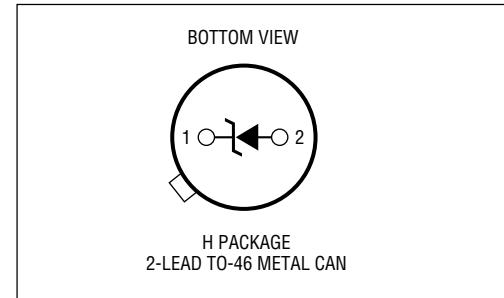
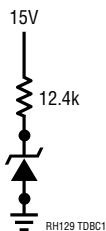
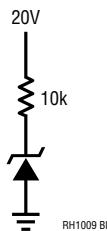


DESCRIPTION

The RH129 precision reference features excellent stability over a wide range of voltage, temperature and operating current conditions. The device achieves low dynamic impedance by incorporating a high gain shunt regulator around the Zener. The excellent noise performance of the device is achieved by using a buried Zener design which eliminates surface noise usually associated with ordinary Zeners.




The wafer lots are processed to LTC's in-house Class S flow to yield circuits usable in stringent military applications.

ABSOLUTE MAXIMUM RATINGS

Reverse Breakdown Current	30mA
Forward Current	2mA
Operating Temperature Range	-55°C to 125°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

 LTC and LT are registered trademarks of Linear Technology Corporation.

BURN-IN CIRCUIT TOTAL DOSE BIAS CIRCUIT PACKAGE INFORMATION

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

SYMBOL	PARAMETER	CONDITIONS	NOTES	T _A = 25°C			SUB-GROUP	-55°C			SUB-GROUP	UNITS
				MIN	TYP	MAX		MIN	TYP	MAX		
V _Z	Reverse Breakdown Voltage	0.6mA I _R 15mA		6.7	7.2	1						V
V _Z I _R	Reverse Breakdown Voltage Change with Current	0.6mA I _R 15mA 1mA I _R 15mA			14					12		mV mV
V _Z Temp	Temperature Coefficient	I _R = 1mA, RH129A RH129B RH129C								10 20 50	2, 3 2, 3 2, 3	ppm/°C ppm/°C ppm/°C
	Change in TC	1mA I _R 15mA							1			ppm/°C
r _Z	Dynamic Impedance	I _R = 1mA 1mA I _R 15mA	1		2					0.8		
en	RMS Noise	10Hz f 10kHz	2		20	1						µV
V _Z Time	Long Term Stability	T _A = 25°C ± 0.1°C, I _R = 1mA ± 0.3%			20							ppm/kHr

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) (Note 3)

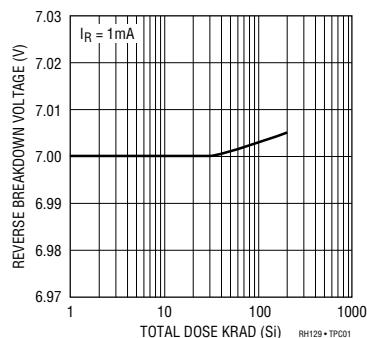
SYMBOL	PARAMETER	CONDITIONS	NOTES	10KRAD(Si)		20KRAD(Si)		50KRAD(Si)		100KRAD(Si)		200KRAD(Si)		UNITS
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V_Z	Reverse Breakdown Voltage	0.6mV $I_R \leq 15\text{mA}$		6.7	7.2	6.7	7.2	6.7	7.2	6.7	7.2	6.7	7.2	V
$\frac{V_Z}{I_Z}$	Reverse Breakdown Voltage Change with Current	0.6mV $I_R \leq 15\text{mA}$			14		14		20		30		50	mV
V_Z	Temperature Coefficient	$I_R = 1\text{mA}$, RH129A		10		10		10		15		20		ppm/ $^{\circ}\text{C}$
Temp		RH129B		20		20		20		25		30		ppm/ $^{\circ}\text{C}$
		RH129C		50		50		50		55		60		ppm/ $^{\circ}\text{C}$

Note 1: Guaranteed by design, characterization or correlation to other tested parameters.

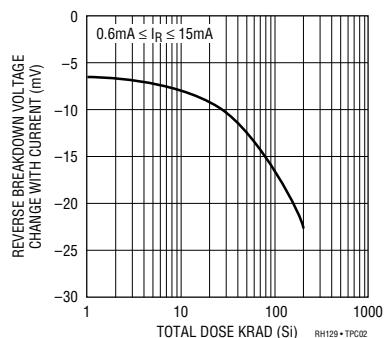
Note 2: Guaranteed by correlation testing including enhancements for popcorn noise detection.

Note 3: $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

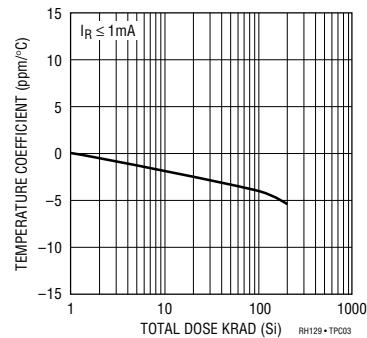
TABLE 2: ELECTRICAL TEST REQUIREMENTS

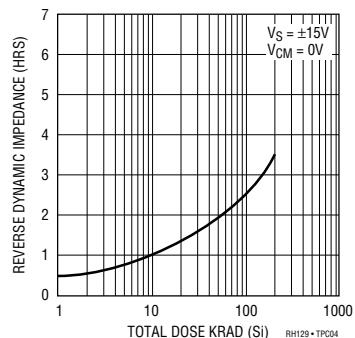

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*, 2, 3
Group A Test Requirements (Method 5005)	1, 2, 3
Group B and D for Class S and Group C and D for Class B	1
End Point Electrical Parameters (Method 5005)	

* PDA Applies to subgroup 1. See PDA Test Notes.


PDA Test Notes: The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot. Linear Technology Corporation reserves the right to test to tighter limits than those given.

TYPICAL PERFORMANCE CHARACTERISTICS


Reverse Breakdown Voltage


Reverse Breakdown Voltage Change with Current

Temperature Coefficient

Reverse Dynamic Impedance

I.D. No. 66-10-0174 Rev. A 0397