

Easy Script in Python
80000ST10020a Rev.1 - 18/09/06

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 2 of 54

This document is relating to the following products:

MMooddeell PP//NN
GM862-QUAD-PY 3990250656
GM862-GPS 3990250657
GE863-PY 3990250654
GE863-PY (leaded balls) 3990250665
GE863-PY 3990250661
GE863-GPS 3990250660
GE864-PY 3990250650
GC864-PY 3990250676
EZ10-QUAD-PY 3990150467
GT863-PY 3990250466

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 3 of 54

Contents
1 Easy Script Extension - Python interpreter ... 6

1.1 Overview..6
1.2 Python 1.5.2+ Copyright Notice ..8
1.3 Python installation..9
1.4 Python implementation description ..10
1.5 Introduction to Python...12

1.5.1 Data types ..12
1.5.2 Operators..13
1.5.3 Compound statements..13
1.5.4 Conditional execution ..14
1.5.5 Loops ...14
1.5.6 Resources...15

1.6 Python core supported features...16
2 Python Build-in Custom Modules.. 17

2.1 MDM built-in module ..17
2.1.1 MDM.send(string, timeout) ...18
2.1.2 MDM.receive(timeout) ..18
2.1.3 MDM.read()...18
2.1.4 MDM.sendbyte(byte, timeout)...18
2.1.5 MDM.readbyte() ..19
2.1.6 MDM.getDCD() ..19
2.1.7 MDM.getCTS()..19
2.1.8 MDM.getDSR() ...20
2.1.9 MDM.getRI()...20
2.1.10 MDM.setRTS(RTS_value)..20
2.1.11 MDM.setDTR(DTR_value) ..20

2.2 SER built-in module ...21
2.2.1 SER.send(string) ..21
2.2.2 SER.receive(timeout)...21
2.2.3 SER.read() ...22
2.2.4 SER.sendbyte(byte) ...22
2.2.5 SER.receivebyte(timeout)..22
2.2.6 SER.readbyte()...23
2.2.7 SER.set_speed(speed, <char format>) ...23

2.3 GPIO built-in module...24
2.3.1 GPIO.setIOvalue(GPIOnumber, value) ...24
2.3.2 GPIO.getIOvalue(GPIOnumber) ...24
2.3.3 GPIO.setIOdir(GPIOnumber, value, direction) ...25
2.3.4 GPIO.getIOdir(GPIOnumber) ...25

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 4 of 54

2.4 MOD built-in module ...26
2.4.1 MOD.secCounter() ..26
2.4.2 MOD.sleep(sleeptime) ...26
2.4.3 MOD.watchdogEnable(timeout)..27
2.4.4 MOD.watchdogReset() ..27
2.4.5 MOD.watchdogDisable()...27
2.4.6 MOD.powerSaving(timeout) ...28
2.4.7 MOD.powerSavingExitCause() ...28

2.5 IIC built-in module...29
2.5.1 IIC.new(SDA_pin, SCL_pin) ..29
2.5.2 IIC object method: init() ..30
2.5.3 IIC object method: sendbyte(byte)...30
2.5.4 IIC object method: send(string) ...30
2.5.5 IIC object method: dev_read(addr, len) ...30
2.5.6 IIC object method: dev_write(addr, string)..31
2.5.7 IIC object method: dev_gen_read(addr, start, len)...31
2.5.8 IIC object method: dev_gen_write(addr, start, string) ...31

2.6 SPI built-in module...32
2.6.1 SPI.new(SCLK_pin, MOSI_pin, MISO_pin, <SS0>, <SS1>,…<SS7>)...32
2.6.2 SPI object method: init(CPOL, CPHA) ..33
2.6.3 SPI object method: sendbyte(byte, <SS_number>) ...33
2.6.4 SPI object method: readbyte(<SS_number>) ..34
2.6.5 SPI object method: send(string, <SS_number>)..34
2.6.6 SPI object method: read(len, <SS_number>) ..34
2.6.7 SPI object method: readwrite(string, len, <SS_number>) ...35

3 Executing a Python script .. 36
3.1 Write Python script ..36
3.2 Download Python script...36
3.3 Enable Python script ..39
3.4 Execute Python script...40
3.5 Reading Python script ..41
3.6 List saved Python scripts ...42
3.7 Deleting Python script ..42
3.8 Restart Python script..42
3.9 Debug Python script ...43

3.9.1 Debug Python script on GPS modules using SSC bus...43
3.9.1.1 Installation of the drivers ..43
3.9.1.2 Debugging process ..46

3.9.2 Debug Python script on GPS modules using CMUX ..47
3.9.2.1 Installation...47
3.9.2.2 Debugging process ..47

4 List of acronyms.. 52

5 Document Change Log... 54

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 5 of 54

DISCLAIMER

The information contained in this document is proprietary information of Telit Communications S.p.A..

Telit Communications S.p.A. makes every effort to ensure the quality of the information it makes
available. Notwithstanding the foregoing, Telit Communications S.p.A. does not make any warranty as
to the information contained herein, and does not accept any liability for any injury, loss or damage of
any kind incurred by use of or reliance upon the information.

Telit Communications S.p.A. disclaims any and all responsibility for the application of the devices
characterized in this document, and notes that the application of the device must comply with the
safety standards of the applicable country, and where applicable, with the relevant wiring rules.

Telit Communications S.p.A. reserves the right to make modifications, additions and deletions to this
document at any time and without notice.

© 2006 Telit Communications S.p.A.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 6 of 54

1 Easy Script Extension - Python
interpreter

1.1 Overview

The Easy Script Extension is a feature that allows driving the modem "internally", writing the
controlling application directly in a nice high level language: Python.
The Easy Script Extension is aimed at low complexity applications where the application was usually
done by a small microcontroller that managed some I/O pins and the module through the AT
command interface.
A schematic of such a configuration can be:

HHAARRDDWWAARREE RREESSOOUURRCCEESS

FFLLAASSHH RROOMM RRAAMM

GGSSMM--GGPPRRSS

PPrroottooccooll SSttaacckk
FFLLAASSHH
RROOMM

mmeemmoorryy

RRAAMM ffoorr

GGSSMM--GGPPRRSS
mmooddeemm

PPrroottooccooll SSttaacckk
GGPPRRSS MMOODDEEMM

EENNGGIINNEE

AATT ccoommmmaannddss

PPHHYYSSIICCAALL AATT SSEERRIIAALL
PPOORRTT

EEXXTTEERRNNAALL
CCOONNTTRROOLLLLEERR

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 7 of 54

In order to eliminate this external controller, and further simplify the programming of the sequence of
operations, inside the Python version it is included:

• Python script interpreter engine v. 1.5.2+
• around 3MB of Non Volatile Memory room for the user scripts and data
• 1.5 MB RAM reserved for Python engine usage

A schematic of this approach is:

HHAARRDDWWAARREE RREESSOOUURRCCEESS

FFLLAASSHH RROOMM RRAAMM

GGSSMM--GGPPRRSS

PPrroottooccooll SSttaacckk
FFLLAASSHH
RROOMM

mmeemmoorryy

RRAAMM ffoorr

GGSSMM--GGPPRRSS
mmooddeemm

PPrroottooccooll SSttaacckk
GGPPRRSS MMOODDEEMM

EENNGGIINNEE

AAvvaaiillaabbllee UUsseerr
NNVVMM FFLLAASSHH

MMeemmoorryy
((33MMbbyyttee))

AAvvaaiillaabbllee RRAAMM

ffoorr PPyytthhoonn
IInntteerrpprreetteerr
((11..55MMbbyyttee))

PPYYTTHHOONN
IINNTTEERRPPRREETTEERR EENNGGIINNEE

MMDDMM mmoodduullee

AATT ccoommmmaannddss

VVIIRRTTUUAALL IINNTTEERRNNAALL AATT
SSEERRIIAALL PPOORRTT

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 8 of 54

1.2 Python 1.5.2+ Copyright Notice

The Python code implemented into the module is copyrighted by Stichting Mathematisch Centrum, this
is the license:
Copyright © 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved
Copyright © 1995-2001 Corporation for National Research Initiatives; All Rights Reserved.
Copyright (c) 2001-2006 Python Software Foundation; All Rights Reserved.
All Rights Reserved are retained in Python.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation, and
that the names of Stichting Mathematisch Centrum or CWI or Corporation for National Research
Initiatives or CNRI not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.
While CWI is the initial source for this software, a modified version is made available by the
Corporation for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Downloaded from Arrow.com.

ftp://ftp.python.org/
http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 9 of 54

1.3 Python installation

In order to have software that functions correctly the system requirement is PC running Windows 2000
or XP.
To get PythonWin package 1.5.2+ with the latest version please contact Technical Support at the e-
mail: ts-modules@telit.com. For the moment the latest version available is TelitPy1.5.2+_V3.0.exe.

To install Telit Python package you need to execute the exe file TelitPy1.5.2+_V3.0.exe and let the
installer use the default settings. The installation contains the Python compiler package. The Telit
Python package is placed in the folder C:\Program Files\Python\ .The correct path in the Windows
Environmental variables will be set up automatically.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 10 of 54

1.4 Python implementation description

Python scripts are text files stored in NVM inside the Telit module. There's a file system inside the
module that allows to write and read files with different names on one single level (no subdirectories
are supported).
Attention: it is possible to run only one Python script at the time.

The Python script is executed in a task inside the Telit module at the lowest priority, making sure this
does not interfere with GSM/GPRS normal operations. This allows serial ports, protocol stack etc. to
run independently from the Python script.
The Python script interacts with the Telit module functionality through four build-in interfaces.

HHaarrddwwaarree RReessoouurrcceess

GGPPRRSS MMooddeemm EEnnggiinnee

VViirrttuuaall iinntteerrnnaall AATT sseerriiaall ppoorrtt

MMDDMM lliibbrraarryy

GGPPIIOO lliibbrraarryy

SSEERR lliibbrraarryy

MMOODD lliibbrraarryy
PPyytthhoonn EEnnggiinnee wwiitthh

UUPPGGRRAADDAABBLLEE
ssooffttwwaarree ssccrriipptt

PPrriinntt
ccoommmmaanndd

GGPPIIOO

SSeerriiaall ppoorrtt 00 ((AASSCC00**))
eexx PPRROOGG

SSeerriiaall ppoorrtt 11 ((AASSCC11**))
eexx TTRRAACCEE

aanntteennnnaa

SSPPII lliibbrraarryy

IIIICC lliibbrraarryy

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 11 of 54

• The MDM interface is the most important one. It allows Python script to send AT commands,
receive responses and unsolicited indications, send data to the network and receive data from
the network during connections. It is quite the same as the usual serial port interface in the
Telit module. The difference is that this interface is not a real serial port but just an internal
software bridge between Python and mobile internal AT command handling engine. All AT
commands working in the Telit module are working in this software interface as well. Some of
them have no meaning on this interface, such as those regarding serial port settings. The usual
concept of flow control keeps its meaning over this interface, but it's managed internally.

• The SER interface allows Python script to read from and write to the real, physical serial port
where usually the AT command interface resides, for example to read NMEA information from
a GPS device. When Python is running this serial port is free to be used by Python script
because it is not used as AT command interface since the AT parser is mapped into the
internal virtual serial port. No flow control is available from Python on this port.

• The GPIO interface allows Python script to handle general purpose input output faster than
through AT commands, skipping the command parser and going directly to control the pins.

• The MOD interface is a collection of useful functions.
• The IIC interface is an implementation on the Python core of the IIC bus Master. It allows

Python to create one or more IIC bus on the available GPIO pins.
• The SPI interface is an implementation on the Python core of the SPI bus Master. It allows

Python to create one or more IIC bus on the available GPIO pins.

For the debug, the print command is directly forwarded on the EMMI TX pin (second serial port) at
baud rate115200bps 8N1.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 12 of 54

1.5 Introduction to Python

Python is a dynamic object oriented programming language that can be used for many kinds of
software development. It offers strong support for integration with different tools, comes with extensive
standard libraries, and can be learned in a few days time.

1.5.1 Data types

There are three groups of data types in Python:

• Scalars have the subtypes integer, long integer (with an arbitrary number of digits), and strings.
For example:

 i = 1; li = 9999999999L; s = 'Hello'

• Sequences contain any number of arbitrary objects in a defined order.

 L = [1, 5, 3, 9, 14];

• Associative lists (more commonly known as dictionaries) allow the access to values based on
keys. These keys can be arbitrary but immutable objects. For example:

 D = {'b': 'Python', 'a': 5}; print D['a']

 prints 5.

• Unlike Pascal, C, C++ or Java, Python is a dynamically typed language. Thus, the following
code is perfectly valid Python:

 a = 7 # 7 (integer)
 a = str(2*a) + ' bytes' # '7 bytes' (string)

In Python variables are not defined in the script, they appear only when used.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 13 of 54

1.5.2 Operators

Python has the following operators:

• Arithmetic and bitwise operators

 + - * / % ** ~ << >> & ^ |

• Relational and logical operators

 is in < <= > >= == != not and or

• Assignments

 = += -= *= /= %= **= <<= >>= &= ^= |=

• Other operators

 () [] { } [:] `` . lambda

1.5.3 Compound statements

• Statements that belong to the same logical group are indented by the same amount of white
space:

 if a > 0:
 b = 1
 c = 2

 Usually, each statement starts on a new line.

• A statement is continued by putting a backslash \ at the end of a line. This isn't necessary if
there are still parentheses (or brackets or braces) open:

 my_list = [1, # open bracket, statement continues
 ['abc', 2], # nested list
 -3+6j] # closed outermost bracket, statement ends
 print my_list

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 14 of 54

1.5.4 Conditional execution

• Python uses if, elif (not elsif or elseif), and else to denote conditional execution of statements.
For example:

 if a > b:
 print 'a is greater than b.'
 elif a < b:
 print 'a is lower than b.'
 else:
 print 'a equals b.'

• You can use "abbreviated" interval tests:

 if 2 <= a <= 7:
 print 'a is in the interval [2, 7].'

1.5.5 Loops

• Loops in Python are defined by the keywords for and while.
• The following example uses a while loop to collect all numbers from 0 to 99 in a list.

 numbers = []
 i = 0
 while i < 100:
 numbers.append(i)
 i = i + 1 # or i += 1 since Python 2.0

• A similar for loop looks like:

 numbers = []
 for i in range(100):
 numbers.append(i)

• Instead of the explicit loops above also an implicit loop is possible:

 numbers = range(100)

 range(100) generates a list of all integers from 0 to 99 (not 100).

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 15 of 54

1.5.6 Resources

Some useful manuals for Python can be found on the following links:

http://www.python.org/doc/current/tut/tut.html

http://www.hetland.org/python/instant-python.php

http://rgruet.free.fr/PQR2.2.html

Downloaded from Arrow.com.

http://www.python.org/doc/current/tut/tut.html
http://www.hetland.org/python/instant-python.php
http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 16 of 54

1.6 Python core supported features

The Python core version is 1.5.2+ (string methods added to 1.5.2).
You can use all Python statements and almost all Python built-in types and functions.

Built-in types and functions not
supported

Available modules
(all others are not supported)

complex marshal
float imp
long _main_

docstring _builtin_
 sys
 md5

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 17 of 54

2 Python Build-in Custom Modules

Several build in custom modules have been included in the python core, specifically aimed at the
hardware environment of the module.

The build in modules included are:

MDM interface between Python and mobile internal AT command handling

SER interface between Python and mobile internal serial port ASC0 direct handling

GPIO interface between Python and mobile internal general purpose input output direct

handling

MOD interface between Python and mobile miscellaneous functions

IIC custom software Inter IC bus that can be mapped on creation over almost any
GPIO pin available

SPI custom software Serial Protocol Interface bus that can be mapped on creation
over almost any GPIO pin available

2.1 MDM built-in module

MDM built-in module is the interface between Python and the module AT command parser engine.
You need to use MDM built-in module if you want to send AT commands and data from Python script
to the network and receive responses and data from the network during connections.
Default start configuration is echo disabled (ATE0) and long form (verbose) return codes (ATV1),
If you want to use MDM built-in module you need to import it first:

import MDM
then you can use MDM built-in module methods like in the following example:
a = MDM.send('AT', 0)
b = MDM.sendbyte(0x0d, 0)
c = MDM.receive(10)

which sends 'AT' and receives 'OK'.
More details about MDM built-in module methods are in the following paragraphs.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 18 of 54

2.1.1 MDM.send(string, timeout)

Sends a string to AT command interface. First input parameter string is a Python string which is the
string to send to AT command interface. Second input parameter timeout is a Python integer, which is
measured in 1/10s, and represents the time of waiting for the string to be sent to AT command
interface, with maximum value of timeout. Waiting time is caused by flow control.
Return value is a Python integer which is -1 if timeout expired otherwise is 1.
Example:

a = MDM.send('AT', 5)
sends string 'AT' to AT command handling, possibly waiting for 0.5 s, assigning return value to a.

2.1.2 MDM.receive(timeout)

Receives a string from AT command interface waiting for it until timeout is expired. Return value will
be the first string received no matter of how long the timeout is. Request to Send (RTS) is set to ON.
Input parameter timeout is a Python integer, which is measured in 1/10s, and represents the time of
waiting for the string from AT command interface, with maximum value of timeout.
Return value is a Python string which is an empty string if timeout expired without any data received
otherwise is the string containing data received.
Example:

a = MDM.receive(15)

receives a string from AT command handling, possibly waiting for it for 1.5 s, assigning return value to
a.

2.1.3 MDM.read()

Receives a string from AT command interface without waiting for it. Request to Send (RTS) is set to
ON. No input parameter.
Return value is a Python string which is an empty string if no data received otherwise is the string
containing data received in the moment when command is activated.
Example:

a = MDM.read()

receives a string from AT command handling, assigning return value to a.

2.1.4 MDM.sendbyte(byte, timeout)

Sends a byte to AT command interface. First input parameter byte is a Python byte which is any byte
value to send to AT command interface. It can be zero. Second input parameter timeout is a Python

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 19 of 54

integer, which is measured in 1/10s, and represents the time of waiting for the string from AT
command interface, with maximum value of timeout. Waiting time is caused by flow control.
Return value is a Python integer which is -1 if timeout expired otherwise is 1.
Example:

b = MDM.sendbyte(0x0d, 0)

sends byte 0x0d, that stands for CR, to AT command handling, without waiting, assigning return value
to b.

2.1.5 MDM.readbyte()

Receives a byte from AT command interface without waiting for it. Request to Send (RTS) is set to
ON. No input parameter.
Return value is a Python integer which is -1 if no data received otherwise is the byte value received. It
can be zero.
Example:

b = MDM.readbyte()

receives a byte from AT command handling, assigning return value to b.

2.1.6 MDM.getDCD()

Gets Carrier Detect (DCD) from AT command interface. No input parameter.
Return value is a Python integer which is 0 if DCD is OFF or 1 if DCD is ON.
Example:

cd = MDM.getDCD()

gets DCD from AT command handling, assigning return value to cd.

2.1.7 MDM.getCTS()

Gets Clear to Send (CTS) from AT command interface. No input parameter.
Return value is a Python integer which is 0 if CTS is OFF or 1 if CTS is ON.
Example:

cts = MDM.getCTS()

gets CTS from AT command handling, assigning return value to cts.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 20 of 54

2.1.8 MDM.getDSR()

Gets Data Set Ready (DSR) from AT command interface. No input parameter.
Return value is a Python integer which is 0 if DSR is OFF or 1 if DSR is ON.
Example:

dsr = MDM.getDSR()

gets DSR from AT command handling, assigning return value to dsr.

2.1.9 MDM.getRI()

Gets Ring Indicator (RI) from AT command interface. No input parameter.
Return value is a Python integer which is 0 if RI is OFF or 1 if RI is ON.
Example:

ri = MDM.getRI()

gets RI from AT command handling, assigning return value to ri.

2.1.10 MDM.setRTS(RTS_value)

Sets Request to Send (RTS) in AT command interface. Input parameter RTS_value is a Python
integer which is 0 if setting RTS to OFF or 1 if setting RTS to ON.
No return value.
Example:

MDM.setRTS(1)

sets RTS to ON in AT command handling.

2.1.11 MDM.setDTR(DTR_value)

Sets Data Terminal Ready (DTR) in AT command interface. Input parameter DTR_value is a Python
integer which is 0 if setting DTR to OFF or 1 if setting DTR to ON.
No return value.
Example:

MDM.setDTR(0)

sets DTR to OFF in AT command handling.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 21 of 54

2.2 SER built-in module

SER built-in module is the interface between Python core and the device serial port over the RXD/TXD
pins direct handling. You need to use SER built-in module if you want to send data from Python script
to serial port and to receive data from serial port ASC0 to Python script. This serial port handling
module can be used for example to interface the module with an external device such as a GPS and
read/send its data (NMEA for example).

If you want to use SER built-in module you need to import it first:

import SER

then you can use SER built-in module methods like in the following example:

a = SER.set_speed('9600')
b = SER.send('test')
c = SER.sendbyte(0x0d)
d = SER.receive(10)
which sends 'test' followed by CR and receives data waiting for one second.
More details about SER built-in module methods are in the following paragraphs.

2.2.1 SER.send(string)

Sends a string to the serial port TXD/RXD. Input parameter string is a Python string which is the string
to send to serial port ASC0.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

a = SER.send('test')

sends string 'test' to serial port ASC0 handling, assigning return value to a.

Note: the buffer available for SER.send(string) command is 2048bytes

2.2.2 SER.receive(timeout)

Receives a string from serial port TXD/RXD waiting for it until timeout is expired. Return value will be
the first string received no matter of how long the timeout is. Input parameter timeout is a Python
integer, which is measured in 1/10s, and represents the time of waiting for the string from AT
command interface, with maximum value of timeout.
Return value is a Python string which is an empty string if timeout expired without any data received
otherwise is the string containing data received.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 22 of 54

Example:

a = SER.receive(15)

receives a string from serial port handling, waiting for it for 1.5 s, assigning return value to a.

2.2.3 SER.read()

Receives a string from serial port TXD/RXD without waiting for it. No input parameter.
Return value is a Python string which is an empty string if no data received otherwise is the string
containing data received in the moment when command is activated.
Example:

a = SER.read()

receives a string from serial port handling, assigning return value to a.

Note: the buffer available for the SER.receive(timeout) and SER.read() commands is 256bytes

2.2.4 SER.sendbyte(byte)

Sends a byte to serial port TXD/RXD. Input parameter byte is a Python byte which is any byte value to
send to serial port. It can be zero.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

b = SER.sendbyte(0x0d)

sends byte 0x0d, that is CR, to serial port handling, assigning return value to b.

2.2.5 SER.receivebyte(timeout)

Receives a byte from serial port TXD/RXD waiting for it until timeout is expired. Return value will be
the first byte received no matter of how long the timeout is. Input parameter timeout is a Python
integer, which is measured in 1/10s, and represents the time of waiting for the string from AT
command interface, with maximum value of timeout.
Return value is a Python integer which is -1 if timeout expired without any data received otherwise is
the byte value received. It can be zero.
Example:

b = SER.receivebyte(20)

receives a byte from serial port handling, waiting for it for 2.0 s, assigning return value to b.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 23 of 54

2.2.6 SER.readbyte()

Receives a byte from serial port TXD/RXD without waiting for it. No input parameter.
Return value is a Python integer which is -1 if no data received otherwise is the byte value received. It
can be zero.
Example:

b = SER.readbyte()

receives a byte from serial port handling, assigning return value to b.

2.2.7 SER.set_speed(speed, <char format>)

Sets serial port TXD/RXD speed. Default serial port TXD/RXD speed is 9600. Input parameter speed
is a Python string which is the value of the serial port speed. It can be the same speeds as the +IPR
command.
Note: sending the +IPR command to the device is not affecting the physical serial, when using Python
engine you must use this function to set the speed of the port.
Optional Parameter <char format> is a Python string that represents the character format to be used:
first is the number of bits per char (7 or 8), then the parity setting (N - none, E- even, O- odd) and the
number of stop bits (1 or 2). Default value is "8N1".
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

b = SER.set_speed('115200')

sets serial port speed to 115200, assigning return value to b.

Note: in the PythonWin version pervious to TelitPy1.5.2+_V2.1.exe and Python on module version
previous to Ver6.03.000 a different syntax is implemented depending of the development environment.

For PythonWin application: SER.SetSpeed(speed) without char format parameter.
For Python installed on module: SER.set_speed(speed, char format) with char format not an optional
parameter.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 24 of 54

2.3 GPIO built-in module

GPIO built-in module is the interface between Python core and module internal general purpose input
output direct handling. You need to use GPIO built-in module if you want to set GPIO values from
Python script and to read GPIO values from Python script.
You can control GPIO pins also by sending internal 'AT#GPIO' commands using the MDM module, but
using the GPIO module is faster because no command parsing is involved, therefore its use is
recommended.
Note: Python core does not verify if the pins are already used for other purposes (IIC module or SPI
module) by other functions, it's the customer responsibility to ensure that no conflict over pins occurs.

If you want to use GPIO built-in module you need to import it first:
import GPIO
then you can use GPIO built-in module methods like in the following example:
a = GPIO.getIOvalue(5)
b = GPIO.setIOvalue(4, 1)
this reads GPIO 5 value and sets GPIO 4 to output with value 1.
More details about GPIO built-in module methods are in the following paragraphs.

2.3.1 GPIO.setIOvalue(GPIOnumber, value)

Sets output value of a GPIO pin. First input parameter GPIOnumber is a Python integer which is the
number of the GPIO. Second input parameter value is a Python integer which is the output value. It
can be 0 or 1.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

b = GPIO.setIOvalue(4, 1)

sets GPIO 4 to output with value 1, assigning return value to b.

2.3.2 GPIO.getIOvalue(GPIOnumber)

Gets input or output value of a GPIO. Input parameter GPIOnumber is a Python integer which is the
number of the GPIO.
Return value is a Python integer which is -1 if an error occurred otherwise is input or output value. It is
0 or 1.
Example:

a = GPIO.getIOvalue(5)

gets GPIO 5 input or output value, assigning return value to b.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 25 of 54

2.3.3 GPIO.setIOdir(GPIOnumber, value, direction)

Sets direction of a GPIO. First input parameter GPIOnumber is a Python integer which is the number
of the GPIO. Second input parameter value is a Python integer which is the output value. It can be 0
or 1. It is only used if direction value is 1.

Note: when the direction value is 1, although the parameter value has no meaning, it is necessary to
assign it one of the two possible values: 0 or 1

Third input parameter direction is a Python integer which is the direction value. It can be 0 for input or
1 for output.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

c = GPIO.setIOdir(4, 0, 0)

sets GPIO 4 to input with value having no meaning, assigning return value to c.

2.3.4 GPIO.getIOdir(GPIOnumber)

Gets direction of a GPIO. Input parameter GPIOnumber is a Python integer which is the number of the
GPIO.
Return value is a Python integer which is -1 if an error occurred otherwise is direction value. It is 0 for
input or 1 for output.
Example:

d = GPIO.getIOdir(7)

gets GPIO 7 direction, assigning return value to d.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 26 of 54

2.4 MOD built-in module

MOD built-in module is the interface between Python and module miscellaneous functions. You need
to use MOD built-in module if you want to generate timers in Python script.

If you want to use MOD built-in module you need to import it first:

import MOD

then you can use MOD built-in module methods like in the following example:
MOD.sleep(15)

this blocks Python script execution for 1.5s.
More details about MOD built-in module methods are in the following paragraphs.

2.4.1 MOD.secCounter()

Returns seconds elapsed since 1 January 1970. This method is useful for timers generation in Python
script. No input parameter.
Return value is a Python integer which is the value of seconds elapsed since 1 January 1970.
Example:

a = MOD.secCounter()

returns seconds elapsed since 1 January 1970.

2.4.2 MOD.sleep(sleeptime)

Blocks Python script execution for a given time returning the resources to the system. Input parameter
sleeptime is a Python integer which is measured in 1/10s and used to block script execution for given
value.
No return value.
Example:

MOD.sleep(15)

blocks Python script for 1.5 s.

Note: the parameter sleeptime can assume integer values is in the following range [0,32767]

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 27 of 54

2.4.3 MOD.watchdogEnable(timeout) 1

Protects system against script blocking by performing automatic reboot of the module when the
watchdog reaches determined value. Input parameter timeout is an integer, which is measured in
seconds and represents time to waiting before executing software restart.
No return value.

Example:

MOD.watchdogEnable(50)

after 50sec from execution of this command module will be rebooted.

2.4.4 MOD.watchdogReset()1

Restarts watchdog counter that has been previously activated with the command
MOD.watchdogEnable(timeout) preventing in this way reboot of the module. It should be added in
every part of the script that can cause a script blocking (loops, etc) and is used only when Python
watchdog is enabled. No input value.
No return value.

Example:

MOD.watchdogReset()

Restarts Python watchdog counter.

2.4.5 MOD.watchdogDisable()1

Disables Python watchdog that has been previously activated with the command
MOD.watchdogEnable(timeout). Python watchdog should be disabled before scripts critical lines such
as import, since it takes a long time and than enabled again after. No input value.
No return value.

Example:

MOD.watchdogDisable()

Disables Python watchdog.

1 feature available for the modules with the following Order-Num. : 3990250657, 3990250658, 3990250661,
3990250660, 3990250650, 3990250676

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 28 of 54

2.4.6 MOD.powerSaving(timeout) 1

This new feature allows Python to put the system in power saving mode for a certain period or until an
external event occurs. Input parameter timeout is an integer, which is measured in seconds and
represents time for which the Python script remains blocked. Python script will exit power saving mode
when the determined value of timeout is reached or after unsolicited signal. If the timeout has negative
value Python script will exit from power saving mode only when an external event occurs.
No return value.

Example:

MOD.powerSaving(100)

Python script will exit power saving mode after 100sec or when an external event occurs.

2.4.7 MOD.powerSavingExitCause()1

This command can be executed after MOD.powerSaving(timeout) and gives the cause of unblocking
the Python script. No input parameter.
Return value is a Python integer which is 0 if Python script has exit power saving mode after an
external event otherwise it is 1 if Python script has exit power saving mode after the timeout is
reached.

Example:

MOD.powerSavingExitCause()

gets the cause of exiting of Python script from the power saving mode

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 29 of 54

2.5 IIC built-in module
IIC built-in module is an implementation on the Python core of the IIC bus2 Master (No Multi-Master)
using the "bit-banging" technique.
You need to use IIC built-in module if you want to create one or more IIC bus on the available GPIO
pins. This IIC bus handling module is mapped on creation on two GPIO pins that will become the
Serial Data and Serial Clock pins of the bus. It can be created more than one IIC bus over different
pins and the pins used must not be used for other purposes.

Note: Python core does not verify if the pins are already used for other purposes (SPI module or
GPIO module) by other functions, it's the customer responsibility to ensure that no conflict over pins
occurs.
If you want to use IIC built-in module you need to import it first:
import IIC
then you can create the new bus over the GPIO pins (for example over the pins GPIO3, GPIO4) and
then use IIC built-in module methods like in the following example:

IICbus = IIC.new(3,4)
IICbus.init()
res = IICbus.send('test')
c = IICbus.sendbyte(0x0d)
d = IICbus.dev_read(114,10)
which sends 'test' followed by CR and receives a string of 10 bytes from IIC bus device at address
114, assigning it to d.

Note: you must provide external pull-up on SDA line since the line is working as open collector, on the
other hand SCLK is driven with a complete push pull.
More details about IIC built-in module object methods are in the following paragraphs.

2.5.1 IIC.new(SDA_pin, SCL_pin)

Creates a new IIC bus object on the GPIO pins number. Input parameter SDA_pin, SCL_pin are
Python bytes which are the GPIO pin number where the SDA (Serial DAta) and SCL (Serial CLock)
lines are mapped.
Return value is the Python custom IIC bus object pointer which then shall be used to interface with the
IIC bus created.
Example:

bus1 = IIC.new(3,4)
bus2 = IIC.new(5,6)

this creates two IIC bus, one over the GPIO3 and GPIO4 and one over the GPIO5 and GPIO6.

2 With the following clock frequency: 0KHz min, 20KHz typical (idle mode), 100KHz max

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 30 of 54

Note: available pins for the IIC bus are GPIO1 - GPIO13. The only exception is the module family
GM862 where available pins are GPIO3 - GPIO13 while GPIO1 and GPIO2 are used for only input or
only output and are not available for IIC bus.

2.5.2 IIC object method: init()

Does the first pin initialisation on the IIC bus previously created.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

a = bus1.init()

2.5.3 IIC object method: sendbyte(byte)

Sends a byte to the IIC bus previously created. Input parameter byte is a Python byte which is the byte
to be sent to the IIC bus. The start and stop condition on the bus are added by the function.
Return value is a Python integer which is -1 if an error occurred otherwise is 1 the byte has been
acknowledged by the slave.
Example:

a = bus1.sendbyte(123)

sends byte 123 to the IIC bus , assigning return result value to a.

2.5.4 IIC object method: send(string)

Sends a string to the IIC bus previously created. Input parameter string is a Python string which is the
string to send to the IIC bus.
Return value is a Python integer which is -1 if an error occurred otherwise is 1 if all bytes of the string
have been acknowledged by the slave.
Example:

a = bus1.send('test')

sends string 'test' to the IIC bus , assigning return result value to a.

2.5.5 IIC object method: dev_read(addr, len)

Receives a string of len bytes from IIC bus device at address addr.
Return value is a Python string which is containing data received.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 31 of 54

Example:

a = bus1.dev_read(114,10)

receives a string of 10 bytes from IIC bus device at address 114, assigning it to a.

2.5.6 IIC object method: dev_write(addr, string)

Sends a string to the IIC bus device at address addr.
Return value is a Python string which is 1 if data is acknowledged correctly, -1 otherwise.
Example:

a = bus1.dev_write(114,'123456789')

sends the string '123456789' to the IIC bus device at address 114, assigning the result to a.

2.5.7 IIC object method: dev_gen_read(addr, start, len)

Receives a string of len bytes from IIC bus device whose address is addr, starting from address start.
Return value is a Python string which is containing data received.
Example:

a = bus1.dev_gen_read(114,122, 10)
receives a string of 10 bytes from IIC bus device at address 114, starting from address 122 assigning
it to a.

2.5.8 IIC object method: dev_gen_write(addr, start, string)

Sends a string to the IIC bus device whose address is addr, starting from address start.
Return value is a Python string which is 1 if data is acknowledged correctly, -1 otherwise.
Example:

a = bus1.dev_gen_write(114, 112, '123456789')

sends the string '123456789' to the IIC bus device at address 114, starting from address 112,
assigning the result to a.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 32 of 54

2.6 SPI built-in module

SPI built-in module is an implementation on the Python core of the SPI bus Master using the "bit-
banging" technique. You need to use SPI built-in module if you want to create one or more SPI bus on
the available GPIO pins.

This SPI bus handling module is mapped on creation on three or more GPIO pins that will become the
Serial Data In/Out and Serial Clock pins of the bus, plus a number of optional chip select pins up to 8.
It can be created more than one SPI bus over different pins and these pins must not be used for other
purposes.

Note: Python core does not verify if the pins are already used for other purposes (IIC module or GPIO
module) by other functions, it's the customer responsibility to ensure that no conflict over pins occurs.

If you want to use SPI built-in module you need to import it first:
import SPI
then you can create the new bus over the GPIO pins (for example over the pins GPIO3, GPIO4,
GPIO5) and then use SPI built-in module methods like in the following example:

SPIbus = SPI.new(3,4,5)
SPIbus.init(0,0)
res = SPIbus.send('test')
c = SPIbus.sendbyte(0x0d)
d = SPIbus.readbyte()

sends 'test' followed by CR and receives byte from the SPI bus device.

More details about SPI built-in module object methods are in the following paragraphs.

2.6.1 SPI.new(SCLK_pin, MOSI_pin, MISO_pin, <SS0>,
<SS1>,…<SS7>)

Creates a new SPI bus object on the GPIO pins number corresponding. Input parameter SCLK_pin,
MOSI_pin and MISO_pin are Python bytes which are the GPIO pin number where the SCLK (Serial
CLocK), MOSI (Master Output Slave Input), MISO (Master Input Slave Output) lines are mapped. The
same is for the SS0 .. SS9 which are optional Python bytes which are the GPIO pin number where the
corresponding Slave Select line is mapped.
Up to 8 slave select lines can be defined (or none if only 1 slave is used).
Return value is the Python custom SPI bus object pointer which shall be used further to interface with
the SPI bus created.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 33 of 54

Example:

bus3 = SPI.new(3,4,5)
bus4 = SPI.new(6,7,8,9,10)

creates two SPI bus, one over the GPIO3, GPIO4, GPIO5 and one over the GPIO6, GPIO7, GPIO8,
GPIO9, GPIO10 where the GPIO9 is the Slave 0 select and GPIO10 is the Slave 1 select pin.
Note: available pins for the SPI bus are GPIO1 - GPIO13. The only exception is the module family
GM862 where available pins are GPIO3 - GPIO13 while GPIO1 and GPIO2 are used for only input or
only output and are not available for SPI bus.

2.6.2 SPI object method: init(CPOL, CPHA)

Does the first pin initialization on the SPI bus previously created.
Bus clock polarity is controlled by CPOL value:
CPOL = 0 - clock polarity low
CPOL = 1 - clock polarity high
Bus clock phase transmission is controlled by CPHA value:
CPHA = 0 - data bit is clocked/latched on the first edge of the SCLK.
CPHA = 1 - data bit is clocked/latched on the second edge of the SCLK.
Return value is a Python integer which is -1 if an error occurred otherwise is 1.
Example:

a = bus3.init(0,0)

2.6.3 SPI object method: sendbyte(byte, <SS_number>)

Sends a byte to the SPI bus previously created addressed for the Slave number SS_number whose
Slave Select signal is activated. Input parameter byte is a Python byte which is the byte to be sent to
the SPI bus. Optional parameter SS_number is a Python byte representing the Slave number to be
activated; if not present no slave line is activated.
Return value is a Python integer which is -1 if an error occurred otherwise is 1 the byte has been sent.
Example:

a = bus3.sendbyte(123)

sends byte 123 to the SPI bus , assigning return result value to a.

b=bus4.sendbyte(111,1)

sends byte 111 to the SPI bus activating the Slave Select line of the SS1 device (in our example
GPIO10)

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 34 of 54

2.6.4 SPI object method: readbyte(<SS_number>)

Receives a byte from the SPI bus device at Slave Select number SS_number. Input optional
parameter SS_number is a Python byte representing the Slave number to be activated; if not present
no slave line is activated.
Return value is a byte (integer) received from the SPI bus device if no data is received the return value
will be zero.

Example:

a = bus3.readbyte()

receives a byte from the SPI bus , assigning return result value to a.

b=bus4.readbyte(1)

receives a byte from the SPI bus device on SS1 line, assigning return result value to b.

2.6.5 SPI object method: send(string, <SS_number>)

Sends a string to the SPI bus previously created. Input parameter string is a Python string which is the
string to send to the SPI bus. Optional parameter SS_number is a Python byte representing the Slave
number to be activated; if not present no slave line is activated.
Return value is a Python integer which is -1 if an error occurred otherwise is 1 if all bytes of the string
have been sent.
Example:

a = bus3.send('test')

sends string 'test' to the SPI bus , assigning return result value to a.

2.6.6 SPI object method: read(len, <SS_number>)

Receives a string of len bytes from SPI bus device at Slave Select number SS_number. Input optional
parameter SS_number is a Python byte representing the Slave number to be activated; if not present
no slave line is activated.
Return value is a Python string that contains received data.
Example:

a = bus4.read(10,0)

receives a string of 10 bytes from SPI bus device on SS0 line, assigning it to a.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 35 of 54

2.6.7 SPI object method: readwrite(string, len, <SS_number>)

Send the string string and contemporaneously receives a string of len bytes from SPI bus device at
Slave Select number SS_number. Optional parameter SS_number is a Python byte representing the
Slave number to be activated; if not present no slave line is activated.
Return value is a Python string that contains received data.
Example:

a = bus4.readwrite("hello",10,0)

send the string "hello" and receives a string of 10 bytes from SPI bus device on SS0 line, assigning it
to a.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 36 of 54

3 Executing a Python script

The steps required to have a script running by the python engine of the module are:

• write the python script;
• download the python script into the module NVM;
• enable the python script;
• execute the python script.

3.1 Write Python script

A Python script is a simple text file, it can be written with any text editor but for your convenience a
complete Integrated Development Environment (IDE) is included in a software package that Telit
provides called Telit Python Package.
Remembering the supported features described in 1.6, it is simple to write the script and test it directly
from the IDE.
The following is the "Hello Word" short Python script that sends the simplest AT command to the AT
command parser, waits for response and then ends.

import MDM
print 'Hello World!'
result = MDM.send('AT\r', 0)
print result
c = MDM.receive(10)
print c

3.2 Download Python script

Command: AT#WSCRIPT=“< script_name >“,< size >,< know-how >

• < script_name >: file name
• < size >: file size (number of bytes)
• < know-how >: know how protection, 1 = on, 0 = off (default)

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 37 of 54

The script can be downloaded on the module using the #WSCRIPT command. In order to guarantee
your company know-how, you have the option to hide the script text so that the #RSCRIPT command
does not return the text of the script and keeps it "confidential", you can see only the name of the
script with the #LSCRIPT command.
Remember that if you chose to hide the script text it is your responsibility to keep the information about
what is executed on the module; for example by naming the script depending from the application and
version of the script.
In order to download the script, first you have to choose a name for your script in the module taking
care that:

• it must have extension .py;
• the maximum allowed length is 16 characters;
• script name is case sensitive (“Script.py” and “script.py” are two different scripts).

Then you have to find out the exact size in bytes of the script (for example right clicking on the file and
selecting “size” in “properties”, attention: not “size on the disc”)
The script download in Hyper Terminal is done regardless the previous serial settings at: 115200 baud
8-N-1 with hardware flow control active.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 38 of 54

For example:

AT#WSCRIPT=”a.py”,110

wait for the prompt
>>>

and use “Send Text file” with ASCII Setup: “Send line ends with line feeds” and “Append line feeds to
incoming line ends” in HyperTerminal “Properties” enabled.
Wait for download result: OK or ERROR.

Another way to perform download is: disconnecting in Hyper Terminal, when the prompt appears, then
right clicking on the file and selecting “download”, when the download ends reconnecting in Hyper
Terminal.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 39 of 54

If instead of Hyper Terminal you use Procomm Plus application the script text should be sent using
“Send File”, selecting “Raw ASCII” or “ASCII” as Transfer Protocol. If you use “ASCII” transfer
protocol, be sure the options “Expand tabs” and “Expand black lines” are not selected.

3.3 Enable Python script

Command: AT#ESCRIPT=“< script_name >“
 AT#ESCRIPT?

• < script_name >: file name

Select the Python script which will be executed (the enabled script) from the next start-up and in every
future start-up using the AT#ESCRIPT command.
First choose the script you want to enable between the ones you’ve downloaded:

AT#LSCRIPT? can help you checking the names of the scripts;
AT#ESCRIPT? can help you check the name of the script that is enabled at the moment

Note: There is no error return value for non existing script name in the module memory typed in
command AT#ESCRIPT. For this reason it’s recommended to double check the name of the script
that you want to execute. On the other hand this characteristic permits additional possibilities: like
enabling the Python script before downloading it on the module or non having to enabled the same
script name every time the script has been changed, deleted and replaced with another script but with
the same name.
For example:

AT#ESCRIPT=”a.py”

Wait for enable result: OK.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 40 of 54

3.4 Execute Python script

The Python script you have downloaded to module and enabled is executed at every module power
on if the DTR line is sensed LOW (2.8V at the module DTR pin - RS232 signals are inverted -) at start-
up, (in this case no AT command interface is connected to the modem port) and if the script name you
enabled matches with one of the script names of the scripts you downloaded.

In order to gain again the AT command interface on the modem physical port (for example to update
locally a new script) the module shall be powered on with the DTR line HIGH (0V at the module DTR
pin) so that the script is not executed and the Python engine is stopped. The real execution of the
Python script is delayed from the power on due to the time needed by Python to parse the script. The
longer is the script, the longer is this delay.

Note: that only the running script is compiled at run time, all the others that this script may include are
compiled once and the compiled result is saved in the NVM as a file with extension .pyo. This delay
can be greatly reduced with a simple stratagem:

• type your script normally, and include the main loop in a function, for example "main()", save it
to the NVM of the module with a known name, for example appl.py

• write a new script that includes the previous file object, for example "import appl", and this file
should call only the main function of the appl.py script, for example main().

In this way the first time the script is executed the imported files will be compiled and the result saved
as compiled .pyo files (don't delete them during normal operations, but remember to delete them if you
change the corresponding .py script otherwise your changes will not take effect). From the next start-
up and in every future start-up the imported files will not be anymore compiled and script execution
delay is greatly reduced.

This trick is useful also for long complex scripts, which may run out of memory during compilation;
splitting the script into several smaller scripts containing part of the functions/objects definitions will
separate the compilation and allow for much bigger script usage.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 41 of 54

3.5 Reading Python script

Command: AT#RSCRIPT=“< script_name >“

• < script_name >: file name

With the following command AT#RSCRIPT you can read a saved script text. The script text read can
be saved using “Capture Text” in HyperTerminal or “Capture File” in Procomm Plus application. Port
settings should be baud rate 115200bps and hardware flow control.
If know-how protection is activated than AT#RSCRIPT will return only OK: no Python script source
code will be returned. In this way nobody will be able to read your Python script from the module.
The Python script will be still in the Python script list and it will be still possible to delete it and to
overwrite it.

Example:

AT#RSCRIPT=”a.py”

returns Python script source code a.py

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 42 of 54

3.6 List saved Python scripts

Command: AT#LSCRIPT?

This is a read command that shows the list of the script names currently saved and number of free
bytes in memory. No input parameter.

3.7 Deleting Python script

Command: AT#DSCRIPT=“< script_name >“

• < script_name >: file name

The Python script can be deleted from the module memory using the #DSCRIPT command.
For example:

AT#DSCRIPT=”a.py”

Wait for result: OK.

Note: commands used to write, read and delete script like AT#WSCRIPT, AT#LSCRIPT,
AT#RSCRIPT and AT#DSCRIPT can be applied on any type of file, not necessary an executable
Python script. For example applied on received data files.

3.8 Restart Python script

Command: AT#REBOOT

This is an execution command that causes the restart of the module and execution of the active script
on the start-up.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 43 of 54

3.9 Debug Python script

The debug of the active Python script can be done both on the emulated environment of the Telit
Python Package (refer to its documentation) or directly on the target with the second serial port pin
EMMI TX (actually a not translated RS232 serial port as the RXD pin).

Connect to the module serial port EMMI TX at 115200 8-N-1 with hardware flow control active.
Now you can see all Python outputs to stdout and stderr:

• Python information messages (for example the version);
• Python error information;
• Results of all Python “print” statements.

The Telit GM862-GPS and GE863-GPS have the second serial port pin EMMI TX used for continuous
direct output of GPS NMEA sentences that’s why there is another procedure to follow for debugging of
the Telit GPS modules. There are two ways to perform direct debugging: activate SSC port or use
CMUX.

3.9.1 Debug Python script on GPS modules using SSC bus

SSC (Serial Synchronous Controller) port can be configured to be compatible to the SPI Interface,
available via 4 GPIO pins. In this case the Python debug data will be read from the USB port placed
on the EVK2.
Note: for the direct debug of GPS modules a software version starting from 7.02.001 is needed

3.9.1.1 Installation of the drivers
Before starting the process of debug the drivers should be installed in the following way:

• Download the FTDI drivers and the installation guide in order to use the USB port placed

on the EVK2 (http://www.ftdichip.com/Drivers/D2XX.htm)
• Save the drivers (unzipped) on the PC
• After connecting USB cable with PC and USB port placed on the EVK2 (that has been

powered on): the installation procedure should start, according to the installation guide
instructions

• When the installation is concluded you will have four new COM ports (see Control Panel –
System – Hardware – Device Manager) and one not visible SSC port

Downloaded from Arrow.com.

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 44 of 54

• close any application controlling the serial ports and install the Python Debug application

(please contact our technical support to get Python Debug application)
Note: if an error messages appears during the installation, it will be necessary to close any
application controlling the serial ports
• the following box should appear when you run the Pythondebug.exe for the first time:

• Select the Setup option.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 45 of 54

• Then select a Virtual COM, different from the other COM ports preferably (“COM8” in the
figure), and associate to it the first SSC device that appearing in the list (“Data Module
EVK2A” in the figure),

• the following figure should appear:

Note: If the PC uses the EVK2 RS232 upper port (ASC0) to send AT commands, remember to
put all jumpers to set RS232 mode. This will not effect reading of Python debug data from the
USB port

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 46 of 54

3.9.1.2 Debugging process

After the successful installation of the drivers process of direct debugging of the Telit GPS modules
can start. The steps are the following:

• Switch on the module and activate the SSC output with the following AT command:
AT#SSCTRACE=1

• Download and enable your Python script, then power OFF the module.
• to be sure that DTR input to the module is HIGH disconnect the RS232 cable from the

module side (i.e. RS232 DTR on the modem serial port is LOW);
• check if you have the USB cable connected between the USB port of the PC and the USB

port placed on the EVK2
• every time before you power ON the module you have to click on the Reset button in the

Python Debug application (necessary to reactivate the association between the virtual Com
port and the SSC device)

• Run a terminal emulator application (e.g. Hyper Terminal) to trace the activity of the Python
script, with the following setting:

connected
COM

virtual Port set in Python Debug
(COM8 in the example)

Bit rate 115 200

Data bits 8

Parity No parity

Stop bit 1

Flow control Hardware

• Power ON the module and you should see the script starting and the debug info appearing

on the terminal emulator window.
• If the debug strings do not appear on the screen: power OFF the module, check again if

USB cable is correctly connected, reset the Python Debug application, than power ON the
module and run the terminal emulator application with the same settings as before.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 47 of 54

3.9.2 Debug Python script on GPS modules using CMUX

CMUX (Converter-Multiplexer) is a multiplexing protocol implemented in the Telit module that can be
used to send data, SMS, fax, TCP data. The Multiplexer mode enables one serial interface to transmit
data to four different customer applications. This is achieved by providing four virtual channels using a
Multiplexer (Mux).
With activating of the CMUX feature debugging data can be received on the serial ASC0 port mounted
on EVK2.
Note: for the direct debug of GPS modules a software version starting from 7.02.X01 is needed.

3.9.2.1 Installation

• Install the Telit Serial Port Mux ver 1.08-B0013 application on your PC. A box similar to this
will appear at the end of installation:

• Select the baud rate and then click on the Apply button

3.9.2.2 Debugging process

Note: If the PC uses the EVK2 RS232 upper port (ASC0) to send AT commands, remember to
put all jumpers to set RS232 mode.

3 please contact our technical assistance to get the latest application version

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 48 of 54

• Switch ON the module and with a terminal emulator (e.g. Hyper Terminal) and send the
following commands to the module:

AT#SSCTRACE=0 disabled SSC output

 AT#CMUXSCR=1,<bitrate> activated the CMUX feature on the module; put the desired

bit rate (e.g. 115200)

 AT#STARTMODESCR=1,10 module waits for minimum 10 seconds (recommended

value; can be changed) and if there is no AT commands sent in this period (except
AT<Enter>) start the enabled Python script, regardless of the DTR status (low or high).

• Download and enable4 your Python script, then power OFF the module.

• Close any application controlling the serial ports (e.g. Hyper Terminal)

• Run the Telit Serial Port Mux ; a figure similar to the one below will appear:

4 follow the procedure of download and enable of the Python script reported in the paragraph 3.2 and 3.3

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 49 of 54

 Control if the Setup options are the following:

Set the Module Main Port as the real COM port you have available (e.g. COM1 in the figure), check
the Python box and then select the Apply button.

• After this step, you will have 4 new Telit Serial Port Mux ports (see Control Panel – System –

Hardware – Device Manager) as in the figure below:

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 50 of 54

• Run a terminal emulator application (e.g. Hyper Terminal) to trace the activity of the Python
script, with the following setting:

connected

COM
virtual port #4 set in Telit CMUX
window (COM10 in the figure)

Bit rate 115 200

Data bits 8

Parity No parity

Stop bit 1

Flow control Hardware

In the Telit Serial Port Mux window, “Status:” of the Virtual Port#4, after establishing
connection in Hyper Terminal, will change from Idle to Opened

• Power on the module and wait for at least 10 seconds without sending any AT command
(except AT<Enter>);

In the Telit Serial Port Mux window, “Status:” of the Modem Port: will change in the
following way (before 10 seconds expired):
 Idle cycle between Connecting and Error Connected

After 10 seconds you should see the script starting and the debug info appearing on the
terminal emulator window.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 51 of 54

• If an ERROR messages appears in the Virtual Port #1,2,3,4 boxes, close any application

controlling the serial ports and then restart the Telit CMUX application. If this procedure is not
sufficient to avoid ERROR message, reset the PC, run again Telit Serial Port Mux with the
same settings and repeat the procedure as described above.

• If you need to debug the same Python application again, then:
• Disconnect the terminal emulator application (eg. Hyper Terminal) from the Virtual
Port#4 (in this case COM10)
• “Status:” of the Virtual Port#4 in the Telit Serial Port Mux window, should change
from Opened to Idle
• Switch off the module
• Connect the terminal emulator application to Virtual Port#4 (in this case COM10)
• “Status:” of the Virtual Port#4 in the Telit Serial Port Mux window5, should change
from Idle to Opened
• Switch on the module and wait for the “Status:” of the Modem Port in the Telit Serial
Port Mux window to go connected

5 If the Telit Serial Port Mux application seems to be freezed, please consider that it becomes active after the
module is switched on.

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 52 of 54

4 List of acronyms

AAbbbbrreevviiaattiioonn DDeessccrriippttiioonn
ACM Accumulated Call Meter
ASCII American Standard Code for Information Interchange
AT Attention Commands
CB Cell Broadcast
CBS Cell Broadcasting Service
CCM Call Control Meter
CLIP Calling Line Identification Presentation
CLIR Calling Line Identification Restriction
CMOS Complementary Metal-Oxide Semiconductor
CR Carriage Return
CSD Circuit Switched Data
CTS Clear To Send
DAI Digital Audio Interface
DCD Data Carrier Detected
DCE Data Communications Equipment
DRX Data Receive
DSR Data Set Ready
DTA Data Terminal Adaptor
DTE Data Terminal Equipment
DTMF Dual Tone Multi Frequency
DTR Data Terminal Ready
EMC Electromagnetic Compatibility
ETSI European Telecommunications Equipment Institute
FTA Full Type Approval (ETSI)
GPRS General Radio Packet Service
GPIO General Purpose Input Output
GSM Global System for Mobile communication
HF Hands Free
IIC Inter Integrated Circuit
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IRA Internationale Reference Alphabet
ITU International Telecommunications Union
IWF Inter-Working Function
LCD Liquid Crystal Display
LED Light Emitting Diode
LF Linefeed

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 53 of 54

AAbbbbrreevviiaattiioonn DDeessccrriippttiioonn
ME Mobile Equipment
MISO Master Input Slave Output
MMI Man Machine Interface
MO Mobile Originated
MOSI Master Output Slave Input
MS Mobile Station
MT Mobile Terminated
NVM Non Volatile Memory
NMEA National Marine Electronics Association
OEM Other Equipment Manufacturer
PB Phone Book
PDU Protocol Data Unit
PH Packet Handler
PIN Personal Identity Number
PLMN Public Land Mobile Network
PUCT Price per Unit Currency Table
PUK PIN Unblocking Code
RACH Random Access Channel
RLP Radio Link Protocol
RMS Root Mean Square
RTS Ready To Send
RI Ring Indicator
SCA Service Center Address
SCL Serial CLock
SDA Serial DAta
SIM Subscriber Identity Module
SMD Surface Mounted Device
SMS Short Message Service
SMSC Short Message Service Center
SPI Serila Protocol Interface
SS Supplementary Service
SSC Synchronous Serial Controllers
TIA Telecommunications Industry Association
UDUB User Determined User Busy
USSD Unstructured Supplementary Service Data

Downloaded from Arrow.com.

http://www.arrow.com

Easy Script in Python
 80000ST10020a Rev.1 - 18/09/06

Reproduction forbidden without Telit Communications S.p.A. written authorization - All Right reserved page 54 of 54

5 Document Change Log

RReevviissiioonn DDaattee CChhaannggeess
ISSUE#0 21/03/06 Release First ISSUE#1
ISSUE#1 13/09/06 1.4 Python Implementation Description: added SPI and IIC libraries that

were missing on the graphic
2.4 MOD built-in module: added Python watchdog and power saving
mode

 2.5 IIC built-in module: added note for the IIC bus clock frequency
3.9 Debug Python Script: new paragraph for GPS modules
- clarified meaning of parameter timeout for the following commands:
MDM.receive(timeout), SER.receive(timeout) and
SER.receivebyte(timeout)

Downloaded from Arrow.com.

http://www.arrow.com

