NCP1523B Adjustable Output Voltage Step Down Converter Evaluation Board User's Manual

ON

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Overview

The NCP1523B step-down PWM DC-DC converter is optimized for portable applications powered from one cell Li-ion or three cell Alkaline/NiCd/NiMH batteries.

The device is available in an adjustable output voltage from 0.9 V to 3.3 V. It uses synchronous rectification to increase efficiency and reduce external part count. The device also has a built-in 3 MHz (nominal) oscillator which reduces component size by allowing a small inductor and capacitors. Available in PWM mode only (NCP1523BFCT2G), it offers a very efficient load transient solution.

Finally, it includes an integrated soft-start, cycle-by-cycle current limiting, and thermal shutdown protection. The NCP1523B is available in a space saving, 8 pin chip scale package.

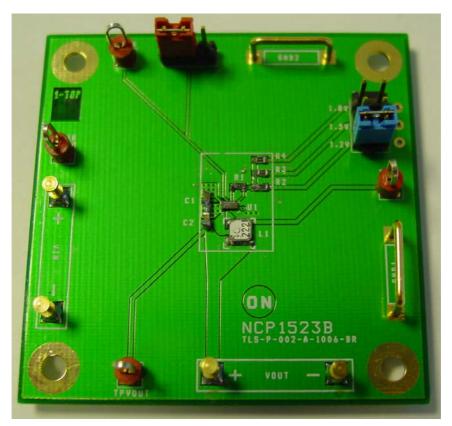


Figure 1. NCP1523B Board Picture

MAXIMUM RATINGS

Rating	Symbol	Value	Units
Minimum Voltage All Pins	V _{MIN}	-0.3	V
Maximum Voltage All Pins (Note 1)	V _{MAX}	7	V
Maximum Voltage Enable, FB, SW	V _{MAX}	V _{IN} + 0.3	V
Thermal Resistance, Junction-to-Air (Note 2)	$R_{ heta JA}$	159	°C/W
Operating Ambient Temperature Range	T _A	-40 to 85	°C
Storage Temperature Range	T _{STG}	-55 to 150	°C
Junction Operating Temperature	TJ	-40 to 125	°C
Latch-up Current Maximum Rating T _A = 85°C (Note 3)	L _U	±100	mA
ESD Withstand Voltage (Note 4) Human Body Model Machine Model	V _{ESD}	2.0 200	kV V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. According to JEDEC standard JESD22-A108B

- According to JEDEC stardard JESD22-A108B
 For the 8-Pin Chip Scale Package, the R_{θ,JA} is highly dependent of the PCB heatsink area. R_{θ,JA} = 159°C/W with 50 mm² PCB heatsink area.
 Latchup current maximum rating per JEDEC standard: JESD78.
 This device series contains ESD protection and exceeds the following tests:
 Human Body Model (HBM) ± 2.0 kV per JEDEC standard: JESD22-A114 Machine Model (MM) ±200 V per JEDEC standard: JESD22-A115

ELECTRICAL CHARACTERISTICS

For Electrical Characteristic, please see our NCP1523 datasheet available on our website. http://www.onsemi.com

INPUT POWER

Symbol	Switch Descriptions				
V_{IN+}	This is the positive connection for power supply				
V _{IN-}	This is the return connection for the power supply				
GND1, GND2	Ground clip				

SETUP

Symbol	Switch Descriptions			
ENABLE	To enable the buck converter, connect a shorting jumper between ENABLE-1 and ENABLE-2 To disable the buck converter, connect a shorting jumper between ENABLE-3 and ENABLE-2			
SELECT	A shorting jumper must be used to select an output voltage of 1.2 V, 1.5 V or 1.8 V			

OUTPUT POWER

	Symbol	Switch Descriptions		
V _{OUT+} This is the positive connection of the output voltage				
V _{OUT} This is the return connection of th		This is the return connection of the output voltage		

TEST POINT

Symbol	Switch Descriptions			
TPVIN	This is the test point of the input voltage			
TPEN	This is the test point of the enable pin			
TPLX	This is the test point of the inductor voltage			
TPVOUT	This is the test point of the output voltage			

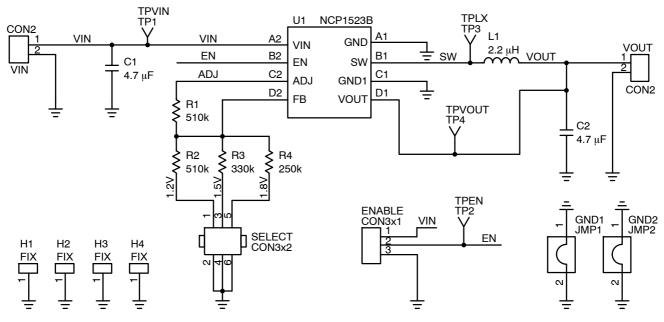


Figure 2. NCP1523B Board Schematic

NCP1523B TEST PROCEDURE

Equipment Needed

- Power Supply
- Digital Volt Meter
- Digital Amp Meter

Test

- 1. Jumper ENABLE should be open.
- 2. Set the power supply to 3.6 V and the current limit of at least 800 mA.
- 3. Connect the power supply connector to connectors V_{IN+} and V_{IN-} . The DC current measurement on V_{in} line should be around 0.3 μ A.
- 4. Close ENABLE connector. The DC current measurement on V_{in} line should be around 3 mA.
- 5. Measure the output voltage between V_{OUT+} and V_{OUT-} connectors. You should see around 1.2 V voltage operation.
- 6. Remove the ENABLE jumper. The DC current measurement on V_{in} line should be back around 0.3 μA .

Table 1. NCP1523B BILL OF MATERIAL

Designator	Qty.	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
U1	1	IC, Converter, DC/DC	NA	NA	8-Pin Flip Chip	ON Semiconductor	NCP1523B
C1, C2	2	Ceramic Capacitor	4.7 μF, 6.3V, X5R	10%	0603	Murata	GRM188R60J475KE19D
R1, R2	2	SMD Resistor	510k	1%	0603	std	std
R3	1	SMD Resistor	330k	1%	0603	std	std
R4	1	SMD Resistor	240k	1%	0603	std	std
L1	1	Inductor	2.2 μΗ	30%	1210	Coilcraft	LPS3008-222NL
V _{IN} , V _{OUT}	4	Connector	NA	NA	NA	Kontek Comatel Cambion	3110014000500 160-1724-02-05-00
ENABLE	1	3 Pin Jumper Header	NA	NA	2.54mm	TYCO/AMP Molex / Waldom	5-826629-0 90120-0160
SELECT	1	3x2 Pin Jumper Header	NA	NA	2.54mm	TYCO/AMP Molex / Waldom	4731955180470 90131-0140
GND1, GND2	2	Jumper for GND	NA	NA	10.16mm	Harwin Molex / Waldom	D3082-01 90120-0160
TPEN, TPLX, TPVIN, TPVOUT	4	Test Point Type 3	NA	NA	f 1.60mm	Keystone	5010
PCB	1	50.8x50.8x1.0 mm 4 Layers	NA	NA	NA	Any	TLS-P-002-A-1006-BR

PCB LAYOUT

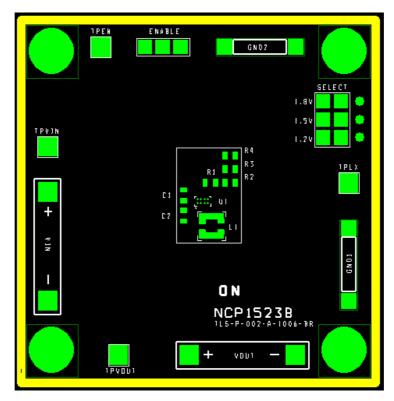


Figure 3. NCP1523B Assembly Layer

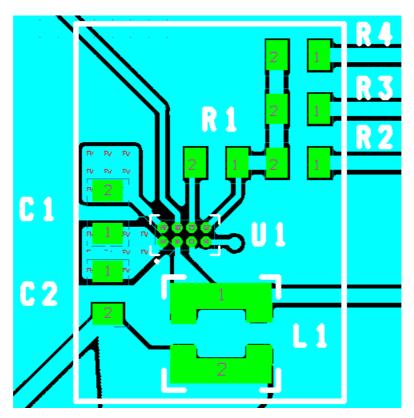


Figure 4. NCP1523B Layout

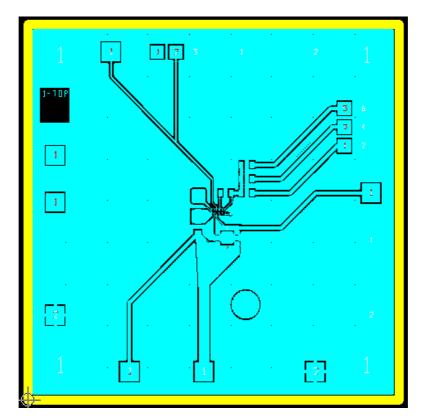


Figure 5. NCP1523B Top Layer Routing

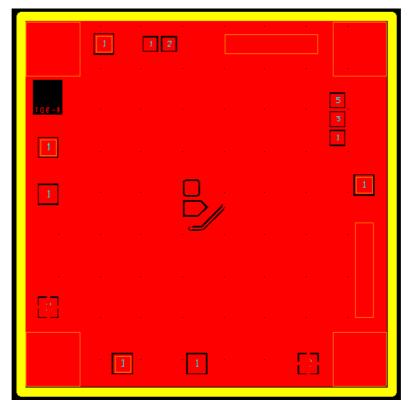


Figure 6. NCP1523B Bottom Layer Routing

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

EVBUM2007/D