Z8038/Z8538 Military FIO FIFO Input/ Output Interface Unit ### Features - 128-byte FIFO buffer provides asynchronous bidirectional CPU/CPU or CPU/peripheral interface, expandable to any width in byte increments by use of multiple FIOs. - Interlocked 2-Wire or 3-Wire Handshake logic port mode; Z-BUS® or non-Z-BUS interface. - Pattern-recognition logic stops DMA transfers and/or interrupts CPU; preset byte count can initiate variable-length DMA transfers. - Seven sources of vectored/nonvectored interrupt which include pattern-match, byte count, empty or full buffer status; a dedicated "mailbox" register with interrupt capability provides CPU/CPU communication. - REQUEST/WAIT lines control high-speed data transfers. - All functions are software controlled via directly addressable read/write registers. ### General Description The Z8038/Z8538 FIO provides an asynchronous 128-byte FIFO buffer between two CPUs or between a CPU and a peripheral device. This buffer interface expands to a 16-bit or wider data path and expands in depth to add as many Z8060 FIFOs (and an additional FIO) as are needed. The FIO manages data transfers by assuming Z-BUS, non-Z-BUS microprocessor (a generalized microprocessor interface), Interlocked 2-Wire Handshake, and 3-Wire Handshake operating modes. These modes interface dissimilar CPUs or CPUs and peripherals running under differing speeds or protocols, allowing asynchronous data transactions and improving I/O overhead by as much as two orders of magnitude. Figures 1 and 2 show how the signals controlling these operating modes are mapped to the FIO pins. Figure 1. Pin Functions Figure 2a. 40-pin Dual-In-Line Package (DIP). Pin Assignments General Description (Continued) The FIO supports the Z-BUS interrupt protocols, generating seven sources of interrupts upon any of the following events: a write to a message register, change in data direction, pattern match, status match, over/underflow error, buffer full and buffer empty status. Each interrupt source can be enabled or disabled, and can also place an interrupt vector on the port address/data lines. The data transfer logic of the FIO has been specially designed to work with DMA (Direct Memory Access) devices for high-speed transfers. It provides for data transfers to or from memory each machine cycle, while the DMA device generates memory address and control signals. The FIO also supports the variably sized block length, improving system throughput when multiple variable length messages are transferred amongst several sources. Figure 2b. 44-pin Chip Carrier, Pin Assignments Figure 3. FIO Block Diagram ### Functional Description Operating Modes. Ports 1 and 2 operate in any of twelve combinations of operating modes, listed in Table 2. Port 1 functions in either the Z-BUS or non-Z-BUS microprocessor modes, while Port 2 functions in Z-BUS, non-Z-BUS, Interlocked 2-Wire Handshake, and 3-Wire Handshake modes. Table 1 describes the signals and their corresponding pins in each of these modes. T-46-35 The pin diagrams of the FIO are identical, except for two pins on the Port 1 side, which select that port's operating mode. Port 2's operating mode is programmed by two bits in Port 1's Control register 0. Table 2 describes the combinations of operating modes; Table 3 describes the control signals mapped to pins A-J in the five possible operating modes. | Signal
Pins | Z-BUS
Low Byte | Z-BUS
High Byte | Non-Z-BUS | Interlocked
HS Port* | 3-Wire
HS Port* | |----------------|-------------------|--------------------|-------------|-------------------------|--------------------| | A | REQ/WT | REQ/WT | REQ/WT | RFD/DAV | RFD/DAV | | 3 | DMASTB | DMASTB | DACK | ACKIN | DAV/DAC | | C | DS | DS | RD | FULL | DAC/RFD | | D | r/W | R/W | W R∙ | EMPTY | EMPTY | | E | C S | C S | CE | CLEAR | CLEAR | | F | ĀS | AS | C/D | DATÁ DIR | DATA DÌR | | G | INTACK | A ₀ | INTACK | INO | IN ₀ | | H | IEO | Al | IEO | OUT1 | OUT1 | | 1 | IEI | A ₂ | IEI | ŌĒ | ŌĒ | | | ĪNT | A ₃ | ĪNT | OUT3 | OUT3 | ^{*2} side only. Table 1. Pin Assignments | Mode | iode M ₁ M ₀ B ₁ B ₀ Port l | | Port 1 | Port 2 | | | |------|---|---|--------|--------|-----------------|------------------| | 0 | 0 | 0 | 0 | 0 | Z-BUS Low Byte | Z-BUS Low Byte | | 1 | 0. | 0 | 0 | 1 | Z-BUS Low Byte | Non-Z-BUS | | 2 | 0 | 0 | 1 | 0 | Z-BUS Low Byte | 3-Wire Handshake | | 3 | 0 | 0 | 1 | 1 | Z-BUS Low Byte | 2-Wire Handshake | | 4 | 0 | 1 | 0 | 0 | Z-BUS High Byte | Z-BUS High Byte | | 5 | 0 | 1 | 0 | 1 | Z-BUS High Byte | Non-Z-BUS | | 6 | 0 | 1 | 1 | 0 | Z-BUS High Byte | 3-Wire Handshake | | 7 | 0 | 1 | 1 | 1 | Z-BUS High Byte | 2-Wire Handshake | | 8 | 1 | 0 | 0 | 0 | Non-Z-BUS | Z-BUS Low Byte | | 9 | 1 | 0 | 0 | 1. | Non-Z-BUS | Non-Z-BUS | | 10 | 1 | 0 | 1 | 0 | Non-Z-BUS | 3-Wire Handshake | | 11 | 1 | 0 | 1 | 1 | Non-Z-BUS | 2-Wire Handshake | Table 2. Operating Modes Figure 4. CPU to CPU Configuration Figure 5. CPU to 1/O Configuration | L | 0 | 4 | | |---|---|---|--| | | | | | | Pins Common
To Both Sides | Pin
Signals | Pin
Names | | in
abers | T-46-35 Signal Description | |------------------------------|--|--------------------------------|---------------------|--------------------|---| | | М0 | Mo | | 21 | M ₁ and M ₀ program Port 1 | | | Ml | M_1 | 1 | .9 | side CPU interface | | | +5 Vdc | +5 Vdc | | Ю | DC power source | | | GND | GND | 2 | 20 | DC power ground | | Z-BUS
Low Byte
Mode | Pin
Signals | Pin
Names | | imbers
ort
2 | Signel
Description | | Z8038 | AD ₀ -AD ₇
(Address/Data) | D ₀ -D ₇ | 11-18 | 29-22 | Multiplexed bidirectional address/data lines, Z-BUS compatible. | | | REQ/WAIT
(Request/Wait) | A | 1 | 39 | Output, active Low, REQUEST (ready) line for DMA transfer; WAIT line (open-drain) output for synchronized CPU and FIO data transfers. | | | DMASTB
(Direct Memory
Access Strobe) | В | 2 | 38 | Input, active Low. Strobes DMA data to and from the FIFO buffer. | | | DS
(Data Strobe) | С | 3 | 37 | Input, active Low. Provides timing for data transfer to or from FIO. | | | R/W
(Read/Write) | D | 4 | 36 | Input; active High signals CPU read from FIO; active Low signals CPU write to FIO. | | | CS
(Chip Select) | E | 5 | 35 | Input, active Low . Enables FIO. Latched on the rising edge of \overline{AS} . | | | (Address Strobe) | F | 6 | 34 | Input, active Low. Addresses, CS and INTACK sampled while AS Low. | | | INTACK
(Interrupt
Acknowledge) | G | 7 | 33 | Input, active Low. Acknowledges an interrupt.
Latched on the rising edge of AS. | | | IEO
(Interrupt
Enable Out) | н | 8 | 32 | Output, active High. Sends interrupt enable to lower priority device IEI pin. | | | IEI
(Interrupt
Enable In) | I | 9 | 31 | Input, active High. Receives interrupt enable from higher priority device IEO signal. | | | INT
(Interrupt) | J | 10 | 30 | Output, open drain, active Low. Signals FIO interrupt request to CPU. | | -BUS | Pin | Pin | Pin Numbers
Port | | | | ligh Byte
Node - | Signals | Names | 1 | 2 | Signal Description | | 8038 | AD ₀ -AD ₇
(Address/Data) | D ₀ -D ₇ | 11-18 | 29-22 | Multiplexed bidirectional address/data lines, Z-BUS compatible. | | | REQ/WAIT
(Request/Wait) | A | 1 | 39 | Output, active Low, REQUEST (ready) line for DMA transfer; WAIT line (open-drain) output for synchronized CPU and FIO data transfers. | | | DMASTB
(Direct Memory
Access Strobe) | В | 2 | 38 | Input, active Low. Strobes DMA data to and from the FIFO buffer. | | | DS
(Data Strobe) | С | 3 | 37 | Input, active Low. Provides timing for transfer of data to or from FIO. | | | R/W
(Read/Write) | D | 4 | 36 | Input, active High. Signals CPU read from FIO; active Low signals CPU write to FIO. | | | CS
(Chip Select) | E | 5 | 35 | Input, active Low. Enables FIO. Latched on the rising edge of AS. | | | AS
(Address Strobe) | F | 6 | 34 | Input, active Low. Addresses, CS and INTACK are sampled while AS is Low. | | ٠ | A ₀
(Address Bit 0) | G
 | 7 | 33 | Input, active High. With A ₁ , A ₂ , and A ₃ , addresses FIO internal registers. | | | A ₁
(Address Bit 1) | н | 8 | 32 | Input, active High. With A ₀ , A ₂ , and A ₃ , addresses FIO internal registers. | | | A ₂
(Address Bit 2) | I | 9 | 31 | Input, active High. With A_0 , A_1 , and A_3 , addresses FIO internal registers. | | | A ₃
(Address Bit 3) | 1 | 10 | 30 | Input, active High. With A_0 , A_1 , and A_2 , addresses FIO internal registers. | Table 3. Signal/Pin Descriptions Non-Z-BUS Mode Z8538 T-46-35 | | Pin
Signals | | | | <u> </u> | |------------------|----------------------------------|--------------------------------|------------------------------|------------|---| | | | | Pin Numbers .
Port
1 4 | | Signal
Description | | D ₀ - | | D ₀ -D ₇ | 11-18 | 29-22 | Bidirectional data bus. | | | ∑/WT
quest/Wait) | A | 1 | 39 | Output, active Low, REQUEST (ready) line for DMA transfer; WAIT line (open-drain) output for synchronized CPU and FIO data transfer. | | DA
(D) | CK
1A Acknowledge) | В | 2 | 38 | Input, active Low. DMA acknowledge. | | RD
(Re | | С | 3 | 37 | Input, active Low. Signals CPU read from FIO. | | WR
(Wr | | D | 4 | 36 | Input, active Low. Signals CPU write to FIO. | | CE
(Ch | ip Select) | E | 5 | 3 5 | Input, active Low. Used to select FIO. | | C/Ī
(Co |)
ntrol/Data) | F | 6 | 34 | Input, active High. Identifies control byte on D ₀ -D ₇ ; active Low identifies data byte on D ₀ -D ₇ . | | (Int |
ACK
errupt
(nowledge) | G | 7 | 3 3 | Input, active Low. Acknowledges an interrupt. | | |)
errupt
ble Out) | Н | 8 | 32 | Output, active High. Sends interrupt enable to lower priority device IEI pin. | | | errupt
ble In) | I | 9 | 31 | Input, active High. Receives interrupt enable from higher priority device IEO signal. | | INT
(Inte | errupt) | 1 | 10 | 30 | Output, open drain, active Low. Signals FIO interrupt to CPU. | | Pin | | Pin | Pin | | Signal | | Port | 2-I/O | |------|-------| | Port | Mode | | Pin
Signals | Pin
Names | Pin
Numbers | Mode | Signal
Description | |---|--------------------------------|----------------|--------------------------|---| | D ₀ -D ₇
(Data) | D ₀ -D ₇ | 29-22 | 2-Wire HS*
3-Wire HS | Bidirectional data bus. | | RFD/DAV
(Ready for Data/Data
Available) | A | 39 | 2-Wire HS
3-Wire HS | Output, RFD active High. Signals peripherals that FIO is ready to receive data. DAV active Low signals that FIO is ready to send data to peripherals. | | ACKIN
(Acknowledge Input) | В | 38 | 2-Wire HS | Input, active Low. Signals FIO that output data is received by peripherals or that input data is valid. | | DAV/DAC
(Data Available/Data
Accepted) | В | 38 | 3-Wire HS | Input; DAV (active Low) signals that data is valid on bus. DAC (active High) signals that output data is accepted by peripherals. | | FULL | С | 37 | 2-Wire HS | Output, open drain, active High. Signals that FIO buffer is full. | | DAC/RFD
(Data Accepted/Read
for Data) | y C | 37 | 3-Wire HS | Direction controlled by internal programming. Both active High. DAC (an output) signals that FIO has received data from peripheral; RFD (an input) signals that the listeners are ready for data. | | EMPTY | D | 36 | 2-Wire HS
3-Wire HS | Output, open drain, active High. Signals that FIFO buffer is empty. | | CLEAR | E | 35 | 2·Wire HS
3·Wire HS | Programmable input or output, active Low. Clears all data from FIFO buffer. | | DATA DIR
(Data Direction) | F | 34 | 2-Wire HS
3-Wire HS | Programmable input or output. Active High signals data input to Port 2; Low signals data output from Port 2. | | IN ₀ | G | 33 | 2-Wire HS
3-Wire HS | Input line to D_0 of Control Register 3. | | OUT ₁ | н | 32 | 2-Wire HS -
3-Wire HS | Output line from D_1 of Control Register 3. | | OE
(Output Enable) | 1 | 31 | 2-Wire HS
3-Wire HS | Input, active Low. When Low, enables bus drivers.
When High, floats bus drivers at high impedance. | | OUT ₃ | 1 | 30 | 2-Wire HS
3-Wire HS | Output line from D ₃ of Control register 3. | ^{*}Handshake Table 3. Signal/Pin Descriptions (Continued) ### Reset The FIO can be reset under either hardware or software control by one of the following methods: - By forcing both AS and DS Low simultaneously in Z-BUS mode (normally illegal). - By forcing RD and WR Low simultaneously in non-Z-BUS mode. - By writing a 1 to the Reset bit in Control register 0 for software reset. In the Reset state, all control bits are cleared to 0. Only after clearing the Reset bit (by writing a 0 to it) can the other command bits be programmed. This action is true for both sides of the FIO when programmed as a CPU interface. For proper system control, when Port 1 is reset, Port 2 is also reset. In addition, all Port 2's outputs are floating and all inputs are ignored. To initiate the data transfer, Port 2 must be enabled by Port 1. The Port 2 CPU can determine when it is enabled by reading Control register 0, which reads "floating" data bus if not enabled and "01H" if enabled. ### CPU Interfaces The FIO is designed to work with both Z-BUS- and non-Z-BUS-type CPUs on both Port 1 and Port 2. The Z-BUS configuration interfaces CPUs with time-multiplexed address and data information on the same pins. The Z8001°, Z8002°, and Z8° are examples of this type of CPU. The $\overline{\rm AS}$ (Address Strobe) pin is used to latch the address and chip select information sent out by the CPU. The $R\overline{\rm W}$ (Read/Write) pin and the $\overline{\rm DS}$ (Data Strobe) pin are used for timing reads and writes from the CPU to the FIO (Figures 6 and 7). The non-Z-BUS configuration is used for CPUs where the address and data buses are separate. Examples of this type of CPU are the Z80° and the Intel 8080. The $\overline{\text{RD}}$ (Read) and $\overline{\text{WR}}$ (Write) pins are used to time reads and writes from the CPU to the FIO (Figures 9 and 10). The $\overline{\text{C/D}}$ (Control/Data) pin is used to directly access the FIFO buffer ($\overline{\text{C/D}}$ = 0) and to access the other Figure 6. Z-BUS Read Cycle Timing Figure 7. Z-BUS Write Cycle Timing CPU Interfaces (Continued) registers ($C/\overline{D}=1$). Read and write to all registers except the FIFO buffer I are two-step operations, described as follows (Figure 8). First, write the address ($C/\overline{D}=1$) of the register to be accessed into the Pointer Register (State 0); second, read or write ($C/\overline{D}=1$) to the register pointed at previously (State 1). Continuous status monitoring can be performed in State 1 by continuous Control Read operations ($C/\overline{D}=1$). ¹The FIFO buffer can also be accessed by this two-step operation. Figure 8. Register Access in Non-Z-BUS Mode Figure 9. Non-Z-BUS Read Cycle Timing Figure 10. Non-Z-BUS Write Cycle Timing WAIT Operation When data is output by the CPU, the REQ/WT (WAIT) pin is active (Low) only when the FIFO buffer is full, the chip is selected, and the FIFO buffer is addressed. WAIT goes inactive when the FIFO buffer is not full. $\frac{\text{When data is input by the CPU, the}}{\text{REQ/WT}} \text{ pin becomes active (Low) only when the FIFO buffer is empty, the chip is selected, and the FIFO buffer is addressed. WAIT goes inactive when the FIFO buffer is not empty.}$ Interrupt Operation The FIO supports Zilog's prioritized daisy chain interrupt protocol for both Z-BUS and non-Z-BUS operating modes (for more details refer to the Zilog Z-BUS Summary). Each side of the FIO has seven sources of interrupt. The priorities of these devices are fixed in the following order (highest to lowest): Mailbox Message, Change in Data Direction, Pattern Match, Status Match, Overflow/ Underflow Error, Buffer Full, and Buffer Empty. Each interrupt source has three bits that control how it generates the interrupt. These bits are Interrupt Pending (IP), Interrupt Enable (IE), and Interrupt Under Service (IUS). In addition, each side of the FIO has an interrupt vector and four bits controlling the FIO interrupt logic. These bits are Vector Includes Status (VIS), Master Interrupt Enable (MIE), Disable Lower Chain (DLC), and No Vector (NV). A typical Interrupt Acknowledge cycle for Z-BUS operation is shown in Figure 11 and for non-Z-BUS operation in Figure 12. The only difference is that in Z-BUS mode, INTACK is latched by AS, and in non-Z-BUS mode INTACK is not latched. When MIE = 1, reading the vector always includes status, independent of the state of the VIS bit. In this way, when VIS = 0, all information can be obtained with one additional read, thus conserving vector space. When MIE = 0, reading the vector register returns the unmodified base vector so that it can be verified. In non-Z-BUS mode, the IPs do not get set while in State 1. Therefore, to minimize interrupt latency, the FIO should be left in State 0. In Z-BUS mode IPs are set by an $\overline{\rm AS}$ following the event. Figure 11. Z-BUS Interrupt Acknowledge Cycle Figure 12. Non-Z-BUS Interrupt Acknowledge Cycle CPU to CPU Operation DMA Operation. The FIO is particularly well suited to work with a DMA in both Z-BUS and non-Z-BUS modes. A data transfer between the FIO and system memory can take place during every machine cycle on both sides of the FIO simultaneously. In Z-BUS mode, the DMASTB pin (DMA Strobe) is used to read or write into the FIFO buffer. The R/W (Read/Write) and DS (Data Strobe) signals are ignored by the FIO; however, the $\overline{\text{CS}}$ (Chip Select) signal is not ignored and therefore must be kept invalid. Figures 13 and 14 show typical timing. In Non-Z-BUS mode, the DACK pin (DMA Acknowledge) is used to tell the FIO that its DMA request is granted. After DACK goes Low, every read or write to the FIO goes into the FIFO buffer. Figures 15 and 16 show typical timing. When data is read from the FIO, the REQ/WT pin (REQUEST) is inactive until the number of bytes in the FIFO buffer is equal to the value programmed in the Byte Count Com- goes active and stays active until the FIFO buf- parison register. The REQUEST signal then **CPU** to **CPU** Operation (Continued) The FIO provides a special mode to enhance its DMA transfer capability, When data is written into the FIFO buffer, the REQ/WT (REQUEST) pin is active (Low) until the FIFO buffer is full. It then goes inactive and stays inactive until the number of bytes in the FIFO buffer is equal to the value programmed into the Byte Count Comparison register. Then the REQUEST signal goes active and the sequence starts over again (Figure 17). NOTES: INACTIVE - NOTES: 1. FIFO empty. 2. REQUEST enabled, FIO requests DMA transfer. 3. DMA transfers data into the FIO. 4. FIFO full, REQUEST inactive. 5. The FIFO empiles from the opposite port until the number of bytes in the FIFO buffer is the same as the number programmed in the Byte Count Comparison register. FULL NUMBER IN BYTE COUNT COMPARISON REGISTER Figure 17. Byte Count Control: Write to FIO NOTES: - NOISS: 1. FIFO empty. 2. CPU/DMA fills FIFO buffer from the opposite port. 3. Number of bytes in FIFO buffer is the same as the number of bytes programmed in the Byte Count Comparison register. 4. REQUEST goes active. 5. DMA transfers data
out of FIFO until it is empty. Figure 18. Byte Count Control: Read from FIO Message Registers. Two CPUs can communicate through a dedicated "mailbox" register without involving the 128 × 8 bit FIFO buffer (Figure 19). This mailbox approach is useful for transferring control parameters between the interfacing devices on either side of the FIO without using the FIFO buffer. For example, when Port 1's CPU writes to the Message Out register, Port 2's message IP is set. If interrupts are enabled, Port 2's CPU is interrupted. Port 2's message IP status is readable from the Port 1 side. When Port 2's CPU reads the data from its Message In register, the Port 2 IP is cleared. Thus, Port 1's CPU can read when the message has been read and can now send another message or follow whatever protocol that is set up between the two CPU's. The same transfer can also be made from Port 2's CPU to Port 1's CPU. NOTE: Usable only for CPU/CPU interface. Figure 19. Message Register Operation CPU to CPU Operation (Continued) CLEAR (Empty) FIFO Operation. The CLEAR FIFO bit (active Low) clears the FIFO buffer of data. Writing a 0 to this bit empties the FIFO buffer, inactivates the REQUEST line, and disables the handshake (if programmed). The CLEAR bit does not affect any control or data register. To remove the CLEAR state, write a 1 to the CLEAR bit. In CPU/CPU mode, under program control, only one of the ports can empty the FIFO by writing to its Control Register 3, bit 6. The Port 1 CPU must program bit 7 in Control Register 3 to determine which port controls the CLEAR FIFO operation (0 = Port 1 control; 1 = Port 2 control). Direction of Data Transfer Operation. The T-46-35 Data Direction bit controls the direction of data transfer in the FIFO buffer. The Data Direction bit is defined as 0 = output from CPU and 1 = input to CPU. This bit reads correctly when read by either port's CPU. For example, if Port 1's CPU reads a 0 (CPU output) in its Data Direction bit, then Port 2's CPU reads a 1 (input to CPU) in its Data Direction bit. In CPU/CPU mode, under program control, only one of the ports can control the direction of data transfer. The Port 1 CPU must program bit 5 in Control Register 3 to determine which port controls the data direction (0 = Port 1 control; 1 = Port 2 control). Figure 20 shows FIO data transfer options. Figure 20. FIO Data Transfer Options ## CPU to I/O Operation When Port 2 is programmed in the Interlocked 2-Wire Handshake mode or the 3-Wire Handshake mode, and Port A is programmed in Z-BUS or non-Z-BUS Microprocessor mode, the FIO interfaces a CPU and a peripheral device. In the Interlocked 2-Wire Handshake mode, RFD/DAV and ACKIN strobe data to and from Port 2. In the 3-Wire Handshake mode, RFD/DAV, DAV/DAC, and DAC/RFD signals control data flow. Interlocked 2-Wire Handshake. In the Interlocked Handshake, the action of the FIO must be acknowledged by the other half of the handshake before the next action can take place. In output mode, Port 2 does not indicate that new data is available until the external device indicates it is ready for the data. Similarly, in input mode, Port 2 does not indicate that it is ready for new data until the data source indicates that the previous byte of the data is no longer available, thereby acknowledging Port 2's acceptance of the last byte. This allows the FIO to directly interface to a Z8's port, a CIO's port, a UPC's port, another FIO port, or another FIFO Z8060, with no external logic (Figures 21 and 22). 3-Wire Handshake. The 3-Wire Handshake is designed for applications in which one output port is communicating with many input ports simultaneously. It is essentially the same as the Interlocked Handshake, except that two signals are used to indicate that an input port is ready for new data or that it has accepted the present data. In the 3-Wire Handshake, the rising edge of the RFD status line indicates that the port is ready for data, and the rising edge of the DAC status line indicates that the data has been accepted. With 3-Wire Handshake, the lines of many input ports can be bussed together with open-drain drivers and the out- put port knows when all of the ports are ready and have accepted the data. This handshake is the same handshake used in the IEEE-488 Instruments. Since the port's direction can be changed under software control, bidirectional IEEE-488-type transfers can be performed. Figures 23 and 24 show the timings associated with 3-Wire Handshake communications. CLEAR FIFO Operation. In CPU-to-I/O operation, the CLEAR FIFO operation can be performed by the CPU side (Port 1) under software control as previously explained. The CLEAR FIFO operation can also be performed under hardware control by defining the CLEAR pin of Port 2 as an input (Control Register 3, bit 7 = 1). For cascading purposes, the CLEAR pin can also be defined as an output (Control Register 3, bit 7 = 0), which reflects the current state of the CLEAR FIFO bit. It can then empty other FIOs or initialize other devices in the system. Data Direction Control. In CPU-to-I/O mode, the direction of data transfer can be controlled by the CPU side (Port 1) under software control as previously explained. The data direction can also be determined by hardware control by defining the Data Direction pin of Port 2 as an input (Control Register 3, bit 5 = 1). For cascading purposes, the Data Direction pin can also be defined as an output (Control Register 3, bit 5 = 0) pin which reflects the current state of the Data Direction bit. It can then be used to control the direction of data transfer for other FIOs or for external logic. On the Port 2 side, when data direction is 0, Port 2 is in Output Handshake mode. When data direction is 1, Port 2 is in Input Handshake mode. Figure 21. Interlocked Handshake Timing (Input) Port 2 Side Only Figure 22. Interlocked Handshake Timing (Output) Port 2 Side Only Figure 23. Input (Acceptor) Timing IEEE-488 HS Port: Port 2 Side Only Figure 24. Output (Source) Timing IEEE-488 HS Port: Port 2 Side Only Programming The programming of the FIO is greatly simplified by the efficient grouping of the various operation modes in the control registers. Since all of the control registers are read/write, the need for maintaining their image in system memory is eliminated. Also, the read/write feature of the registers aids in system debugging. Each side of the FIO has 16 registers. All 16 registers are used by the Port 1 side; Control register 2 is not used on the Port 2 side. All registers are addressable OH through FH. In the Z-BUS Low Byte mode, the FIO allows two methods for register addressing under control of the Right Justify Address (RJA) bit in Control register 0. When RIA = 0, address bus bits 1-4 are used for register addressing and bits 0, 5, 6, and 7 are ignored (Table 4). When RJA = 1, bits 0-3 are used for the register addresses, and bits 4-7 are ignored. Control Registers. These four registers specify FIO operation. The Port 2 side control registers operate only if the Port 2 device is a CPU. The Port 2 CPU can control interface operations, including data direction, only when enabled by the setting of bit 0 in the Port 1 side of Control Register 2. A 1 in bit 1 of the same register enables the handshake logic. Interrupt Status Registers. These four registers control and monitor the priority interrupt functions for the FIO. Interrupt Vector Register. This register stores the interrupt service routine address. This vector is placed on $D_0\text{-}D_7$ when IUS is set by the Interrupt Acknowledge signal from the CPU. When bit 4 (Vector Includes Status) is set in Control Register 0, the reason for the interrupt is encoded within the vector address in bits 1, 2, and 3. If bit 5 is set in Control register 0, no vector is output by the FIO during an Interrupt Acknowledge cycle. However, IUS is set as | Non Z-BUS | D7-D4 | D ₃ | D_2 | D_1 | D ₀ | | |-----------------------------------|--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------| | Z-BUS High | | A ₃ | A ₂ | A ₁ | X ₀ | | | Z-BUS Low RJA=0 | AD ₇ -AD ₅
AD ₇ -AD ₄ | AD ₄
AD ₃ | AD ₃
AD ₂ | AD ₂
AD ₁ | AD ₁
AD ₀ | AD ₀ | | Description | | , | | | | | | Control Register 0 | x | 0 | 0 | 0 | . 0 | x | | Control Register 1 | x | 0 | 0 | 0 | 1 | x | | Interrupt Status Register 0 | x | 0 | 0 | 1 | 0 | x | | Interrupt Status Register 1 | x | 0 | 0 | 1 | 1 | x | | Interrupt Status Register 2 | x | 0 | 1 | 0 | 0 | x | | Interrupt Status Register 3 | x | 0 | 1 | 0 | 1 | x | | Interrupt Vector Register | x | 0 | 1 | 1 | 0 | x | | Byte Count Register | x | 0 | 1 | 1 | 1 | x | | Byte Count Comparison
Register | × | 1 | 0 | 0 | 0 | x | | Control Register 2* | x | 1 | 0 | 0 | 1 | x | | Control Register 3 | x | 1 | 0 | 1 | 0 | × | | Message Out Register | x | 1 | 0 | 1 | 1 | x | | Message In Register | x | 1 | 1 | 0 | 0 | x | | Pattern Match Register | x | 1 | 1 | 0 | 1. | × | | Pattern Mask Register | x | 1 | ļ | 1 | 0 | x | | Data Buffer Register | × | 1 | 1 | 1 | 1 | x | Table 4. FIO Register Address Summary x = Don't Care *Register is only on Port 1 side (Continued) ZILOG INC Programming Byte Count Compare Register. This register contains a value compared with the byte count in the Byte Count register. If the Byte Count Compare interrupt is enabled, an interrupt will occur upon compare. > Message Out Register. Either CPU can place a message in its Message Out register. If the opposite side Message register interrupt is enabled, the receiving side CPU will receive an interrupt request, advising that a message is present in its Message In register. Bit 5 in Control Register 1 on the initiating side is set when a message is written. It is cleared when the message is read by the receiving CPU. Message In Register. This register
receives a message placed in the Message Out register by the opposite side CPU. Pattern Match Register. This register contains a bit pattern matched against the byte in the Data Buffer register. When these patterns match, a Pattern Match interrupt will be generated, if previously enabled. Pattern Mask Register. The Pattern Mask register may be programmed with a bit pattern mask that limits comparable bits in the Pattern Match register to non-masked bits (1 = mask). Data Buffer Register. This register contains the data to be read from or written to the FIFO buffer. Byte Count Register. This is a read-only register, containing the byte count for the FIFO buffer. The byte count is derived by subtracting the number of bytes read from the buffer from the number of bytes written into the buffer. The count is "frozen" for an accurate reading by setting bit 6 (Freeze Status register) in Control Register 1. This bit is cleared when the Byte Count register read is completed. Figure 25. Typical Application: Node Controller READ-ONLY BITS Registers Figure 26. Control Registers Figure 27. Interrupt Status Registers Registers (Continued) Interrupt Status Register I Address: 0011 (Read/Write) D, D4 D, D4 D, D, D, D6 DATA DIRECTION CHANGE INTERRUPT UNDER SERVICE (IUS) 1 = PATTERN MATCH FLAG* PATTERN MATCH INTERRUPT PENDING (IP) DATA DIRECTION CHANGE INTERRUPT ENABLE (IE) DATA DIRECTION CHANGE INTERRUPT PENDING (IP) PATTERN MATCH INTERRUPT ENABLED (IE) PATTERN MATCH INTERRUPT UNDER SERVICE (IUS) HUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NOT USED (MUST BE PROGRAMMED 6) IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NULL CODE 0 0 0 CLEAR IP & IUS 0 0 1 0 0 0 0 NULL CODE 0 0 1 CLEAR IP & IUS 0 1 0 SET IUS 1 0 0 SET IP 1 0 1 CLEAR IP 1 1 0 5 ET IE SET IUS 0 1 0 CLEAR IUS 0 1 1 SET IP 1 0 0 1 0 1 CLEAR IP SET IE CLEAR IE 1 1 1 1 1 1 CLEAR IE READ-ONLY BITS Interrupt Status Register 2 Address: 0100 (Read/Write) | | O, | D, | D, | D, | D, | D; | D, | 0, | |--|----------|----|----|-------|-----|----|----------|--| | SYTE COUNT COMPARE INTERRUPT UNDER SERVICE (IUS) SYTE COUNT COMPARE INTERRUPT ENABLE (IE) BYTE COUNT COMPARE INTERRUPT | <u> </u> | | | | | | <u> </u> | L UNDERFLOW ERROR* ERROR INTERRUPT PENDING (IP) ERROR INTERRUPT ENABLED (IE) ERROR INTERRUPT UNDER SERVICE (IU) | | PENDING (IP) IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NULL CODE | | | | _
 | | ļ | | — OVERFLOW ERROR* IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: NULL CODE | | CLEAR IP & IUS
SET IUS | 0 | 0 | 10 | | 0 0 | 0 | 10 | CLEAR IP & IUS
SET IUS | | CLEAR IUS | 0 | ÷ | 1 | | 0 | - | 1 | CLEAR IUS | | SET IP | ŀ | 0 | 1 | | 1 | 0 | 1 | SET IP
CLEAR IP | | SET IE
CLEAR IE | - | 1 | 0 | } | 1 | 1 | 0 | SET IE
CLEAR IE | | *READ ONLY BITS | | | | | | | | | Interrupt Status Register 3 Address: 0101 (Read/Write) D, D, D, D, D, D, D. D, FULL INTERRUPT UNDER SERVICE (IUS) BUFFER EMPTY FULL INTERRUPT ENABLE (IE) EMPTY INTERRUPT PENDING (IP) FULL INTERRUPT PENDING (IP) EMPTY INTERRUPT ENABLE (IE) - EMPTY INTERRUPT UNDER SERVICE (IUS) IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: BUFFER FULL* HULL CODE | 0 | 0 | 0 IUS, IE, AND IP ARE WRITTEN USING THE FOLLOWING COMMAND: 0 0 0 NULL CODE 0 0 1 CLEAR IP & IUS SET IUS 0 1 0 CLEAR IUS SET IP 1 0 0 0 1 0 SET IUS 0 1 1 CLEAR IUS 1 0 0 SET IP 1 0 1 CLEAR IP 1 1 0 SET IE SETIE 1 1 0 CLEAR IE 1 1 1 1 1 1 CLEAR IE Figure 27. Interrupt Status Registers (Continued) 18 | | Registers
(Continue | |---|------------------------| | 1 | | | | | Add | our
ires
ead | 15: | 01 | ĺ | ter | |----|--------|------------------|--------------------|------|-----|------|-----| | | 0, (| D ₆ D | , D, | D, | D, | D, | Do | | | I | П | | L | L | 1 | Ī | | RE | FLECTS | NUN | BER | OF I | YTE | S 18 | BUF | Figure 28. Byte Count Register | | Interrupt Vec
Addres
(Read/ | s: 0 | 110 | |--------------|--|-----------------------|----------| | | D ₇ D ₆ D ₆ D ₄ | D ₃ [|), D, D, | | ECTOR STATUS | MO INTERRUPTS PENDING SUPPER EMPTY SUPPER FULL OVER/UNDERFLOW ERROR SYTE COUNT MATCH PATTERN MATCH DATA DIRECTION CHANGE MAILSOX MESSAGE | 0 0 0 0 1 1 1 1 1 1 1 | | Figure 29. Interrupt Vector Register | Pattern Match Register
Address: 1101
(Read/Write) | |---| | D, D, D, D, D, D, D, D, | STORES BYTE COMPARED WITH BYTE IN DATA BUFFER REGISTER Figure 30. Pattern Match Register | Pattern Mask Register
Address: 1110 | |--| | (Read/Write) | | D, D, D, D, D, D, D, D, | IF SET, BITS O7 MASK BITS O7 IN PATTERN MATCH REGISTER, MATCH OCCURS WHEN ALL NON-MASKED BITS AGREE. Figure 31. Pattern Mask Register | Address: 1111 | | |---------------|---| | (Read/Write) |] | CONTAINS THE SYTE TRANSFERRED TO OR FROM FIFO SUFFER RAM Byte Count Comparison Register Address: 1000 (Read/Write) | 0, | D. 1 |), D, | D, | D, D, | Do | | |----------|------|-------|----|-------|----|--| | | 1 | Ш | L | П | 工 | | | CONTAINS | | | | | | | | | | 7 7 A | | | | | Figure 32. Data Buffer Register Figure 33. Byte Count Comparison Register Message Out Register Address: 1011 (Read/Write) | D, | D, | D, | D4 | D3 | ٥, | D, | D _e | | |--------|----|-----|----|-----|----|------|----------------|----| | I | I | Ī | Ī | I | 1 | Ĩ | Ī | | | STORES | | 55/ | | SEN | | D MI | ESSA | GE | Figure 34. Message Out Register Message In Register Address: 1100 (Read Only) | D, 0, | | |-------------------------|----|----|----|----|----|----|----|--| | $\overline{\mathbf{I}}$ | Ī | 1 | 1 | 1 | Ī | 1 | 1 | | | ORES ME | | | | | | | | | Figure 35. Message In Register ### **ABSOLUTE MAXIMUM RATINGS** Guaranteed by characterization/design. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### STANDARD TEST CONDITIONS The DC Characteristics and Capacitance sections listed below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Military Operating Temperature Range (T_C) -55°C to +125°C Standard Military Test Condition +4.5V ≤ V_{CC} ≤ +5.5V All AC parameters assume a load capacitance of 50 pf. Add 15 ns delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus. AC timing measurements are referenced to 1.5 volts (except for clock, which is referenced to the 20% and 80% points). Standard Test Load **Open-Drain Test Load** | DC | Symbol | Parameter | Min | Max | Unit | Condition | |----------------------|-------------------|---|------------------|-----------------------|------|----------------------------------| | Charac-
teristics | v_{IH} | Input High Voltage | 2,4 ⁸ | V _{CC} +0.3° | V | | | | v_{iL} | Input Low Voltage | -0.3° | 0.8 | v | | | | \mathbf{v}_{OH} | Output High Voltage | 2.4 ^a | | v | $I_{OH} = -250 \mu\text{A}$ | | | v _{ol} | Output Low Voltage | | 0.4ª | V | $I_{OL} = +2.0 \text{ mA}$ | | | | | | 0.5 ^b | v | $I_{OL} = +3.2 \text{ mA}$ | | | I_{IL} | Input Leakage | -10.0ª | + 10.0ª | μΑ | $0.4 \leq V_{\rm IN} \leq +2.4V$ | | | IOL | Output Leakage | - 10.0ª | + 10.0ª | μĀ | $0.4 \le V_{OUT} \le +2.4V$ | | | I _{LM} | Mode Pins Input Leakage
(Pins 19 and 21) | -100b | + 10.0ª | μΑ | $0 < V_{IN} < V_{CC}$ | | | I _{CC} | V _{CC} Supply Current | | 350* | mÅ | | V_{CC} = 5 V ± 10% unless otherwise specified, over specified temperature range. | Symbol | Parameter | Min | Мах | Unit | Condition | | |-----------------|---|---|---|---|--|---| | C _{IN} | C _{IN} Input Capacitance | | 10 ^b | pf | | | | | Output Capacitance | | 15 ^b
20 ^b | pí | | | | $c_{\nu o}$ | Bidirectional Capacitance | | | pf | | | | Unmeasured pir | s returned to ground. | | | | | | | ir | Any Input Rise Time | | 100 b | ns | | | | tf | Any Input Fall Time | | 100 ^b | ns | | | | | C _{IN} C _{OUT} C _{VO} Unmeasured pin | C _{IN} Input Capacitance C _{OUT} Output Capacitance C _{VO} Bidirectional Capacitance Unmeasured pins returned to ground. tr Any Input Rise Time | C _{IN} Input Capacitance C _{OUT} Output Capacitance C _{VO} Bidirectional Capacitance Unmeasured pins returned to ground. tr Any Input Rise Time | $C_{ m IN}$ Input Capacitance $10^{ m b}$ $C_{ m OUT}$ Output Capacitance $15^{ m b}$ $C_{ m VO}$ Bidirectional Capacitance $20^{ m b}$ Unmeasured pins returned to ground. | $ \begin{array}{c
ccccccccccccccccccccccccccccccccccc$ | C _{IN} Input Capacitance 10 ^b pf C _{OUT} Output Capacitance 15 ^b pf C _{VO} Bidirectional Capacitance 20 ^b pf Unmeasured pins returned to ground. tr Any Input Rise Time 100 ^b ns | f = 1 MHz, over specified temperature rang Note: a. Tested - b. Guaranteed - c. Guaranteed by characterization/design - d. Not tested or guaranteed or spec'ed | AC (| Characteristics | | | | | | | |------|-----------------|--|--------------------------------|------------------|------------------|-----------------|---------| | No. | Symbol | Parameter | Min | Max | Min | Max | Notes*† | | 1 | TwAS | AS Low Width | 70ª | | 50ª | | 1 | | . 2 | TsA(AS) | Address to AS 1 Setup Time | 30ª | | 10ª | | 1 | | 3 | ThA(AS) | Address to AS t Hold Time | 50ª | | 30ª | | 1 | | 4 | TsCSO(AS) | CS to AS 1 Setup Time | 0ª | | 0* | | 1 | | 5- | - ThCSO(AS) | - CS to AS † Hold Time | 60ª- | | 40 ^a | | 1 | | 6 | TdAS(DS) | ĀS t to DS ↓ Delay | 60 p | | 40 ^b | | 1 | | 7 | TsA(DS) | Address to \overline{DS} (with \overline{AS} 1 to \overline{DS} = 60 ns) | 120 ^b | | 100 ^b | | | | 8 | TsRWR(DS) | R/\overline{W} (Read) to $\overline{DS} \downarrow Setup Time$ | 100 ^b | | 80 ⁶ | | | | 9 | TsRWW(DS) | R/W (Write) to DS Setup Time | 0 _P | | 0 _p | | | | 10 - | - TwDS | - DS Low Width | 390 <mark>ь</mark> | | 250 ^b | | | | 11 | TsDW(DSf) | Write Data to DS Setup Time | 30ª | | 20ª | | | | 12 | TdDS(DRV) | DS (Read) 1 to Address Data Bus Driven | 0р | | 0р | | | | 13 | TdDSf(DR) | DS I to Read Data Valid Delay | | 250 ^a | | 180ª | | | 14 | ThDW(DS) | Write Data to DS ! Hold Time | 30 ^b | | 20 ^b | | | | 15- | - TdDSr(DR) | - DS 1 to Read Data Not Valid Delay | 0 _p - | | 0 _₽ | | | | 16 | TdDS(DRz) | DS 1 to Read Data Float Delay | | 70 ^b | | 45 ^b | 2 | | 17 | ThRW(DS) | R/W to DS 1 Hold Time | 55 ^b | | 40 ^b | | | | 18 | TdDS(AS) | DS 1 to AS Delay | 50 ^b | | 25 ^b | | | | 19 | Tro | Valid Access Recovery Time | 1000 ^b | | 650b | | 3 | ### NOTES: - 1. Parameter does not apply to Interrupt Acknowledge transactions. 2. Float delay is measured to the time when the output has changed 0.5V from steady state with minimum ac load and maximum de load. - 3. This is the delay from DS of one FIO access to DS of another FIO access (either read or write). All timing references assume 2.0V for a logic "1" and 0.8V for a logic "0". All timings are preliminary and subject to change. † Units in nanoseconds (ns). # Parameter Test Status a. Tested - Guaranteed - c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd Figure 36. Z-BUS CPU Interface Timing 21 ### **AC** Characteristics T-46-35 | | | | 41 | MHz | 6 1 | 4Hz | | |-----|-------------|---|------------------|-------------------|-----------------|------------------|---------------| | No. | Symbol | Parameter | Min | Max | Min | Max | Notes* | | 20 | TsIA(AS) | INTACK to AS 1 Setup Time | 0ь | | 0р | | | | 21 | Thia(AS) | INTACK to AS t Hold Time | 250ª | | 250ª | | | | 22 | TsDSA(DR) | DS (Acknowledge) I to Read Data Valid Delay | | 250 ^b | | 180 ^b | | | 23 | TwDSA | DS (Acknowledge) Low Width | 390р | | 250b | | | | 24- | -Tdas(Ieo)- | AS to IEO Delay (INTACK Cycle) | | —350 a | | 250 ^a | 4 | | 25 | TdIEI(IEO) | IEI to IEO Delay | | 150ª | | 100ª | 4 | | 26 | TalEI(DSA) | IEI to DS (Acknowledge) Setup Time | 100 ^b | | 70 ^b | | | | 27 | ThIEI(DSA) | IEI to DS (Acknowledge) ! Hold Time | 50 ^b | | 30 ^b | | 4 | | 28 | TdDS(INT) | DS (INTACK Cycle) to INT Delay | | 900ª | | 800ª | | | 29 | TdDCST | Interrupt Daisy Chain Settle Time | | d | | d | 4 | Figure 37. Z-BUS CPU Interrupt Acknowledge Timing - Parameter Test Status a. Tested b. Guaranteed c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd 22 NOTES: 4. The parameters for the devices in any particular daisy chain must meet the following constraint: The delay from AS to DS must be greater than the sum of TAAS(IEO) for the highest priority peripheral, TsIEI(DSA) for the lowest priority peripheral and TdIEI(IEO) for each peripheral, separating them in the chain. * Timings are preliminary and subject to change. † Units in nanoseconds (ns). | AC C | haracteristics | | | | T-46-35 | |------|----------------|---|------------------|------------------|--------------| | No. | Symbol | Parameter | 4 MHz
Min Max | 6 MHz
Min Max | Notes*† | | 30 | TdMW(INT) | Message Write to INT Delay | 1° | 1° | 5 | | 31 | TdDC(INT) | Data Direction Change to INT Delay | 1° | 1° | 6 | | 32 | TdPMW(INT) | Pattern Match to INT Delay (Write Case) | 1° | 1° | | | 33 | TdPMR(INT) | Pattern Match (Read Case) to INT Delay | 1° | 1° | | | 34 | -TdSC(INT)- | -Status Compare to INT Delay | 1 <u>°</u> | l <u>c</u> _ | 6 | | 35 | Tder(INT) | Error to INT Delay | 1° | 1° | | | 36 | TdEM(INT) | Empty to INT Delay | $I_{\mathbf{c}}$ | J _c | 6 | | 37 | TdFL(INT) | Full to INT Delay | 1° | 1° | 6 | | 38 | TdAS(INT) | AS to INT Delay | d | d | | Figure 38. Z-BUS Interrupt Timing ### Parameter Test Status - a. Tested - b. Guaranteed - c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd NOTES: 5. Write is from the other side of FIO. 6. Write can be from either side, depending on programming of FIO. Timings are preliminary and subject to change. Units equal to AS Cycles + ns. | T- | 46 | -3 | E | |----|----|----|---| |----|----|----|---| | haracteristics | | | | | 1-40 | ,-33 | |----------------|--|---|--------------------------|--|--|--| | • | | | | | | | | Symbol | Parameter | Min | Max | Min | Max | Notes*† | | TdDS(WAIT) | AS 1 to WAIT Delay | | 190ª | | 160ª | | | | | | 1000 ^b | | 1000b | | | TdACK(WAIT) | ACKIN I to WAIT I Delay | | 1000p | | 1000 ^b | 1 | | -TdDS(REQ) | - DS I to REQ 1 Delay - | | | | | | | TdDMA(REQ) | DMASTB I to REQ 1 Delay | | | | | | | TdDS1(REQ) | DSI 1 to REQ Delay | | | | | | | TdACK(REQ) | ACKIN I to REQ I Delay | h | 1000° | h | 1000° | | | – TdSU(DMA) | - Data Setup Time to <u>DMASTB</u> | 200 | | —— 150°— | | | | TdH(DMA) | | 30° | | 20° | | | | TdDMA(DR) | | | 150° | | 100° | | | TdDMA(DRH) | DMASTB I to Data Not Valid | Ов | | ου | | | | TdDMA(DR2) | DMASTB 1 to Data Bus Float | | 70 b | | 45° | | | | TdDS(REQ) —
TdDMA(REQ)
TdDS1(REQ)
TdACK(REQ)
TdSU(DMA) —
TdH(DMA)
TdDMA(DR)
TdDMA(DR) | TdDS(WAIT) TdDS(WAIT) TdDSI(WAIT) TdDSI(WAIT) TdACK(WAIT) TdDS(REQ) TdDS(REQ) TdDSI(REQ) TdSU(DMA) Data Setup Time to DMASTB TdDMA(DR) DMASTB I to Valid Data TdDMA(DRH) DMASTB I to Valid Data TdDMA(DRH) DMASTB I to Valid Data DMASTB I to Valid Data | Symbol Parameter Min | Symbol Parameter 4 MHz Min Max TdDS(WAIT) AS ! to WAIT ! Delay 190°a TdDS1(WAIT) DSI ! to WAIT ! Delay 1000°b TdACK(WAIT) ACKIN ! to WAIT ! Delay 1000°b TdDS(REQ) DS ! to REQ ! Delay 350°b TdDMA(REQ) DMASTB ! to REQ ! Delay 1000°a TdDS1(REQ) DS1 ! to REQ ! Delay 1000°a TdACK(REQ) ACKIN ! to REQ ! Delay 1000°a TdSU(DMA) Data Setup Time to DMASTB 200°a TdDMA(DRA) Data Hold Time to DMASTB 30°b TdDMA(DR) DMASTB ! to Valid Data 150°b TdDMA(DRH) DMASTB ! to Data Not Valid 0°b | Symbol Parameter Min Max Min Max Min | Symbol Parameter Min Max Min Max Min Max | Timings are preliminary and subject to change. Units in nanoseconds (ns). Figure 39. Z-BUS Request/Wait Timing | ACC | Characteristics | | | MHz | 61 | ИНz | | |--------------|---------------------------------------|---|--|-----|--|-----|---------| | No. | Symbol | Parameter | Min | Max | Min | Мах | Notes*† | | 1
2.
3 | TdDSQ(AS)
TdASQ(DS)
Tw(AS + DS) | Delay from \overline{DS} 1 to \overline{AS} 1 for No Reset Delay for \overline{AS} 1 to \overline{DS} 1 for No Reset Minimum Width of \overline{AS} and \overline{DS} Both Low for Reset. | 40 ^b
50 ^b
500 ^b | | 20 ^b
30 ^b
350 ^b | | 1 | Figure 40. Z-BUS Reset Timing NOTES: 1. The delay is from DAV for 3-Wire Input Handshake. The delay is from DAC for 3-Wire Handshake. NOTES: 1. Internal circuitry allows for the reset provided by the Z8 (DS held Low while AS pulses) to be sufficient. Timings are preliminary and subject to change. Units in nanoseconds (ns). | T- | 46 | -35 | |----|----|-----| |----|----
-----| | AC C | Characteristic | • | | • | | | |------|----------------|-----------------------------------|------------------------|-------------------------|-----------------|--------| | No. | Symbol | Parameter | 4 MH
Min B | z 6 M
fax Min | Hz
Max | Notes* | | 1 | TsA(RD) | Address Setup to RD ↓ | 80ª | 80ª | | 1 | | 2 | TsA(WR) | Address Setup to WR | 80ª | 80 ⁸ | | | | 3 | ThA(RD) | Address Hold Time to RD 1 | ~ 0 ^b | 0 _p | | 1 | | 4 - | ThA(WR) | | 0 _p | 0 <u></u> | | ···· | | 5 | TsCEI(RD) | CE Low Setup Time to RD | O _P | 0 _p | | 1 | | 6 | TsCEI(WR) | CE Low Setup Time to WR | Op | 0 _p | | | | 7 | ThCEI(RD) | CE Low Hold Time to RD | О.р. | 0р | | 1 | | 8- | -ThCEI(WR) - | — CE Low Hold Time to WR | 0 <u>b</u> | o <u>b</u> | | | | 9 | TsCEh(RD) | CE High Setup Time to RD | 100 ^b | 70 ⁶ | | 1 | | 10 | TsCEh(WR) | CE High Setup Time to WR | 100 ^b | 70 ^b | | | | 11 | TwRD1 | RD Low Width | 390p | 250 ^b | | | | 12- | - TdRD(DRA) - | | 0 <u>b</u> | 0 _p | | | | 13 | TdRDI(DR) | RD I to Valid Data Delay | 2 | 250 ^{a} | 180ª | | | 14 | TdRDr(DR) | RD 1 to Read Data Not Valid Delay | O _p | Op | | | | 15 | TdRD(DRz) | RD 1 to Data Bus Float | | 70 ^b | 45 ^b | 2 | | 16 - | -TwWR1 | WR Low Width | 390 ^b | 250 ^b | | | | 17 | TsDW(WR) | Data Setup Time to WR | 0 b | 0 _p | | | | 18 | ThDW(WR) | Data Hold Time to WR | 30 _p | 20 ^b | | | | 19 | Trc(WR) | Write Valid Access Recovery Time | 1000 ^b | 650 ^b | | | | 20 | Trc(RD) | Read Valid Access Recovery Time | 1000 + WR _p | 650 + WRp | | 3 | | | | | • | Ρ, | | | - Parameter does not apply to Interrupt Acknowledge transactions. Float delay is measured to the time the output has changed 0.5V from steady state with minimum ac load and maximum dc load. - 3. Recovery time equal to Trc(WR) + write pulse width of the opposite side. - * Timings are preliminary and subject to change. † Units in nanoseconds (ns). Figure 41. Non-Z-BUS CPU Interface Timing Figure 42. Z-BUS/Non-Z-BUS Recovery Time | aracteristics - | | | | | | | |-----------------|--|--|--|--|---|---| | Symbol | Parameter | | | | | 87 . 4 44 | | | | | | ******* | Mux | Notes†* | | TdIEI(IEO) | IEI to IEO Delay | | 150 ^b | | 100 ^b | 4 | | Tdl(IEO) | INTACK I to IEO I Delay | | 350ª | | 250ª | 4 | | TslEI(RDA) | IEI Setup Time to RD (Acknowledge) | 100 ^b | | 70 ^b | | 4 | | TdRD(DR) | RD I to Vector Valid Delay | | 250° | - | 180ª | • | | TwRD1(IA) | Read Low Width (Interrupt Acknowledge) | 390 p | | 250 b | | | | ThIA(RD) | INTACK 1 to RD 1 Hold Time | 30 ^b | | 20 ^b | | | | ThIEI(RD) | IEI Hold Time to RD t | 20 ^b | | 10 ^b | | | | TdRD(INT) | RD ↓ to INT ↑ Delay | | 900ª | | 800 | | | TdDCST | Interrupt Daisy Chain Settle Time | 350 b | | 250 ^b | | 4 | | | Symbol TdIEI(IEO) TdI(IEO) TsIEI(RDA) TdRD(DR) —TwRD1(IA) ThIA(RD) ThIEI(RD) TdRD(INT) | TdIEI(IEO) IEI to IEO Delay TdI(IEO) IEI to IEO Delay TsIEI(RDA) IEI Setup Time to RD (Acknowledge) TdRD(DR) RD i to Vector Valid Delay TwRD1(IA)—Read Low Width (Interrupt Acknowledge) ThIA(RD) INTACK 1 to RD 1 Hold Time ThIEI(RD) IEI Hold Time to RD 1 TdRD(INT) RD i to INT 1 Delay | Symbol Parameter 41 Min TdIEI(IEO) IEI to IEO Delay TdI(IEO) INTACK I to IEO I Delay TsIEI(RDA) IEI Setup Time to RD (Acknowledge) 100b TdRD(DR) RD I to Vector Valid Delay 390b TwRD1(IA) Read Low Width (Interrupt Acknowledge) 390b ThIA(RD) INTACK I to RD I Hold Time 30b ThIEI(RD) IEI Hold Time to RD I 20b TdRD(INT) RD I to INT I Delay | Symbol Parameter 4 MHz Max TdIEI(IEO) IEI to IEO Delay 150 b TdI(IEO) INTACK I to IEO I Delay 350 a TsIEI(RDA) IEI Setup Time to RD (Acknowledge) 100 b TdRD(DR) RD I to Vector Valid Delay 250 a TwRD1(IA) Read Low Width (Interrupt Acknowledge) 390 b ThIA(RD) INTACK 1 to RD 1 Hold Time 30 b ThIEI(RD) IEI Hold Time to RD 1 20 b TdRD(INT) RD I to INT 1 Delay 900 a | Symbol Parameter 4 MHz Min 6 R Min TdIEI(IEO) IEI to IEO Delay 150 b TdI(IEO) INTACK I to IEO I Delay 350 a TsIEI(RDA) IEI Setup Time to RD (Acknowledge) 100 b 70 b TdRD(DR) RD I to Vector Valid Delay 250 b 250 b TwRD1(IA) Read Low Width (Interrupt Acknowledge) 390 b 250 b ThIA(RD) INTACK 1 to RD 1 Hold Time 30 b 20 b ThIEI(RD) IEI Hold Time to RD 1 20 b 10 b TdRD(INT) RD I to INT 1 Delay 900 a | Symbol Parameter 4 MHz Min 6 MHz Max TdIEI(IEO) IEI to IEO Delay 150 b 100 b TdI(IEO) INTACK I to IEO I Delay 350 a 250 a TsIEI(RDA) IEI Setup Time to RD (Acknowledge) 100 b 70 b TdRD(DR) RD I to Vector Valid Delay 250 a 180 a TwRD1(IA) Read Low Width (Interrupt Acknowledge) 390 b 250 b ThIA(RD) INTACK I to RD I Hold Time 30 b 20 b ThIEI(RD) IEI Hold Time to RD I 20 b 10 b TdRD(INT) RD I to INT I Delay 900 a 800 a | for the lowest priority peripheral, and TdIEI(IEO) for each peripheral separating them in the chain. 1 Units in nanoseconds (ns). 1 Timings are preliminary and subject to change. Figure 43. Non-Z-BUS Interrupt Acknowledge Timing **Parameter Test Status** - a. Tested b. Guaranteed - c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd NOTES: 4. The parameter for the devices in any particular daisy chain must meet the following constraint: The delay from INTACK I to RD I must be greater than the sum of Tdl(IEO) for the highest priority peripheral, TsIEI(RD) | AC C | haracteristics | | | T-46- | 35 ~ | |------|----------------|---|----------------|------------------------|---------| | No. | Symbol | Parameter | 4 MHz
Min M | 6 MHz
ax Min Max | Notes*† | | 29 | TdMW(INT) | Message Write to INT Delay | | | 5,6 | | 30 | TdDC(INT) | Data Direction Change to INT Delay | Note | Parameter values fo | • | | 31 | TdPMW(INT) | Patiern Match (Write Case) to INT Delay | 11010 | #29 through #36 are | • | | 32- | —TdPMR(INT)— | Pattern Match (Read Case) to INT Delay | | left blank as they are | | | 33 | TdSC(INT) | Status Compare to INT Delay | | software dependent. | | | 34 | Tder(Int) | Error to INT Delay | | | 5,7 | | 35 | TdEM(INT) | Empty to INT Delay | | | 5,7 | | 36 | TdFL(INT) | Full to INT Delay | | | 5,7 | | 37 | TdSO(INT) | State 0 to INT Delay | 650 b | 450 ^b | ٠,. | NOTES: 5. Delay number is valid for State 0 only. 6. Write is from other side of FIO. 7. Write can be from either side, depending on programming of FIO. * Timings are preliminary and subject to change. † Units in nanoseconds (ns). Figure 44. FIO Non-Z-BUS Interrupt Timing ### **Parameter Test Status** a. Tested d. Testeo b. Guaranteed c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd | T- | 46 | -35 | |----|----|-----| |----|----|-----| | AC C | Characteristics | | | | | | | |------|-----------------|---------------------------------|------------------|-----------------|-------|-------------------|-------------| | No. | Symbol | Parameter | 4 MHz
Min Mo | £Χ | 6 Min | IHz
Max | Notes*† | | 1 | TdCE(WT) | CE I to WAIT Active | 20 | 00ª | | 170ª | | | 2 | TdRD1(WT) | RD1 t or WR1 t to WAIT Inactive | 100 |)О _р | | 1000 ⁶ | | | 3 | TdACK(WT) | ACKIN I to WAIT Inactive | | ю, | | 1000b | 1 | | 4- | —TdRD(REQ)— | -RD or WR to REQ Inactive | 3 ¹ |
50 b | | — 300p | | | 5 | TdRD1(REQ) | RD1 t or WR1 t to REQ Active | 10 | 00р | | 1000b | | | 6 | TdACK(REQ) | ACKIN I to REQ Active | 10 |)Ор | | 1000 b | | | 7 | TdDAC(RD) | DACK I to RD I or WR I | 100 ^b | _ | 80 b | | | | 8 | TdDMA | RD I to Valid Data | 1 | 50 b | | 100b | •2 | | 9 | TdDMA(DRH) | RD 1 to Data Not Valid | O _P | | Ор | | 2 | | 10 | TdDMA(DRZ) | RD t to Data Bus Float | | 70 ⁶ | | 45 ^b | 2 | - NOTES: 1. The delay is from DAV 1 for 3-Wire Input Handshake. The delay is from DAC 1 for 3-Wire Output Handshake. 2. Only when DACK is active. - * Timings are preliminary and subject to change. - 1 Units in nanoseconds (ns). Figure 45. Non-Z-BUS Request/Wait Timing | | Characteristics | | | T-46 | -35 | |-----|-----------------|--|------------------|------------------|---------| | No. | Symbol | Parameter | 4 MHz
Min Max | 6 MHz
Min Max | Notes*† | | 1 | TdWR(RD) | Delay from WR 1 to RD | 100b | 70 b | | | 2 | TdRD(WR) | Delay from RD 1 to WR 1 | 100 ^b | 70 ^b | | | 3 | TwRD + WR | Width of RD and WR, both Low for Reset | 500 ^b | 350 b | | NOTES: * Timings are preliminary and subject to change. † Units in nanoseconds (ns). Figure 46. Non-Z-BUS Reset Timing | AC (| Characteristics | | | | • | |------|-----------------|------------------------------|------------------|------------------|-----------| | No. | Symbol | Parameter | 4 MHz
Min Max | 6 MHz
Min Max | c Notes*† | | 1 | TwCLR | Width of Clear to Reset FIFO | 700 b | 700 ^b | | | 2 | TdOE(DO) | OE I to Data Bus Driven | 210* | 210 | a | | 3 | TdOE(DRZ) | OE 1 to Data Bus Float | 150 ^b | 150 | ь . | | 4 | TdCLR(ACK) | CLEAR t to ACKIN t | 800p | 800p | | NOTES: * Timings are preliminary and subject to change. 1 Units in nanoseconds (ns). Figure 47. Port 2 Side Operation # Parameter Test Status a. Tested - b. Guaranteed c. Guaranteed by Design/Characterization d. Not Tested or Guaranteed or Spec'd | _ | | | | . – | _ | - | | |---|------|------|---|-----|----|-----|-----| | |
 |
 | • | | T- | 46. | -35 | | AC (| Characteristics | | | | | | 70-33 | |------|-----------------|---|-----------------|---------------|------------------|------------------|---------| | | | | | MHz | | MHz. | 22 23 | | No. | Symbol | Parameter | Min | Max | Min | Max | Notes*† | | 1 | TsDI(ACK) | Data Input to ACKIN 1 to Setup Time | 50 ^a | | 50ª | | | | 2 | TdACKI(RFD) | ACKIN I to RFD I Delay | О.р | 500ª | Op | 500ª | | | 3 | TdRFDr(ACK) | RFD ↑ to ACKIN ↓ Delay | Ор. | | Оp | | | | 4- | -TsDO(DAV) | -Data Out to DAV Setup Time- | —50 <u>b</u> | | 25 ^b | | | | 5 | TdDAVf(ACK) | DAV I to ACKIN I Delay | Op | | Op | | | | 6 | ThDO(ACK) | Data Out to ACKIN Hold Time | 50 ^b | | 50 b | | | | 7 | TdACK(DAV) | ACKIN I to DAV I Delay | 0р | 500 ª | Op | 500ª | | | 8- | -ThDI(RFD) | -Data Input to RFD Hold Time- | —— О <u></u> | | 0 p - | | · | | 9 | TdRFDf(ACK) | RFD I to ACKIN ! Delay | Ор | | Op | | | | 10 | TdACKr(RFD) | ACKIN 1 (DAV 1) to RFD 1 Delay—Interlocked and 3-Wire Handshake | Ор | 400 b | Op | 400 ^b | | | 11 | TdDAVr(ACK) | DAV t to ACKIN t (RFD t) | Op | | Op | | | | 12- | —TdACKr(DAV)— | -ACKIN I to DAV I | —о <u>ь</u> | —800 <u>b</u> | ——О <u>р</u> . | —-800 b — | | | 13 | TdACKf(Empty) | ACKIN I to Empty | Оp | | О р | | | | 14 | TdACKf(Full) | ACKIN 4 to Full | 0ь | | О.р. | | | | 15 | TcACK | ACKIN Cycle Time | 1° | | 1° | | 1 | NOTES: * Timings are preliminary and subject to change. † Units in nanoseconds (ns), except as noted. 1. Units in microseconds. Figure 48. 2-Wire Handshake (Port 2 Side Only) Output Figure 49. 2-Wire Handshake (Port 2 Side Only) Input | AC Characteristics | | | | | | T-46-35 | | | |--------------------|---------------|--------------------------------|-----------------|------|-----------------|------------|-------------|--| | No. | Symbol | Parameter | 41
Min | Max | 6 P
Min | IHz
Max | Notes*† | | | 1 | TaDI(DAV) | Data Input to DAV Setup Time | 50 ^b | | 50 ^b | | | | | 2 | TdDAVI(RFD) | DAV I to RFD I Delay | Op | 500ª | Op | 500ª | | | | 3 | TdDAVf(DAC) | DAV I to DAC 1 Delay | 0р | 500ª | 0р | 500ª | | | | 4- | -ThDI(DAC) | -Data In to DAC 1 Hold Time | 0 <u>b</u> | | 0 <u>b</u> | | | | | 5 | TdDACIr(DAV) | DAC 1 to DAV 1 Delay | 0р | | . Ор | | | | | 6 | TdDAVIr(DAC) | DAV 1 to DAC I Delay | Ор | 500ª | Op | 500ª | | | | 7 | TdDAVIr(RFD) | DAV 1 to RFD 1 Delay | Op | 500® | Op | 500 ª | | | | 8- | -TdRFDI(DAV)- | -RFD 1 to DAV Delay | 0 <u>b</u> | | 0 <u>b</u> | | | | | 9 | TsDO(DAC) | Data Out to DAV I | d | | d | | | | | 10 | TdDAVOi(RFD) | DAV I to RFD I Delay | 0р | | Op | | | | | 11 | TdDAVO(DAC) | DAV I to DAC 1 Delay | 0р | | Op | | | | | 12- | ThDO(DAC) | -Data Out to DAC 1 Hold Time | | | | | | | | 13 | TdDACOr(DAV) | DAC 1 to DAV 1 Delay | | 400ª | | 400ª | | | | 14 | TdDAVOr(DAC) | DAV t to DAC & Delay | Op | | Op. | - | | | | 15 | TdDAVOr(RFD) | DAV t to RFD t Delay | 0р | | Op. | | | | | 16 | | RFD 1 to DAV Delay | 0 p | 800ª | Op | 800ª | | | Figure 50. 3-Wire Handshake Input Figure 51. 3-Wire Handshake Output NOTES: Timings are preliminary and subject to change. Units in nanoseconds (ns). ### **MIL-STD-883 MILITARY PROCESSED PRODUCT** - Mil-Std-883 establishes uniform methods and procedures for testing microelectronic devices to insure the electrical, mechanical, and environmental integrity and reliability that is required for military applications. - Mil-Std-883 Class B is the industry standard product assurance level for military ground and aircraft application. - The total reliability of a system depends upon tests that are designed to stress specific quality and reliability concerns that affect microelectronic products. - The following tables detail the 100% screening and electrical tests, sample electrical tests, and Qualification/Quality Conformance testing required. ### **Zilog Military Product Flow** # Table I MIL-STD-883 Class B Screening Requirements Method 5004 | Test | | Mil-Std-883
Method | Test Condition | Requirement | |--------------------|------------------------|-----------------------|--|-------------| | Internal Visual | | 2010 | Condition B | 100% | | Stabilization Bal | «е | 1008 | Condition C | 100% | | Temperature Cy | cle | 1010 | Condition C | 100% | | Constant Accele | eration (Centrifuge) | 2001 | Condition E or D ^(Note 1) , Y ₁ Axis Only | 100% | | Initial Electrical | lests . | | Zilog Military Electrical Specification
Static/DC T _C = +25°C | 100% | | Burn-In | | 1015 | Condition C or D (Note 2), 160 hours T _A = +125°C | 100% | | Interim Electrica | Il Tests | | Zilog Military Electrical Specification
Static/DC T _C = +25°C | 100% | | PDA Calculation |) | | PDA = 5% | 100% | | Final Electrical T | ests | | Zilog Military Electrical Specification
Static/DC T _C = +125°C, -55°C
Functional, Switching/AC T _C = +25°C | 100% | | Fine Leak | | 1014 | Condition B | 100% | | Gross Leak | | 1014 | Condition C | 100% | | Quality Conform | nance Inspection (QCI) | | | | | Group A | Each Inspection Lot | 5005 | (See Table II) | Sample | | Group B | Every Week | 5005 | (See Table III) | Sample | | Group C | Periodically (Note 3) | 5005 | (See Table IV) | Sample | | Group D | Periodically (Note 3) | 5005 | (See Table V) | Sample | | External Visual | | 2009 | | 100% | | QA-Ship | | | | 100% | - Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package mass of ≥ 5 grams. - 2. Fully compliant to Mil-Std-883 Revision C requirements. - 3. Performed periodically as required by Mil-Std-883, paragraph 1.2.1 b(17). # Table II Group A Sample Electrical Tests MIL-STD-883 Method 5005 | Subgroup | Tests | Temperature (T _C) | LTPD
Max Accept = 2 | |-------------|--------------|-------------------------------|------------------------| | Subgroup 1 | Static/DC | +25°C | 2 | | Subgroup 2 | Static/DC | +125°C | 3 | | Subgroup 3 | Static/DC | -55°C | 5 | | Subgroup 7 | Functional | +25°C | 2 | | Subgroup 8 | Functional | -55°C and +125°C | 5 | | Subgroup 9 | Switching/AC | +25°C | 2 | | Subgroup 10 | Switching/AC | +125°C | 3 | | Subgroup 11 | Switching/AC | −55°C | 5 | - The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test. A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed. Group A testing by subgroup or within subgroups may be performed in any sequence unless otherwise specified. ### Table III Group B ## Sample Test Performed Every Week to Test Construction and Insure Integrity of Assembly Process. MIL-STD-883 Method 5005 | Subgroup | Mil-Std-883
Method | Test Condition | Quantity or
LTPD/Max Accept | |--|-----------------------|---|--------------------------------| | Subgroup 1 Physical Dimensions | 2016 | | 2/0 | | Subgroup 2 Resistance to Solvents | 2015 | | 4/0 | | Subgroup 3
Solderability | 2003 | Solder Temperature
+ 245°C ± 5°C | 15(Note 1) | | Subgroup 4 Internal Visual and Mechanical | 2014 | | 1/0 | | Subgroup 5 Bond Strength | 2011 | C | 15(Note 2) | | Subgroup 6(Note 3) Internal Water Vapor Content | 1018 | 1000 ppm.
maximum at +100°C | 3/0 or 5/1 | | Subgroup 7 ^(Note 4) Seal 7a) Fine Leak 7b) Gross
Leak | 1014 | 7a) B
7b) C | 5 | | Subgroup 8(Note 5) Electrostatic Discharge Sensitivity | 3015 | Zilog Military Electrical Specification Static/DC T _C = +25°C A = 20-2000V B = >2000V Zilog Military Electrical Specification Static/DC T _C = +25°C | 15/0 | - Number of leads inspected selected from a minimum of 3 devices. Number of bond pulls selected from a minimum of 4 devices. Test applicable only if the package contains a dessicant. Test not required if either 100% or sample seal test is performed between final electrical tests and external visual during Class B screening. Test required for initial qualification and product redesign. 9984043 0013741 4 T-46-35 # Table IV Group C Sample Test Performed Periodically to Verify Integrity of the Die. MIL-STD-883 Method 5005 | Subgroup | Mil-Std-883
Method | Quantity or Test Condition LTPD/Max Accept | |---|-----------------------|--| | Subgroup 1
Steady State Operating Life | 1005 | Condition C or D (Note 1), 1000 hours at +125 C
+125°C | | End Point Electrical Tests | | Zilog Military Electrical Specification
T _C = +25°C, +125°C, -55°C | | Subgroup 2 Temperature Cycle | 1010 | Condition C | | Constant Acceleration (Centrifuge) | 2001 | Condition E or D(Note 2), Y1 Axis Only | | Seal
2a) Fine Leak
2b) Gross Leak | 1014 | 2a) Condition B
2b) Condition C | | Visual Examination | 1010 or 1011 | | | End Point Electrical Tests | | Zilog Military Electrical Specification TC = +25°C, +125°C, -55°C | - 1. Fully compliant to Mil-Std-883 Revision C requirements. - 2. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package mass of \geq 5 grams. Table V Group D Sample Test Performed Periodically to Insure Integrity of the Package. MIL-STD-883 Method 5005 | • • | WIT-21 D-00 | ss method 5005 | | |---|-----------------------|--|--------------------------------| | Subgroup | Mil-Std-883
Method | Test Condition | Quantity or
LTPD/Max Accept | | Subgroup 1
Physical Dimensions | 2016 | | 15 | | Subgroup 2
Lead Integrity | 2004 | Condition B ₂ or D ^(Note 1) | 15 | | Subgroup 3
Thermal Shock | 1011 | Condition B minimum,
15 cycles minimum | | | Temperature Cycling | 1010 | Condition C, 100 cycles minimum | 15 | | Moisture Resistance | 1004 | | | | Seal
3a) Fine Leak
3b) Gross Leak | 1014 | 3a) Condition B
3b) Condition C | | | Visual Examination | 1004 or 1010 | • | | | End Point Electrical Tests | | Zilog Military Electrical Specification
T _C = +25°C, +125°C, -55°C | | | Subgroup 4 | | | | | Mechanical Shock | 2002 | Condition B minimum | • | | Vibration Variable Frequency | 2007 | Condition A minimum | | | Constant Acceleration (Centrifuge) | 2001 | Condition E or D(Note 2), Y1 Axis Only | 15 | | Seal
4a) Fine Leak
4b) Gross Leak | 1014 | 4a) Condition B
4b) Condition C | | | Visual Examination | 1010 or 1011 | • | | | End Point Electrical Tests | | Zilog Military Electrical Specification
T _C = +25°C, +125°C, -55°C | | | Subgroup 5
Salt Atmosphere | 1009 | Condition A minimum | | | Seal
5a) Fine Leak
5b) Gross Leak | 1014 | 5a) Condition B
5b) Condition C | 15 | | Visual Examination | 1009 | • | | | Subgroup 6
Internal Water Vapor Content | 1018 | 5,000 ppm. maximum water content at +100°C | 3/0 or 5/1 | | Subgroup 7 ^(Note 3) Adhesion of Lead Finish | 2025 | | 15(Note 4) | | Subgroup 8 ^(Note 5)
Lid Torque | 2024 | | 5/0 | | | | | | - Lead Integrity Condition D for leadless chip carriers. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package. mass of ≥5 grams. - 3. Not applicable to leadless chip carriers. - 4. LTPD based on number of leads. - 5. Not applicable for solder seal packages. ### **PACKAGING INFORMATION** T-46-35 40-Pin Ceramic Dual In-line Package (DIP) 44-Pin Ceramic Leadless Chip Carrier (LCC) NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4 ### **ORDERING INFORMATION** T-46-35 Z8038 Z-FIO, 4 MHz 40-pin DIP Z0803804CMB Z8038 Z-FIO, 6 MHz 40-pin DIP Z0803806CME 44-pin LCC Z0803806LME Z0803806CMB Z0803806LMB Z8538 FIO, 6 MHz 40-pin DIP Z0853806CME 44-pin LCC Z0853806LME Z0853806CMB Z0853806LMB ### Codes ### **PACKAGE** TEMPERATURE D = Cerdip P = Plastic V = Plastic Chip Carrier $S = 0^{\circ}C \text{ to } +70^{\circ}C$ E = -40°C to +85°C M = -55°C to +125°C C = Ceramic F = Plastic Quad Flat Pack G = Ceramic PGA (Pin Grid Array) L = Ceramic LCC Q = Ceramic Quad-in-Line R = Protopack T = Low Profile Protopack ENVIRONMENTAL C = Plastic Standard E = Hermetic Standard A = Hermetic Stressed B = 833 Class B Military D = Plastic Stressed J = JAN 38510 Military ### Example: Z0803804CMB is a 8038, 4 MHz, Ceramic, -55°C to +125°C, 833 Class B Flow.