3 V/5 V, 4/8 Channel High Performance Analog Multiplexers

ADG608/ADG609

GENERAL DESCRIPTION

The ADG608 and ADG609 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels respectively, fully specified for ±5 V, +5 V and +3 V power supplies. The ADG608 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG609 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the address and enable inputs are TTL compatible over the full specified operating temperature range, making the parts suitable for bus-controlled systems such as data acquisition systems, process controls, avionics and ATEs since the TTL compatible address inputs simplify the digital interface design and reduce the board space requirements.

The ADG608/ADG609 are designed on an enhanced LC2MOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FEATURES

+ 3 V, +5 V, ±5 V Power Supplies
+ VSS to VDD Analog Signal Range
+ Low On Resistance (30 \(\Omega \) max)
+ Fast Switching Times
 - \(t_{ON} \) 75 ns max
 - \(t_{OFF} \) 45 ns max
+ Low Power Dissipation (1.5 \(\mu \)W max)
+ Break-Before-Make Construction
+ ESD > 5000 V as per Military Standard 3015.7
+ TTL and CMOS Compatible Inputs

APPLICATIONS

- Automatic Test Equipment
- Data Acquisition Systems
- Communication Systems
- Avionics and Military Systems
- Microprocessor Controlled Analog Systems
- Medical Instrumentation
- Battery Powered Instruments
- Remote Powered Equipment
- Compatible with ±5 V DACs and ADCs such as AD7840/8, AD7870/1/2/4/5/6/8

FUNCTIONAL BLOCK DIAGRAMS

![ADG608 Block Diagram](image)

![ADG609 Block Diagram](image)

The ability to operate from single +3 V, +5 V or ±5 V bipolar supplies makes the ADG608 and ADG609 perfect for use in battery operated instruments and with the new generation of DACs and ADCs from Analog Devices. The use of 5 V supplies and reduced operating currents gives much lower power dissipation than devices operating from ±15 V supplies.

PRODUCT HIGHLIGHTS

1. Extended Signal Range
 - The ADG608/ADG609 are fabricated on an enhanced LC2MOS process giving an increased signal range which extends to the supplies.
2. Low Power Dissipation
3. Low \(R_{ON} \)
4. Fast Switching Times
5. Break-Before-Make Switching
 - Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
6. Single/Dual Supply Operation

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Option*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG608BN</td>
<td>-40°C to +85°C</td>
<td>N-16</td>
</tr>
<tr>
<td>ADG608BR</td>
<td>-40°C to +85°C</td>
<td>R-16A</td>
</tr>
<tr>
<td>ADG608BRU</td>
<td>-40°C to +85°C</td>
<td>RU-16</td>
</tr>
<tr>
<td>ADG608T</td>
<td>-55°C to +125°C</td>
<td>RU-16</td>
</tr>
<tr>
<td>ADG609BN</td>
<td>-40°C to +85°C</td>
<td>N-16</td>
</tr>
<tr>
<td>ADG609BR</td>
<td>-40°C to +85°C</td>
<td>R-16A</td>
</tr>
<tr>
<td>ADG609BRU</td>
<td>-40°C to +85°C</td>
<td>RU-16</td>
</tr>
</tbody>
</table>

*N = Plastic DIP; RU = Thin Shrink Small Outline Package (TSSOP); R = 0.15" Small Outline IC (SOIC).
ADG608/ADG609—SPECIFICATIONS

DUAL SUPPLY

### Parameter	B Version	T Version	Units	Test Conditions/Comments
Analog Switch
Analog Signal Range
- V_{SS} to V_{DD}

| R_{ON} | 22 | 22 | Ω typ | $-3.5 \, V \leq V_S \leq +3.5 \, V$, $I_{DS} = -1 \, mA$; $V_{DD} = +4.5 \, V$, $V_{SS} = -4.5 \, V$; Test Circuit 1
- V_{SS} to V_{DD}

| ΔR_{ON} | 5 | 5 | Ω max | $-3 \, V \leq V_S \leq +3.5 \, V$, $I_{DS} = -1 \, mA$; $V_{DD} = +5 \, V$, $V_{SS} = -5 \, V$

| R_{ON} Match | 2 | 2 | Ω max | $V = 0 \, V$, $I_{DS} = -1 \, mA$; $V_{DD} = +5 \, V$, $V_{SS} = -5 \, V$

Leakage Currents

Source OFF Leakage I_S (OFF)
- ± 0.05 nA typ
- ± 0.05 nA max

Drain OFF Leakage I_D (OFF)
- ± 0.5 mA typ
- ± 0.5 mA max

ADG608
- ± 0.5 mA typ
- ± 0.5 mA max

ADG609
- ± 0.5 mA typ
- ± 0.5 mA max

Channel ON Leakage I_D, I_S (ON)
- ± 0.5 mA typ
- ± 0.5 mA max

Digital Inputs

Input High Voltage, V_{INH}
- 2.4 V min
- 0.8 V max

Input Low Voltage, V_{INL}
- 0.8 V max

Input Current
- I_{INL} or I_{INH}
- $\pm 1\mu A$ max

C_{IN}, Digital Input Capacitance
- 5 pF typ

Dynamic Characteristics

$t_{TRANSITION}$
- 50 ns typ
- 75 ns max

t_{OPEN}
- 10 ns min
- 50 ns max

t_{ON} (EN)
- 50 ns typ
- 75 ns max

t_{OFF} (EN)
- 30 ns typ
- 45 ns max

Charge Injection
- 6 pC typ

OFF Isolation
- 85 dB typ

Channel-to-Channel Crosstalk
- 85 dB typ

C_S (OFF)
- 9 pF typ

C_D (OFF)
- 40 pF typ
- 20 pF typ

C_S (ON)
- 54 pF typ
- 34 pF typ

Power Requirements

I_{DD}
- 0.05 mA typ
- 0.2 mA max

I_{SS}
- 0.01 mA typ
- 0.1 mA max

Notes

1. Temperature ranges are as follows: B Version: $-40^\circ C$ to $+85^\circ C$; T Version: $-55^\circ C$ to $+125^\circ C$
2. Guaranteed by design, not subject to production test. Specifications subject to change without notice.
SINGLE SUPPLY\(^1\) (V\(_{DD}\) = +5 V \(\pm\) 10\%, V\(_{SS}\) = 0 V, GND = 0 V, unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B Version</th>
<th>T Version</th>
<th>Units</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Analog Signal Range</td>
<td>0 to V(_{DD})</td>
<td>0 to V(_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R(_{ON})</td>
<td>40</td>
<td>40</td>
<td>Ω typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>Ω max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>70</td>
<td>Ω max</td>
<td></td>
</tr>
<tr>
<td>ΔR(_{ON})</td>
<td>5</td>
<td>6</td>
<td>Ω max</td>
<td></td>
</tr>
<tr>
<td>R(_{ON}) Match</td>
<td>2</td>
<td>3</td>
<td>Ω max</td>
<td></td>
</tr>
<tr>
<td>LEAKAGE CURRENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source OFF Leakage I(_S) (OFF)</td>
<td>±0.05</td>
<td>±0.05</td>
<td>nA typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.5</td>
<td>±2</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>Drain OFF Leakage I(_D) (OFF)</td>
<td>±0.05</td>
<td>±0.05</td>
<td>nA typ</td>
<td></td>
</tr>
<tr>
<td>ADG608</td>
<td>±0.5</td>
<td>±1</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>ADG609</td>
<td>±0.5</td>
<td>±1</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>Channel ON Leakage I(_D), I(_S) (ON)</td>
<td>±0.05</td>
<td>±0.05</td>
<td>nA typ</td>
<td></td>
</tr>
<tr>
<td>ADG608</td>
<td>±0.5</td>
<td>±1</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>ADG609</td>
<td>±0.5</td>
<td>±1</td>
<td>nA max</td>
<td></td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage, V(_{INH})</td>
<td>2.4</td>
<td>2.4</td>
<td>V min</td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage, V(_{INL})</td>
<td>0.8</td>
<td>0.8</td>
<td>V max</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I({INL}) or I({INH})</td>
<td>±1</td>
<td>±1</td>
<td>μA max</td>
</tr>
<tr>
<td>C(_{IN}), Digital Input Capacitance</td>
<td>5</td>
<td>5</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(_{TRANSITION})</td>
<td>80</td>
<td>80</td>
<td>ns typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>ns max</td>
<td></td>
</tr>
<tr>
<td>t(_{OPEN})</td>
<td>10</td>
<td>10</td>
<td>ns min</td>
<td></td>
</tr>
<tr>
<td>t(_{ON}) (EN)</td>
<td>80</td>
<td>80</td>
<td>ns typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>ns max</td>
<td></td>
</tr>
<tr>
<td>t(_{OFF}) (EN)</td>
<td>40</td>
<td>40</td>
<td>ns typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>ns max</td>
<td></td>
</tr>
<tr>
<td>Charge Injection</td>
<td>0.5</td>
<td>0.5</td>
<td>pC typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>pC max</td>
<td></td>
</tr>
<tr>
<td>OFF Isolation</td>
<td>85</td>
<td>85</td>
<td>dB typ</td>
<td></td>
</tr>
<tr>
<td>Channel-to-Channel Crosstalk</td>
<td>85</td>
<td>85</td>
<td>dB typ</td>
<td></td>
</tr>
<tr>
<td>C(_S) (OFF)</td>
<td>9</td>
<td>9</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>C(_D) (OFF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG608</td>
<td>40</td>
<td>40</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>ADG609</td>
<td>20</td>
<td>20</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>C(_D) (ON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG608</td>
<td>54</td>
<td>54</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>ADG609</td>
<td>34</td>
<td>34</td>
<td>pF typ</td>
<td></td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(_{DD})</td>
<td>0.05</td>
<td>0.2</td>
<td>μA typ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2</td>
<td>μA max</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Temperature ranges are as follows: B Version: -40°C to +85°C; T Version: -55°C to +125°C.
2. Guaranteed by design, not subject to production test.

Specifications subject to change without notice.
Analog Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B Version</th>
<th>T Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Signal Range</td>
<td>+25°C</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>(R_{ON}) max</td>
<td>60 Ω</td>
<td>90 Ω</td>
</tr>
<tr>
<td>(R_{ON}) match</td>
<td>3 Ω</td>
<td>3 Ω</td>
</tr>
</tbody>
</table>

Leakage Currents

<table>
<thead>
<tr>
<th>Condition</th>
<th>B Version</th>
<th>T Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source OFF Leakage (I_S) (OFF)</td>
<td>±0.05 nA</td>
<td>±0.05 nA</td>
</tr>
<tr>
<td>Drain OFF Leakage (I_D) (OFF)</td>
<td>±0.05 Ω</td>
<td>±0.05 Ω</td>
</tr>
<tr>
<td>(I_D), (I_S) (ON)</td>
<td>±0.5 Ω</td>
<td>±0.5 Ω</td>
</tr>
</tbody>
</table>

Digital Inputs

<table>
<thead>
<tr>
<th>Condition</th>
<th>B Version</th>
<th>T Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High Voltage, (V_{INH})</td>
<td>2.4 V</td>
<td>2.4 V</td>
</tr>
<tr>
<td>Input Low Voltage, (V_{INL})</td>
<td>0.8 V</td>
<td>0.8 V</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Test Circuit</th>
<th>(t_{TRANSITION})</th>
<th>ns typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Power Requirements

<table>
<thead>
<tr>
<th>Condition</th>
<th>B Version</th>
<th>T Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DD})</td>
<td>0.05 μA</td>
<td>0.05 μA</td>
</tr>
</tbody>
</table>

Notes

1. Temperature ranges are as follows: B Version: -40°C to +85°C; T Version: -55°C to +125°C.
2. Guaranteed by design, not subject to production test.
3. Specifications subject to change without notice.
ABSOLUTE MAXIMUM RATINGS 1
(TA = +25°C unless otherwise noted)

- VDD to VSS .. +13 V
- VDD to GND .. -0.3 V to +6.5 V
- VSS to GND .. +0.3 V to -6.5 V

Analog, Digital Inputs2 -0.3 V to VDD + 2 V
or 20 mA, Whichever Occurs First

Continuous Current, S or D 20 mA
(Pulsed at 1 ms, 10% Duty Cycle Max) 40 mA

Operating Temperature Range
- Industrial (B Version) -40°C to +85°C
- Extended (T Version) -55°C to +125°C

Storage Temperature Range -65°C to +150°C
Junction Temperature +150°C

θJA, Thermal Impedance 117°C/W
Lead Temperature, Soldering (10 sec) +260°C

SOIC Package
- θJA, Thermal Impedance 158°C/W
- Lead Temperature, Soldering
- Vapor Phase (60 sec) +215°C
- Infrared (15 sec) +220°C

ESD Rating .. >5000 V

NOTES
1Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
2Overvoltages at A, S, D or EN will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. ADG608 Truth Table

<table>
<thead>
<tr>
<th>A2</th>
<th>A1</th>
<th>A0</th>
<th>EN</th>
<th>ON SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>NONE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

X = Don’t Care

Table II. ADG609 Truth Table

<table>
<thead>
<tr>
<th>A1</th>
<th>A0</th>
<th>EN</th>
<th>ON SWITCH PAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>NONE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

X = Don’t Care

PIN CONFIGURATIONS
ADG608/ADG609- Typical Performance Characteristics

Figure 1. R_{ON} as a Function of $V_D (V_S)$: Dual Supply Voltage

Figure 2. R_{ON} as a Function of $V_D (V_S)$ for Different Temperatures

Figure 3. R_{ON} as a Function of $V_D (V_S)$ for Different Temperatures

Figure 4. R_{ON} as a Function of $V_D (V_S)$: Single Supply Voltage

Figure 5. R_{ON} as a Function of $V_D (V_S)$ for Different Temperatures

Figure 6. Leakage Currents as a Function of $V_D (V_S)$
Figure 7. Leakage Currents as a Function of $V_D (V_S)$

Figure 10. Leakage Currents as a Function of $V_D (V_S)$

Figure 8. Positive Supply Current vs. Switching Frequency

Figure 11. Negative Supply Current vs. Switching Frequency

Figure 9. Charge Injection vs. Analog Voltage V_S

Figure 12. Crosstalk and Off Isolation vs. Frequency
ADG608/ADG609

Test Circuits

1. **On Resistance**
 - \(R_{ON} = \frac{V_1}{I_{DS}} \)

2. **\(I_S \) (OFF)**

3. **\(I_D \) (OFF)**

4. **\(I_D \) (ON)**

5. **Switching Time of Multiplexer, \(t_{TRANSITION} \)**
 - **ADDRESS DRIVE (VIN)**
 - **OUTPUT (VOUT)**
 - \(0V \) to \(3V \) transition
 - \(0V \) to \(90\% \) transition
 - \(90\% \) to \(0V \) transition
 - \(90\% \) to \(3V \) transition

* SIMILAR CONNECTION FOR ADG609*
Test Circuit 6. Break-Before-Make Delay, t_{open}

Test Circuit 7. Enable Delay, $t_{\text{ON (EN)}}$, $t_{\text{OFF (EN)}}$

Test Circuit 8. Charge Injection
TERMINOLOGY

- **V_{DD}** Most positive power supply potential.
- **V_{SS}** Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
- **GND** Ground (0 V) reference.
- **R_{ON}** Ohmic resistance between D and S.
- **ΔR_{ON}** Variation of R_{ON} due to a change in the analog input voltage with a constant load current.
- **R_{ON MATCH}** Difference between the R_{ON} of any two channels.
- **I_S (OFF)** Source leakage current when the switch is off.
- **I_D (OFF)** Drain leakage current when the switch is off.
- **I_D, I_S (ON)** Channel leakage current when the switch is on.
- **V_D, V_S** Analog voltage on terminals D, S.
- **C_S (OFF)** Channel input capacitance for “OFF” condition.
- **C_D (OFF)** Channel output capacitance for “OFF” condition.
- **C_D, C_S (ON)** “ON” switch capacitance.
- **C_{IN}** Digital input capacitance.
- **t_{OFF (EN)}** Delay time between the 50% and 90% points of the digital input and switch “OFF” condition.
- **t_{TRANSITION}** Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another.
- **t_{OPEN}** “OFF” time measured between the 80% points of both switches when switching from one address state to another.
- **V_{INL}** Maximum input voltage for logic “0.”
- **V_{INH}** Minimum input voltage for logic “1.”
- **I_{INL} (I_{INH})** Input current of the digital input.
- **Crosstalk** A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
- **Off Isolation** A measure of unwanted signal coupling through an “OFF” channel.
- **Charge Injection** A measure of the glitch impulse transferred from the digital input to the analog output during switching.
- **I_{DD}** Positive supply current.
- **I_{SS}** Negative supply current.
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

16-Pin Plastic (N-16)

16-Pin SOIC (R-16A)

16-Pin TSSOP (RU-16)