
$I_D^{(1)}$	Drain current (continuous) at $T_{pcb} = 25 \text{ }^\circ\text{C}$	0.43	A
	Drain current (continuous) at $T_{pcb} = 100 \text{ }^\circ\text{C}$	0.27	A
$I_{DM}^{(2)}$	Drain current (pulsed)	1.72	A
$P_{TOT}^{(1)}$	Total dissipation at $T_{pcb} = 25 \text{ }^\circ\text{C}$	2.5	W
$dv/dt^{(3)}$	Peak diode recovery voltage slope	4.5	V/ns
T_j	Operating junction temperature range	- 55 to 150	${}^\circ\text{C}$
T_{stg}	Storage temperature range		

Notes:(1)When mounted on FR-4 board of 1 inch², 2 oz Cu (t < 100 s).

(2)Pulse width limited by safe operating area.

(3) $I_{SD} \leq 0.43 \text{ A}$, $di/dt \leq 200 \text{ A}/\mu\text{s}$; $V_{DD} < 320 \text{ V}$.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-pcb}^{(1)}$	Thermal resistance junction-pcb	50	${}^\circ\text{C}/\text{W}$

Notes:(1)When mounted on 1 inch² FR-4 board, 2 oz Cu (t < 100 s).

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T_{jmax})	0.43	A
E_{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ }^\circ\text{C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	60	mJ

2 Electrical characteristics

$T_C = 25^\circ\text{C}$ unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(\text{BR})\text{DSS}}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	400			V
I_{DSS}	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}$, $V_{DS} = 400 \text{ V}$			1	μA
		$V_{GS} = 0 \text{ V}$, $V_{DS} = 400 \text{ V}$ $T_C = 125^\circ\text{C}$ ⁽¹⁾			50	μA
$I_{GS\text{SS}}$	Gate body leakage current	$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 20 \text{ V}$			± 10	μA
$V_{GS(\text{th})}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu\text{A}$	0.8	1.6	2	V
$R_{DS(\text{on})}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}$, $I_D = 0.22 \text{ A}$		4.5	5.5	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
C_{iss}	Input capacitance	$V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$, $V_{GS} = 0 \text{ V}$	-	128	200	pF
C_{oss}	Output capacitance		-	16	30	pF
C_{rss}	Reverse transfer capacitance		-	4	6	pF
R_G	Gate input resistance	$f = 1 \text{ MHz}$ gate DC bias = 0 test signal level = 20 mV open-drain	-	12		pF
Q_g	Total gate charge	$V_{DD} = 320 \text{ V}$, $I_D = 1.4 \text{ A}$ $V_{GS} = 0$ to 10 V (see Figure 13: "Test circuit for gate charge behavior")	-	8.7	13	nC
Q_{gs}	Gate-source charge		-	0.9	-	nC
Q_{gd}	Gate-drain charge		-	3.8	-	nC

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(\text{on})}$	Turn-on delay time	$V_{DD} = 200 \text{ V}$, $I_D = 0.7 \text{ A}$, $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (see Figure 12: "Test circuit for resistive load switching times" and Figure 17: "Switching time waveform")	-	3	-	ns
t_r	Rise time		-	4	-	ns
$t_{d(\text{off})}$	Turn-off delay time		-	18	-	ns
t_f	Fall time		-	16	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain current		-		0.43	A
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		1.72	A
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 0.43$ A, $V_{GS} = 0$ V	-		1.2	V
t_{rr}	Reverse recovery time	$I_{SD} = 1.4$ A, $di/dt = 100$ A/ μ s, $V_{DD} = 20$ V (see <i>Figure 14: "Test circuit for inductive load switching and diode recovery times"</i>)	-	166		ns
Q_{rr}	Reverse recovery charge		-	300		nC
I_{RRM}	Reverse recovery current		-	3.6		A
t_{rr}	Reverse recovery time	$I_{SD} = 1.4$ A, $di/dt = 100$ A/ μ s $V_{DD} = 20$ V, $T_j = 150$ °C (see <i>Figure 14: "Test circuit for inductive load switching and diode recovery times"</i>)	-	176		ns
Q_{rr}	Reverse recovery charge		-	340		nC
I_{RRM}	Reverse recovery current		-	3.8		A

Notes:

(1)Pulse width limited by safe operating area.

(2)Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

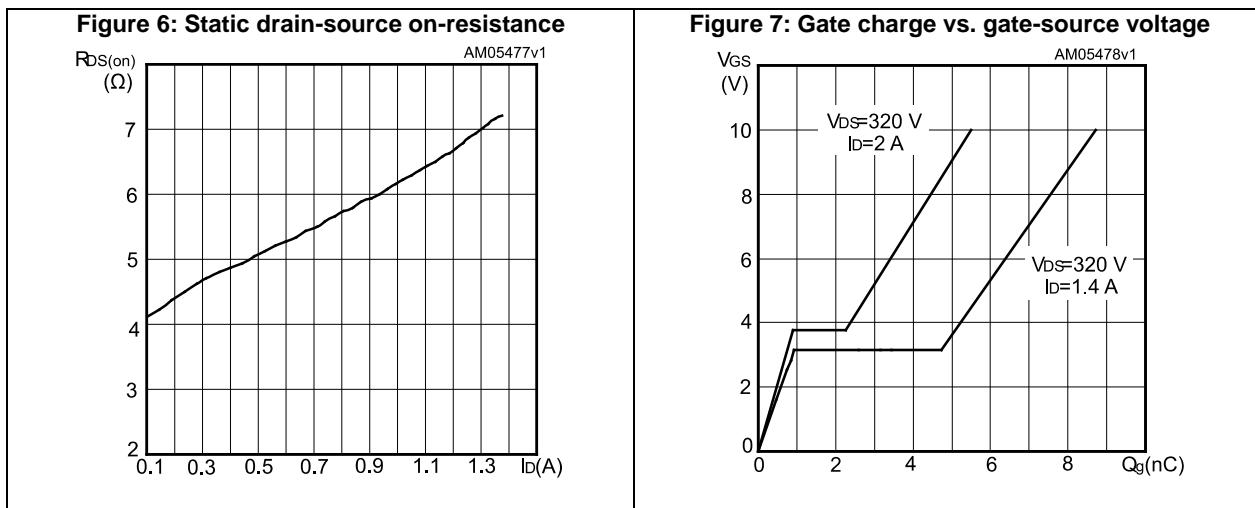
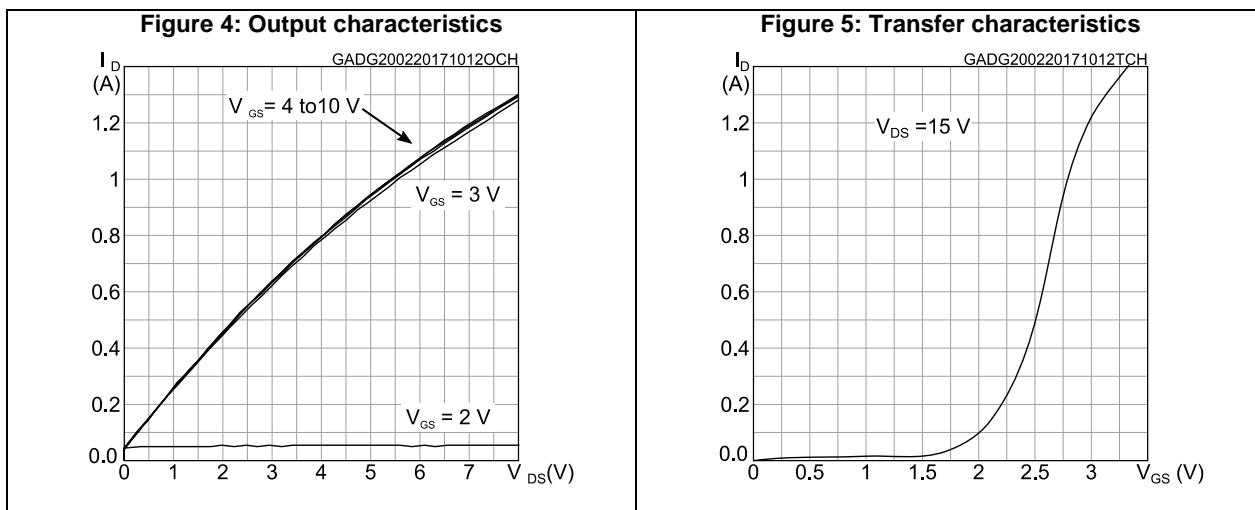
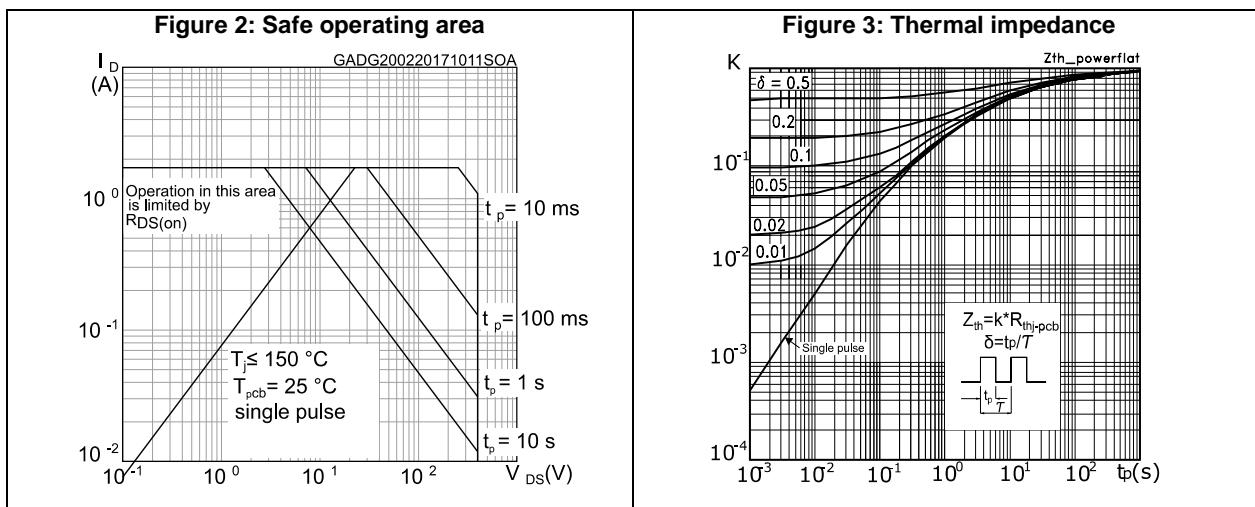




Figure 8: Capacitance variations

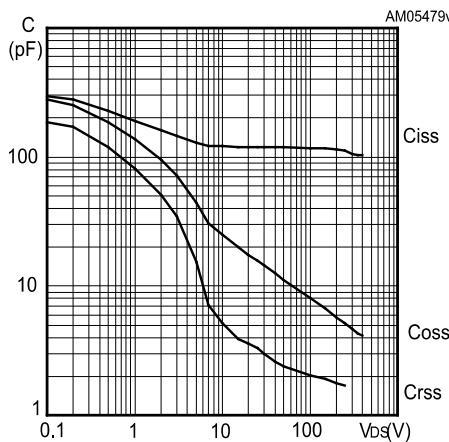
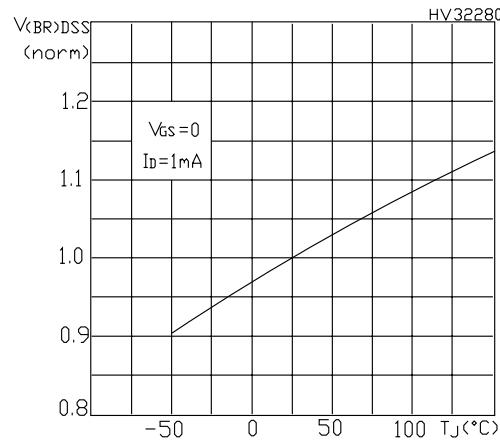


Figure 9: Normalized $V_{(BR)DSS}$ vs. temperature

Figure 10: Normalized gate threshold voltage vs. temperature

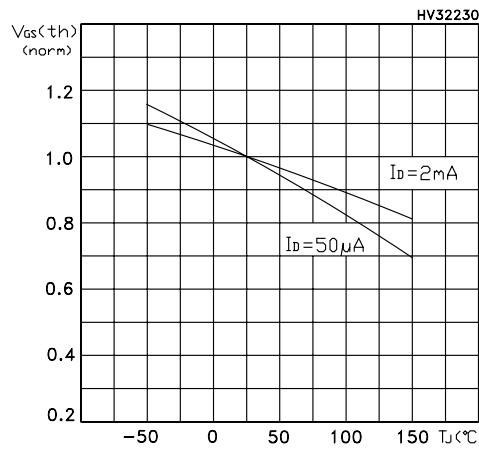
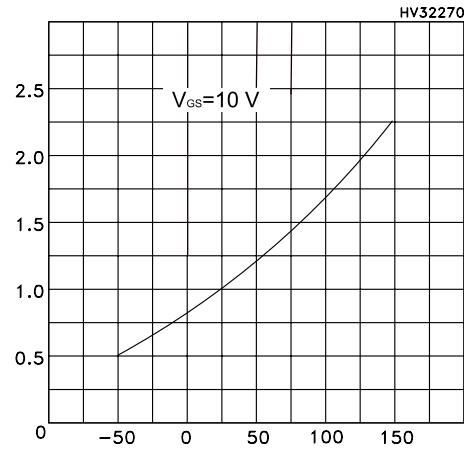



Figure 11: Normalized on-resistance vs. temperature

3 Test circuits

Figure 12: Test circuit for resistive load switching times

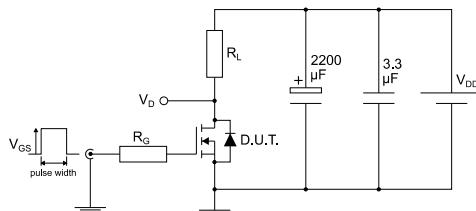


Figure 13: Test circuit for gate charge behavior

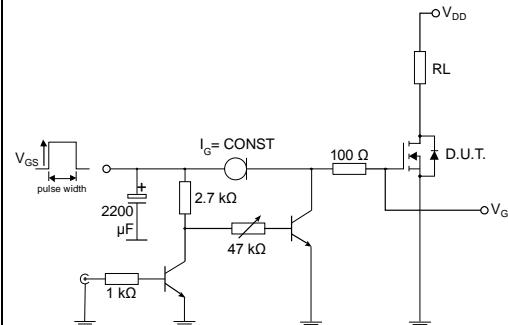


Figure 14: Test circuit for inductive load switching and diode recovery times

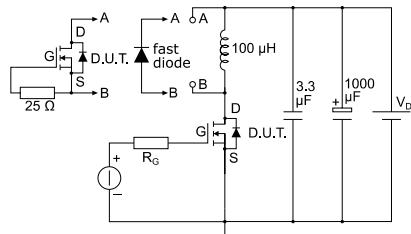


Figure 15: Unclamped inductive load test circuit

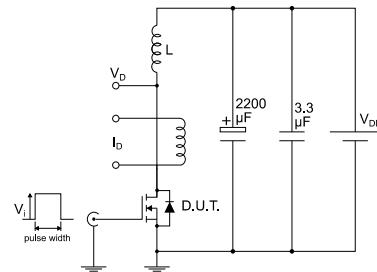


Figure 16: Unclamped inductive waveform

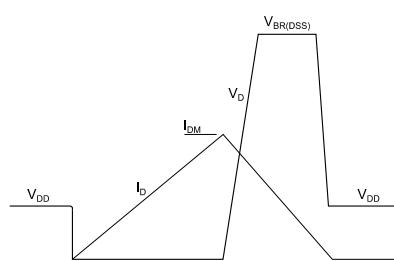
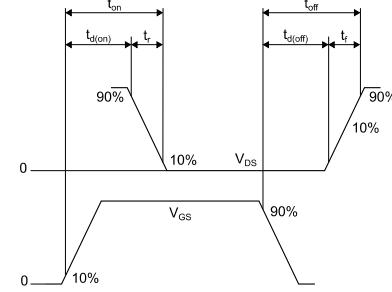



Figure 17: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x5 package information

Figure 18: PowerFLAT™ 5x5 package outline

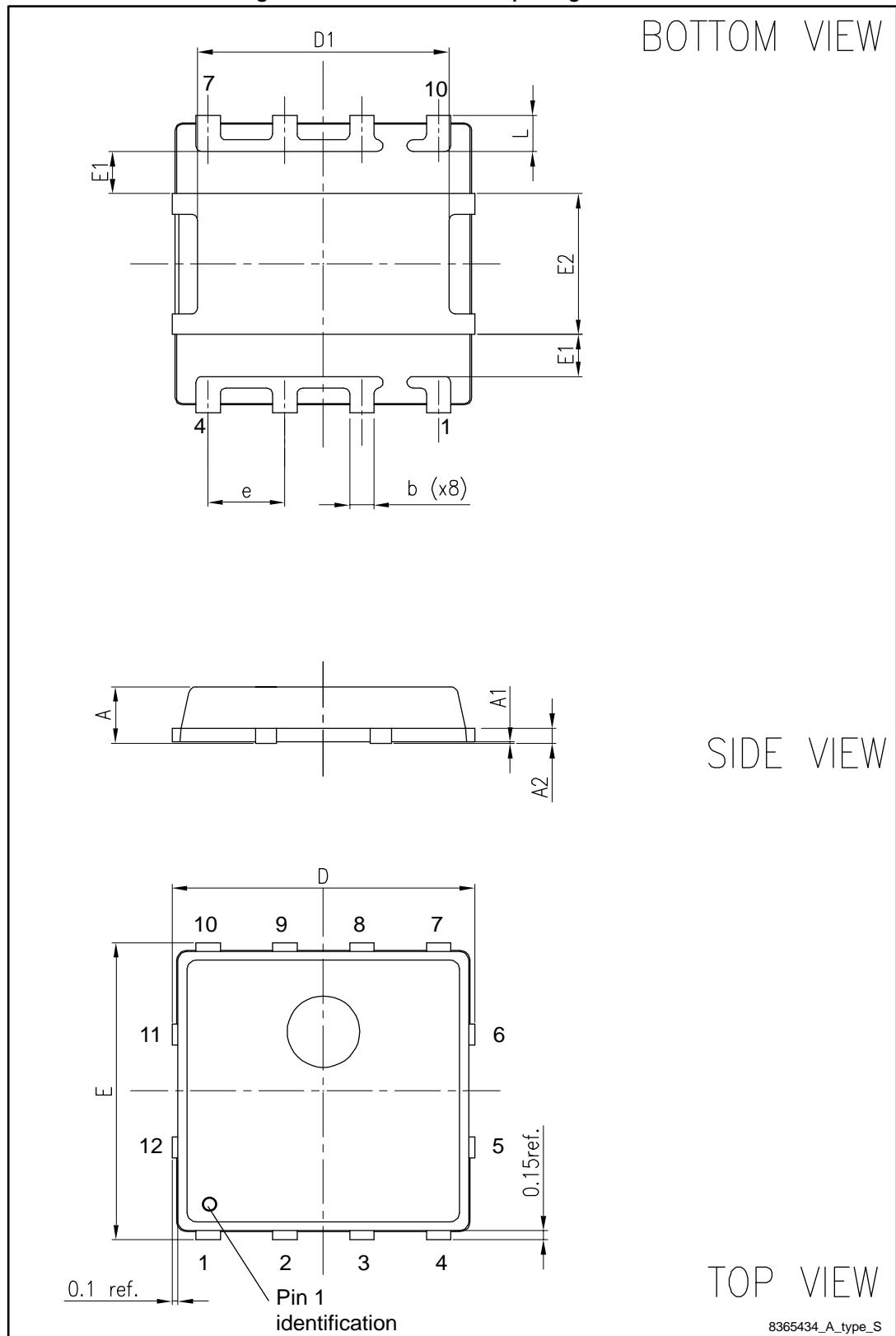
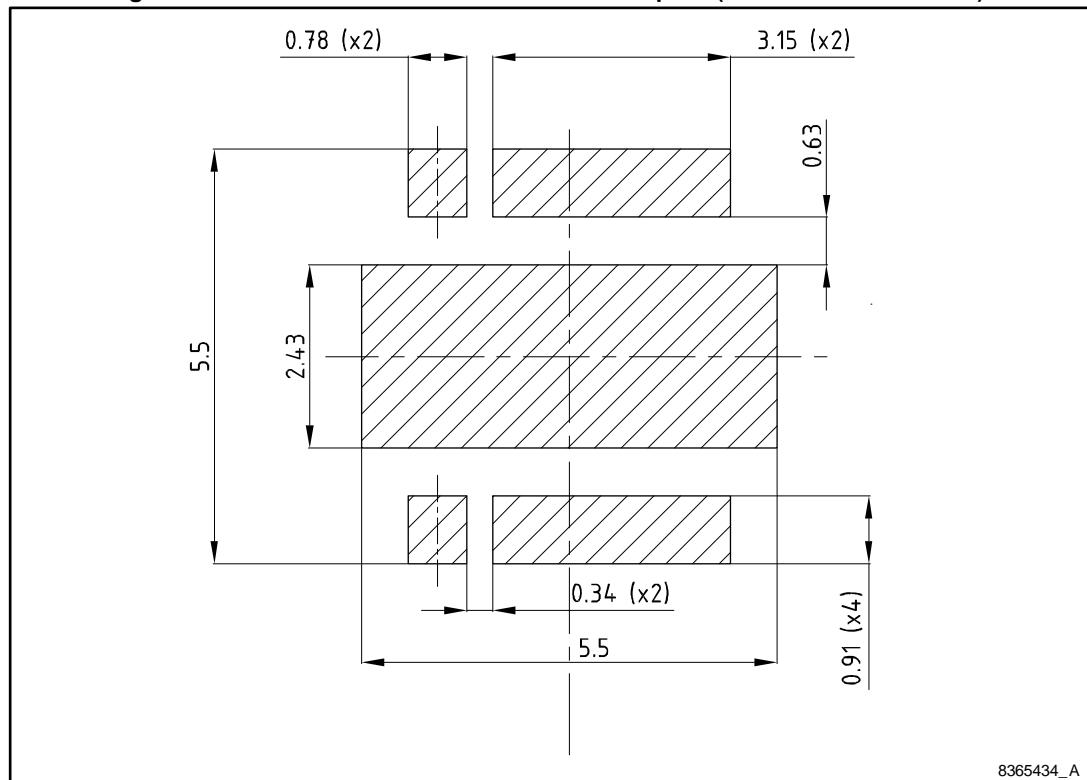



Table 9: PowerFLAT 5x5 package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	0.80		1.0
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.00	
D1	4.05		4.25
E		5.00	
E1	0.64		0.79
E2	2.25		2.45
e		1.27	
L	0.45		0.75

Figure 19: PowerFLAT™ 5x5 recommended footprint (dimensions are in mm)

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
18-Sep-2009	1	First release.
29-Aug-2013	2	Updated: <i>Section 4: Package mechanical data</i> Minor text changes
20-Feb-2017	3	Removed PowerFLAT™ 5x5 type C package information and cover image. Updated Table 6: "Dynamic" and Table 8: "Source-drain diode" . Updated Section 2.1: "Electrical characteristics (curves)" . Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

