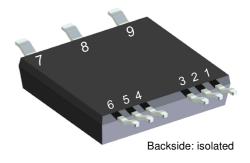


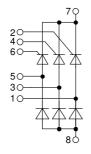
CLE90UH1200TLB

advanced

3~ Rectifier					
V_{RRM}	=	1200 V			
IDAV	=	90 A			
I _{FSM}	=	350 A			


High Efficiency Thyristor

SemiFast


3~ Rectifier Bridge, half-controlled (high-side)

Part number

CLE90UH1200TLB

Features / Advantages:

- Thyristor for line and moderate frequencies
- Short turn-off time
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Drives
- SMPS
- UPS

Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

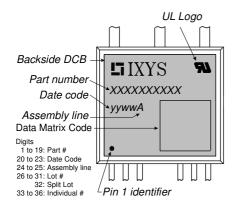
20150325a

advanced

Rectifier				Ì	Ratings		! _
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forwar		$T_{VJ} = 25^{\circ}C$			1200	٧
V _{RRM/DRM}	max. repetitive reverse/forward blo		$T_{VJ} = 25^{\circ}C$			1200	V
I _{R/D}	reverse current, drain current	$V_{R/D} = 1200 V$	$T_{VJ} = 25^{\circ}C$			10	μΑ
		$V_{R/D} = 1200 \text{ V}$	$T_{VJ} = 125^{\circ}C$			2	mA
V _T	forward voltage drop	$I_T = 30 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.30	V
		I _T = 90 A				1.80	V
		$I_T = 30 \text{ A}$	$T_{VJ} = 125$ °C			1.28	V
		I _T = 90 A				1.95	٧
I DAV	bridge output current	$T_C = 90^{\circ}C$	$T_{VJ} = 150$ °C			90	Α
		120° sine					1 1 1 1 1
V _{T0}	threshold voltage		T _{vJ} = 150°C			0.92	٧
r _T	slope resistance } for power los	ss calculation only				13	mΩ
R _{thJC}	thermal resistance junction to case	1				0.9	K/W
R _{thCH}	thermal resistance case to heatsin	k			0.40		K/W
P _{tot}	total power dissipation		T _C = 25°C			140	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	T _{v.i} = 45°C			350	Α
TOW	-	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			380	Α
		t = 10 ms; (50 Hz), sine	T _{v.I} = 150°C			300	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			320	A
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			615	A ² s
	value ioi idenig	t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			600	A ² s
		t = 0.0 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{VJ} = 150^{\circ}C$			450	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			425	A ² s
<u> </u>	junction capacitance	$V_{\rm B} = 400 \text{V} \text{f} = 1 \text{MHz}$	$V_R = 0 V$ $T_{VJ} = 25^{\circ}C$		13	423	!
C,					13	10	pF W
P_{GM}	max. gate power dissipation	$t_P = 30 \mu s$	$T_{\rm C} = 150 {\rm ^{\circ}C}$			10	
_		$t_{P} = 300 \mu s$				5	W
P _{GAV}	average gate power dissipation	T 45000 (5011	epetitive, $I_T = 90 \text{ A}$			0.5	W
(di/dt) _{cr}	critical rate of rise of current	**			150	A/μs	
		$t_P = 200 \mu s; di_G/dt = 0.3 A/\mu s;$					
			on-repet., $I_T = 30 \text{ A}$				A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150$ °C			500	V/µs
		R _{GK} = ∞; method 1 (linear volta					
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1.4	V
			$T_{VJ} = -40$ °C			1.7	V
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			30	mΑ
			$T_{VJ} = -40$ °C			50	mΑ
V_{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150^{\circ}C$			0.2	V
I _{GD}	gate non-trigger current					1	mΑ
I _L	latching current	t _p = 10 μs	$T_{VJ} = 25$ °C			90	mA
		$I_{G} = 0.3 A; di_{G}/dt = 0.3 A/\mu s$	3				1 1 1 1 1
I _H	holding current	$V_D = 6 V R_{GK} = \infty$	$T_{VJ} = 25 ^{\circ}C$			60	mΑ
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	T _{VJ} = 25°C			2	μs
J .		$I_{G} = 0.3 \text{ A}; \text{ di}_{G}/\text{dt} = 0.3 \text{ A}/\mu\text{s}$					
t _q	turn-off time	$V_R = 100 \text{ V}; I_T = 30 \text{ A}; V = \frac{2}{3}$			50		μs
-4		$di/dt = 10 \text{ A}/\mu \text{s} \text{ dv/dt} = 20 \text{ V/s}$		1			دم

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified


20150325a

CLE90UH1200TLB

advanced

Package	Package SMPD				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{VJ}	virtual junction temperature			-55		150	°C	
Top	operation temperature			-55		125	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	N	
d _{Spp/App}	creepage distance on surface st	riking distance through air	terminal to terminal	1.6			mm	
$d_{Spb/Apb}$	creepage distance on surface st	riking distance through an	terminal to backside	4.0			mm	
V _{ISOL}	isolation voltage	t = 1 second	50/00 II - DMO I	3000			٧	
		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	2500			٧	

Part description

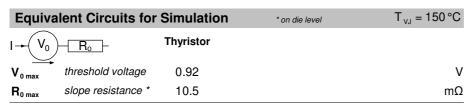
C = Thyristor (SCR)

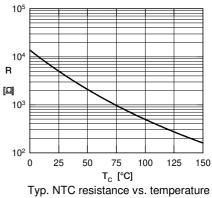
L = High Efficiency Thyristor

E = Semifast (up to 1200V)

90 = Current Rating [A]

UH = 3~ Rectifier Bridge, half-controlled (high-side)

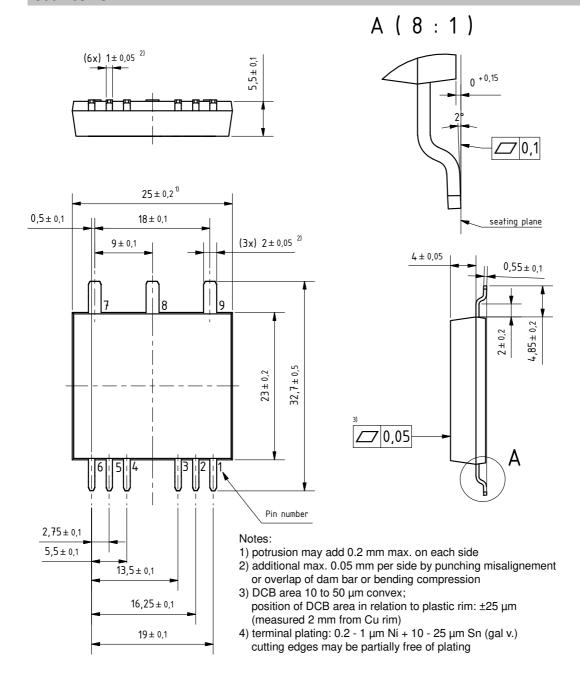

1200 = Reverse Voltage [V]

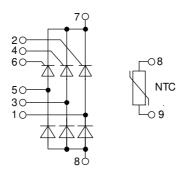

T = Thermistor \ Temperature sensor

LB = SMPD-B

Ordering	Ordering Number Marking on Product		Delivery Mode	Quantity	Code No.
Standard	CLE90UH1200TLB	CLE90UH1200TLB	Tube	20	517456
Alternative	CLE90UH1200TLB-TRR	CLE90UH1200TLB	Tape & Reel	200	517463

Temperature Sensor NTC							
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
R_{25}	resistance	$T_{VJ} = 25^{\circ}$	4.75	5	5.25	kΩ	
B _{25/50}	temperature coefficient			3375		K	


IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747and per semiconductor unless otherwise specified

20150325a

advanced

Outlines SMPD

