Onsemi

Power Factor Correction Controller

FAN7527B

Description

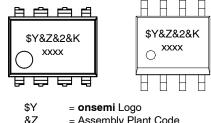
The FAN7527B provides simple and high-performance active Power Factor Correction (PFC). The FAN7527B is optimized for electronic ballasts and low-power, high-density power supplies that require minimum board size, reduced external components, and low power dissipation. Because the R/C filter is included in the current-sense block, an external R/C filter is not necessary. Special circuitry prevents no-load runaway conditions. Regardless of the supply voltage, the output drive clamping circuit limits the overshoot of the power MOSFET gate drive, which improves system reliability.

Features

- Internal Startup Timer
- Internal R/C Filter Eliminates the Need for External R/C Filter
- Precise Adjustable Output Over-Voltage Protection
- Zero Current Detector
- One Quadrant Multiplier
- Trimmed 1.5% Internal Band Gap Reference
- Under-Voltage Lockout with 3 V of Hysteresis
- Totem–Pole Output with High–State Clamp
- Low Startup and Operating Current
- 8-Pin SOP or 8-Pin DIP
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Electronic Ballast
- SMPS



PDIP8 9.42x6.38, 2.54P CASE 646CM

SOIC8 CASE 751EB

= Assembly Plant Code

&2 = 2-Digit Date Code

&K = Lot Run Traceability Code

XXXX = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FAN7527BN	PDIP8 (Pb-Free)	3000 / Tube
FAN7527BMX	SOIC8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NOTE: Operating Temperature Range of both devices is -25 to +125°C

1

BLOCK DIAGRAM

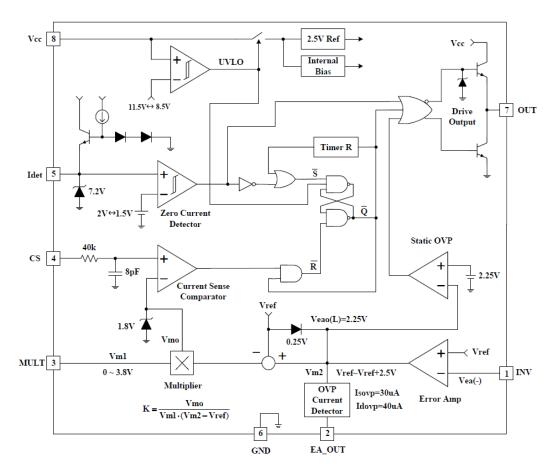


Figure 1. Block Diagram

PIN CONFIGURATION

Figure 2. Pin Configuration

PIN DEFINITIONS

Pin #	Name	Description	
1	INV	Inverting input of the error amplifier. The output of the boost converter should be resistively divided to 2.5 V and connected to this pin.	
2	EA_OUT	Output of the error amplifier. Feedback compensation network is placed between this pin and the INV pin.	
3	MULT	Input to the multiplier stage. The full-wave rectified AC voltage is divided to less than 2 V and is connected to this pin.	
4	CS	Input of the PWM comparator. The MOSFET current is sensed by a resistor and the resultin voltage is applied to this pin. An internal R/C filter is included to reject high-frequency noise	
5	ldet	Zero Current Detection (ZCD) input	
6	GND	Ground	
7	OUT	Gate driver output. Push-pull output stage is able to drive the power MOSFET with a peak current of 500 mA	
8	V _{CC}	Supply voltage of driver and control circuits	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Max.	Unit
Vcc	Supply Voltage			30	V
Ioh, Iol	Peak Drive Output Current			±500	mA
ICLAMP	Driver Output Clamping Diodes $V_O > V_{CC}$ or '	V _O < -0.3 V		±10	mA
IDET	Detector Clamping Diodes			±10	mA
VIN	Error Amplifier Multiplier and Comparator Input Voltages		-0.3	6.0	V
TJ	Operation Junction Temperature			+150	°C
Topr	Operating Temperature Range		-25	+125	°C
Тѕтс	Storage Temperature Range		-65	+150	°C
PD	Power Dissipation	SOIC8		0.8	W
		PDIP8		1.1	W
Θја	Thermal Resistance Junction-Ambient	SOIC8		150	°C/W
		PDIP8		110	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TEMPERATURE CHARACTERISTICS

 $(-25^\circ C \leq T_A \leq 125^\circ C)$

Symbol	Parameter		Тур.	Max.	Unit
$\Delta VREF$	Temperature Stability Reference Voltage (V _{REF})		20		mV
ΔΚ/ΔΤ	T Temperature Stability for Multiplier Gain (K)		-0.2		% / °C

ELECTRICAL CHARACTERISTICS

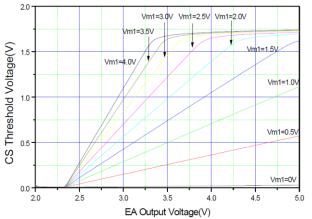
(V_{CC} = 14 V, $-25^{\circ}C \leq T_A \leq 125^{\circ}C,$ unless otherwise stated.)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
JNDER-VOL		i		.		
Vth(st)	Start Threshold Voltage	V _{CC} Increasing	10.5	11.5	12.5	V
HY(st)	UVLO Hysteresis		2	3	4	V
SUPPLY CUP	RENT SECTION		•		1	
Isт	Startup Supply Current	$V_{CC} = V_{th(st)} - 0.2 V$	10	60	100	μA
Icc	Operating Supply Current	Output Not Switching		3	6	mA
ICC(OVP)	Operating Current at OVP	V _{INV} = 3 V		1.7	4.0	mA
IDCC	Dynamic Operating Supply Current	50 kHz, C _I = 1 nF		4	8	mA
ERROR AMP	LIFIER SECTION					
VREF	Voltage Feedback Input Threshold	I_{REF} = 0 mA, T_A = 25°C	2.465	2.500	2.535	V
		$25^\circ C \leq T_A \leq 125^\circ C$	2.440	2.500	2.560	
$\Delta VFEF1$	Line Regulation	$14~V \leq V_{CC} \leq 25~V$		0.1	10.0	mV
ΔV FEF3	Temperature Stability of V _{REF} (Note 1)	$-25^\circ C \leq T_A \leq 125^\circ C$		20		mV
İb(ea)	Input Bias Current		-0.5		0.5	μA
ISOURCE	Output Source Current	V _{M2} = 4 V	-2	-4		mA
Isink	Output Sink Current	V _{M2} = 4 V	2	4		mA
VEAO(H)	Output Upper Clamp Voltage (Note 1)	I _{SOURCE} = 0.1 mA		6		V
VEAO(L)	Output Lower Clamp Voltage (Note 1)	I _{SINK} = 0.1 mA		2.25		V
G _V	Large Signal Open-Loop Gain (Note 1)		60	80		dB
PSRR	Power Supply Rejection Ratio (Note 1)	$14~V \leq V_{CC} \leq 25~V$	60	80		dB
GBW	Unity Gain Bandwidth (Note 1)			1		MHz
SR	Slew Rate (Note 1)			0.6		V/μs
MULTIPLIER	SECTION					
lb(m)	Input Bias Current (Pin 3)		-0.5		0.5	μA
ΔV_{M1}	M1 Input Voltage Range (Pin 3)				3.8	V
ΔV_{M2}	M2 Input Voltage Range (Pin 2)		VREF		V _{REF} +2.5	V
K	Multiplier Gain (Note 1)	V _{M1} = 1 V, V _{M2} = 3.5 V	0.36	0.44	0.52	1 / V
VOMAX(m)	Maximum Multiplier Output Voltage	$V_{INV} = 0 V, V_{M1} = 4 V$	1.65	1.80	1.95	V
$\Delta K / \Delta T$	Temperature Stability of K (Note 1)	$-25^\circ C \leq T_A \leq 125^\circ C$		-0.2		% / °C
CURRENT SI	ENSE SECTION					
VIO(CS)	Input Offset Voltage (Note 1)	V _{M1} = 0 V, V _{M2} = 2.2 V	-10	3	10	mV
lb(CS)	Input Bias Current	$0~V \leq V_{CS} \leq 1.7~V$	-1.0	-0.1	1.0	μA
tD(CS)	Current Sense Delay to Output (Note 1)			200	500	ns
ZERO CURR	ENT DETECT SECTION					
VTH(DET)	Input Voltage Threshold	V _{DET} Increasing	1.7	2.0	2.3	V
HY(DET)	Detect Hysteresis		0.2	0.5	0.8	V
VCLAMP(I)	Input Low Clamp Voltage	I _{DET} = -100 μA	0.45	0.75	1.00	V
VCLAMP(H)	Input High Clamp Voltage	I _{DET} = 3 mA	6.5	7.2	7.9	V

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 14 V, $-25^{\circ}C \leq T_A \leq 125^{\circ}C,$ unless otherwise stated.)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ZERO CURRI	ENT DETECT SECTION			-		-
lb(DET)	Input Bias Current	$1 \text{ V} \le \text{V}_{\text{DET}} \le 5 \text{ V}$	-1.0	-0.1	1.0	μA
ICLAMP(D)	Input High/Low Clamp Diode Current (Note 1)				±3	mA
OUTPUT SEC	CTION					
Vон	Output Voltage High	I _O = -10 mA	10.5	11.0		V
Vol	Output Voltage Low	I _O = 10 mA		0.8	1.0	V
t _R	Rising Time (Note 1)	C _L = 1 nF		130	200	ns
t _F	Falling Time (Note 1)	C _L = 1 nF		50	120	ns
Vomax(0)	Maximum Output Voltage	V_{CC} = 20 V, I_{O} = 100 μ A	12	14	16	V
Vomin(o)	Output Voltage with UVLO Activated	V _{CC} = 5 V, I _O = 100 μA			1	V
RESTART TI	MER SECTION					
tD(RST)	Restart Time Delay	V _{M1} = 1 V, V _{M2} = 3.5 V		150		μs
OVER-VOLT/	AGE PROTECTION SECTION					
ISOVP	Soft OVP Detecting Current		25	30	35	μA
IDOVP	Dynamic OVP Detecting Current		35	40	45	μA
Vovp	Static OVP Threshold Voltage	V _{INV} = 2.7 V	2.10	2.25	2.40	V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. These parameters, although guaranteed, are not 100% tested in production.

Multiplier Gain:

$$\mathsf{K} = \frac{\mathsf{Pin4_Threshold}}{\mathsf{V}_{\mathsf{M1}} \times \left(\mathsf{V}_{\mathsf{M2}} - \mathsf{V}_{\mathsf{REF}}\right)}$$

where $V_{M1} = V_{PIN3}$, $V_{M2} = V_{PIN2}$

TYPICAL PERFORMANCE CHARACTERISTICS

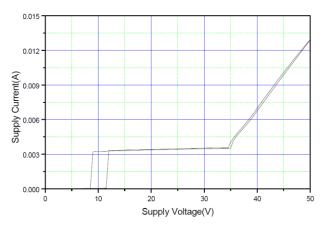


Figure 5. Supply Current vs. Supply Voltage

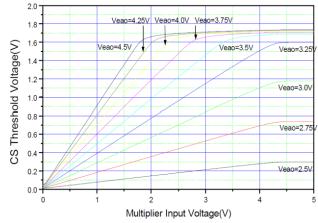


Figure 4. Multiplier Input Voltage vs. **Current Sensing Threshold**

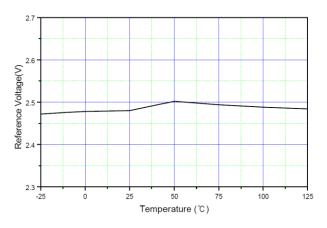


Figure 6. Reference Voltage vs. Temperature

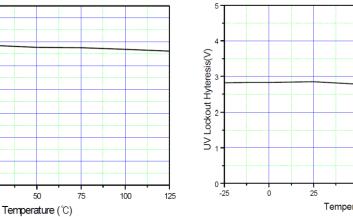
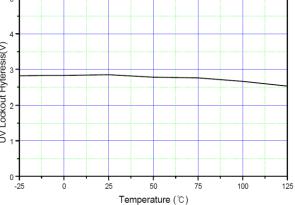



Figure 7. Startup Threshold vs. Temperature

. 25

0

14 12.

10-

8-6. 4. 2-

0**+** -25

Startup Threshold(V)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

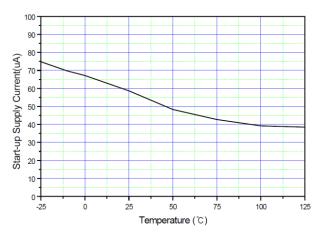


Figure 9. Startup Supply Current vs. Temperature

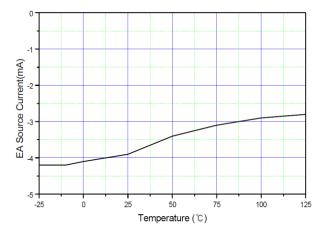


Figure 10. Error Amplifier Source Current

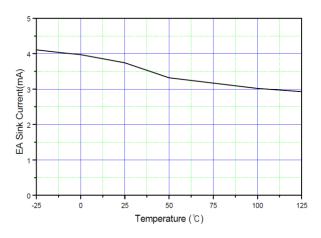


Figure 11. Error Amplifier Sink Current vs. Temperature

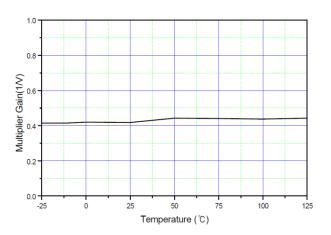


Figure 13. Multiplier Gain vs. Temperature

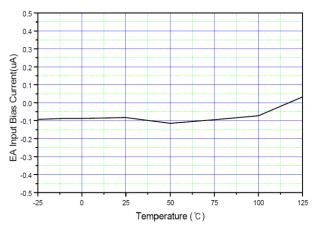
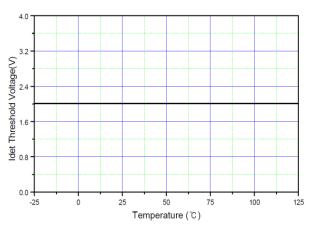
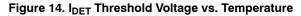
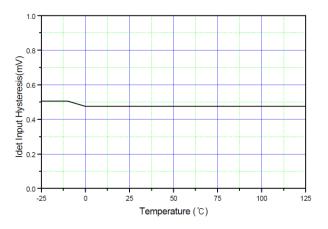





Figure 12. Error Amplifier Input Bias Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

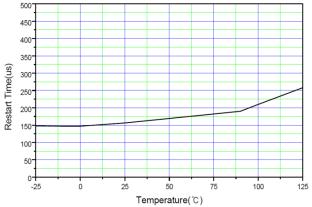


Figure 15. IDET Input Hysteresis vs. Temperature

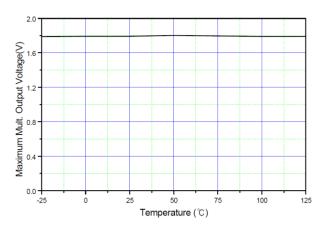


Figure 17. Maximum Multiplier Output Voltage vs. Temperature

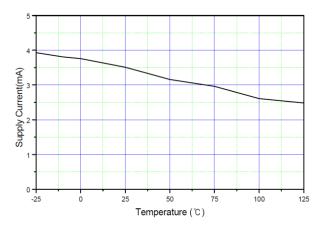
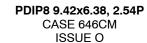
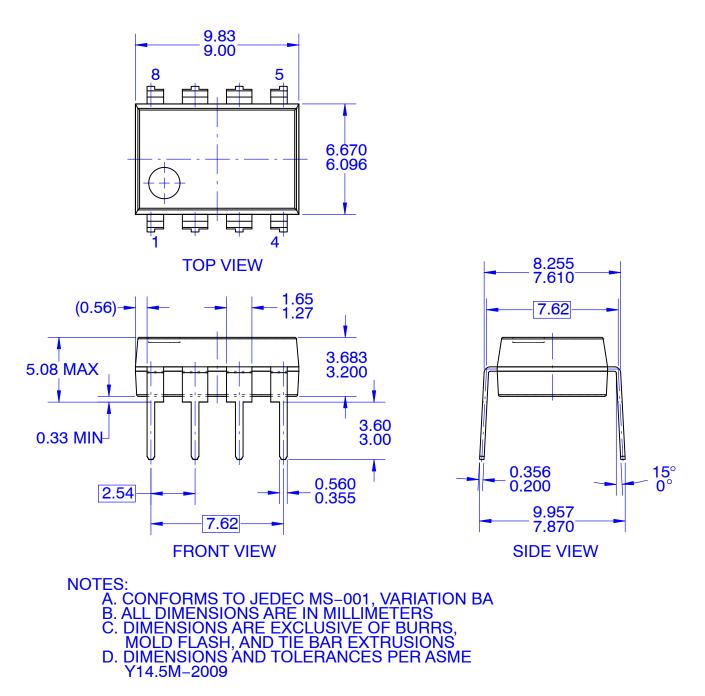




Figure 18. Supply Current vs. Temperature



DATE 31 JUL 2016

DOCUMENT NUMBER:	98AON13468G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PDIP8 9.42X6.38, 2.54P PAGE 1 0					
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the						

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>