

GenX3™ 1200V IGBT w/ Diode

IXGR55N120A3H1

1200V 30A ≤ 2.35V

(Electrically Isolated Tab)

Ultra-Low-Vsat PT IGBTs for up to 3kHz Switching

ISOPLUS 247™	
G C E	Isolated Tab

G = Gate	C = Collector
E = Emitter	

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1200	V	
V _{CGR}	$T_{_{\mathrm{J}}}$ = 25°C to 150°C, $R_{_{\mathrm{GE}}}$ = 1M Ω	1200	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C (Chip Capability)	70	A	
I _{C110}	$T_{c} = 110^{\circ}C$	30	Α	
I _{F110}	$T_{c} = 110^{\circ}C$	44	Α	
I _{CM}	$T_{\rm c}$ = 25°C, 1ms	330	Α	
SSOA	$V_{GF} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 3\Omega$	I _{CM} = 110	A	
(RBSOA)	Clamped Inductive Load	@ 0.8 • V _{CES}		
P _c	T _C = 25°C	200	W	
T _J		-55 +150	°C	
\mathbf{T}_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062 in.) from Case for 10	260	°C	
V _{ISOL}	50/60 Hz, 1 minute	2500	V~	
F _c	Mounting Force	20120/4.527	N/lb.	
Weight		5	g	

Characteristic Values Symbol Test Conditions (T₁ = 25°C, Unless Otherwise Specified) Min. Typ. Max. $I_{\rm C} = 1 {\rm mA}, V_{\rm CE} = V_{\rm GE}$ V_{GE(th)} 3.0 5.0 $V_{CE} = V_{CES}, V_{GE} = 0V$ 25 µA I_{CES} Note 1, T₁ = 125°C 1.5 mA

$V_{CE} = 0V, V_{GE} = \pm 20V$ GES ±100 nA $I_{\rm C} = 55A, V_{\rm GE} = 15V, \text{ Note 2}$ $\mathbf{V}_{_{\text{CE(sat)}}}$ 2.35 2.20 T₁ = 125°C

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Anti-Parallel Ultra Fast Diode
- Optimized for Low Conduction Losses

Advantages

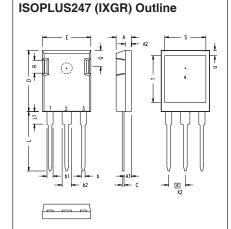
- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

Symbol (T. = 25°0	Symbol Test Conditions Characteristic Value (T _{.1} = 25°C, Unless Otherwise Specified) Min. Typ. Ma		
g_{fs}	$I_{\rm c} = 55$ A, $V_{\rm ce} = 10$ V, Note 2	45	S
C _{ies})	4340	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$	300	pF
C _{res})	115	pF
$Q_{g(on)}$		185	nC
\mathbf{Q}_{ge}		25	nC
Q _{gc})	75	nC
t _{d(on)})	23	ns
t _{ri}	Inductive load, T _J = 25°C	42	ns
E _{on}	$I_{\rm C} = 55A, V_{\rm GE} = 15V$	5.1	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$	365	ns
t _{fi}	Note 3	282	ns
E _{off}	J	13.3	mJ
t _{d(on)})	24	ns
t _{ri}	Inductive load, T _J = 125°C	46	ns
E _{on}	$I_{\rm C} = 55A, V_{\rm GE} = 15V$	9.5	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$	618	ns
t _{fi}	Note 3	635	ns
E _{off}	J	29.0	mJ
R _{thJC}			0.62 °C/W
R _{thCK}		0.15	°C/W

Reverse Diode (FRED)


SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			acteristic Typ.	Values Max.		
V _F		$I_F = 60A, V_{GE} = 0V, \text{ Note 2}$ $T_J = 150^{\circ}\text{C}$		1.85 1.90	2.5	V
t _{rr}	}	$I_{\rm F} = 60A, \ V_{\rm GE} = 0V,$		200		ns
I _{RM}	J	$-di_{F}/dt = 350A/\mu s, V_{R} = 600V, T_{J} = 100^{\circ}C$		24.6		Α
R _{thJC}					0.42 °C	C/W

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CE}(Clamp)$, T_{J} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

SYM	INCHE 2		MILLIMETERS]		
2114	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.045	.055	1.14	1.40	
b1	.075	.084	1.91	2.13	
b2	.115	.123	2.92	3.12	
С	.024	.031	0.61	0.80	
D E	.819	.840	20.80	21.34	
E	.620	.635	15.75	16.13	
е	.215 BSC		5.45 BSC		
L	.780	.800	19.81	20.32	
L1	.150	.170	3.81	4.32	
Q	.220	.244	5.59	6.20	
R S	.170	.190	4.32	4.83	
S	.520	.540	13.21	13.72	
Т	.620	.640	15.75	16.26	
U	.065	.080	1.65	2.03	

except screw hole.

1 - GATE 2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER)

4 - NO CONNECTION

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.