Boost Converter Stage in APM16 Series for Multiphase and Semi-Bridgeless PFC with SiC Diodes

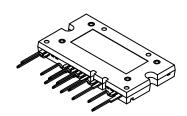
FAM65CR51ADZ1, FAM65CR51ADZ2

Features

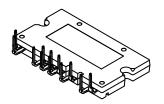
- Integrated SIP or DIP Boost Converter Stage Power Module for On-board Charger (OBC) in EV or PHEV
- 5 kV/1 sec Electrically Isolated Substrate for Easy Assembly
- Creepage and Clearance per IEC60664-1, IEC 60950-1
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Lead Free, RoHS and UL94V-0 Compliant
- Automotive Qualified per AEC Q101 and AQG324 Guidelines
- Improved Performance with SiC Diodes

Applications

• PFC Stage of an On-board Charger in PHEV or EV


Benefits

- Enable Design of Small, Efficient and Reliable System for Reduced Vehicle Fuel Consumption and CO₂ Emission
- Simplified Assembly, Optimized Layout, High Level of Integration, and Improved Thermal Performance



ON Semiconductor®

www.onsemi.com

APMCD-A16 12 LEAD CASE MODGG

APMCD-B16 12 LEAD CASE MODGK

MARKING DIAGRAM

XXXXXXXXXX ZZZ ATYWW NNNNNNN

XXXX = Specific Device Code

ZZZ = Lot ID

AT = Assembly & Test Location

Y = Year W = Work Week NNN = Serial Number

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Package	Lead Forming	DBC Material	Pb-Free and RoHS Compliant	Operating Temperature (T _A)	Packing Method
FAM65CR51ADZ1	APM16-CDA	Y-Shape	Al2O3	Yes	−40°C ~ 125°C	Tube
FAM65CR51ADZ2	APM16-CDB	L-Shape	Al2O3	Yes	–40°C ∼ 125°C	Tube

Pin Configuration and Description

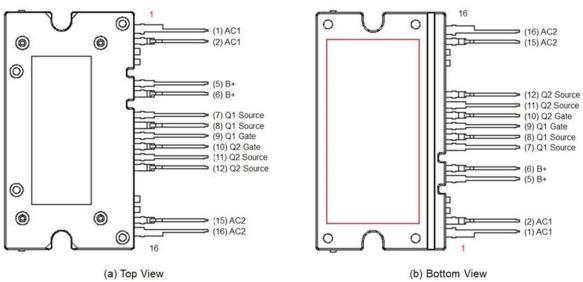


Figure 1. Pin Configuration

Table 1. PIN DESCRIPTION

Pin Number	Pin Name	Pin Description
1, 2	AC1	Phase 1 Leg of the PFC Bridge
3	NC	Not Connected
4	NC	Not Connected
5, 6	B+	Positive Battery Terminal
7, 8	Q1 Source	Source Terminal of Q1
9	Q1 Gate	Gate Terminal of Q1
10	Q2 Gate	Gate Terminal of Q2
11, 12	Q2 Source	Source Terminal of Q2
13	NC	Not Connected
14	NC	Not Connected
15, 16	AC2	Phase 2 Leg of the PFC Bridge

INTERNAL EQUIVALENT CIRCUIT

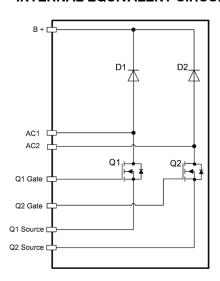


Figure 2. Internal Block Diagram

Table 2. ABSOLUTE MAXIMUM RATINGS OF MOSFET (T_J = 25°C, Unless Otherwise Specified)

	, 3	' '	
Symbol	Parameter	Max	Unit
V _{DS} (Q1~Q2)	Drain-to-Source Voltage	650	V
V _{GS} (Q1~Q2)	Gate-to-Source Voltage	±20	V
I _D (Q1~Q2)	Drain Current Continuous (T _C = 25°C, V _{GS} = 10 V) (Note 1)	41	Α
	Drain Current Continuous (T _C = 100°C, V _{GS} = 10 V) (Note 1)	25	Α
E _{AS} (Q1~Q2)	Single Pulse Avalanche Energy (Note 2)	623	mJ
P_{D}	Power Dissipation (Note 1)	189	W
T _J	Maximum Junction Temperature	-55 to +150	°C
T _C	Maximum Case Temperature	-40 to +125	°C
T _{STG}	Storage Temperature	-40 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

DBC Substrate

0.63 mm Al2O3 alumina with 0.3 mm copper on both sides. DBC substrate is NOT nickel plated.

Lead Frame

OFC copper alloy, 0.50 mm thick. Plated with 8 µm to 25.4 µm thick Matte Tin

Flammability Information

All materials present in the power module meet UL flammability rating class 94V-0.

Compliance to RoHS Directives

The power module is 100% lead free and RoHS compliant 2000/53/C directive.

Solder

Solder used is a lead free SnAgCu alloy.

Solder presents high risk to melt at temperature beyond 210°C. Base of the leads, at the interface with the package body, should not be exposed to more than 200°C during mounting on the PCB or during welding to prevent the re-melting of the solder joints.

^{1.} Maximum continuous current and power, without switching losses, to reach $T_J = 150^{\circ}\text{C}$ respectively at $T_C = 25^{\circ}\text{C}$ and $T_C = 100^{\circ}\text{C}$; defined by design based on MOSFET R_{DS(ON)} and R_{θ JC} and not subject to production test 2. Starting T_J = 25°C, I_{AS} = 6.5 A, R_G = 25 Ω

Table 3. ELECTRICAL SPECIFICATIONS OF MOSFET (T_J = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain-to-Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	650	-	-	V
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 3.3 \text{ mA}$	3.0	-	5.0	V
R _{DS(ON)} Q1	Q1 Low Side MOSFET	V _{GS} = 10 V, I _D = 20 A	-	44	51	mΩ
R _{DS(ON)} Q2	Q2 Low Side MOSFET		-	44	51	mΩ
R _{DS(ON)} Q1	Q1 Low Side MOSFET	V _{GS} = 10 V, I _D = 20 A, T _J = 125°C (Note 3)	-	79	-	mΩ
R _{DS(ON)} Q2	Q2 Low Side MOSFET		-	79	-	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 20 A (Note 3)	-	30	-	S
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-100	-	+100	nA
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	μΑ
DYNAMIC CHA	ARACTERISTICS (Note 3)					
C _{iss}	Input Capacitance	V _{DS} = 400 V	-	4864	-	pF
C _{oss}	Output Capacitance	V _{GS} = 0 V f = 1 MHz	-	109	-	pF
C _{rss}	Reverse Transfer Capacitance	I = I MITZ	-	16	-	pF
C _{oss(eff)}	Effective Output Capacitance	V _{DS} = 0 to 520 V V _{GS} = 0 V	-	652	-	pF
R _g	Gate Resistance	f = 1 MHz	-	2	_	Ω
Q _{g(tot)}	Total Gate Charge	V _{DS} = 380 V	-	123	-	nC
Q _{gs}	Gate-to-Source Gate Charge	I _D = 20 A V _{GS} = 0 to 10 V	-	37.5	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge	VGS = 0 10 10 V		49	-	nC
SWITCHING C	HARACTERISTICS (Note 3)					
t _{on}	Turn-on Time	V _{DS} = 400 V	-	87	-	ns
t _{d(on)}	Turn-on Delay Time	I _D = 20 A V _{GS} = 10 V	-	47	-	ns
t _r	Turn-on Rise Time	$V_{GS} = 10 \text{ V}$ $R_G = 4.7 \text{ Ohm}$	-	43	-	ns
t _{off}	Turn-off Time	_	-	146	-	ns
t _{d(off)}	Turn-off Delay Time		_	118	-	ns
t _f	Turn-off Fall Time		-	29	-	ns
BODY DIODE	CHARACTERISTICS					
V_{SD}	Source-to-Drain Diode Voltage	I _{SD} = 20 A, V _{GS} = 0 V	_	0.95	-	V
T _{rr}	Reverse Recovery Time	$V_{DS} = 520 \text{ V}, I_{D} = 20 \text{ A},$	-	133	-	ns
Q _{rr}	Reverse Recovery Charge	d _I /d _t = 100 A/μs (Note 3)	-	669	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Defined by design, not subject to production test

Table 4. ABSOLUTE MAXIMUM RATINGS OF THE BOOST DIODE (T_J = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
V_{RRM}	Peak Repetitive Reverse Voltage (Note 4)	650	V
E _{AS}	Avalanche Energy (17 A, 1 mH)	144	mJ
I _F	Continuous Rectified Forward Current, T _C < 148°C	30	Α
I _{F,MAX}	Non-Repetitive Forward Surge Current, T _C = 25°C, 10 μs	1100	Α
I _{F,MAX}	Non-Repetitive Forward Surge Current, T _C = 150°C, 10 μs	1000	Α
I _{FSM}	Non-Repetitive Peak Surge Current (Sine Half Wave, Tp = 8.3 ms)	110	Α
P_{D}	Power Dissipation (T _C = 25°C)	65	W
TJ	Maximum Junction Temperature	−55 to +175	°C
T _C	Maximum Case Temperature	-40 to +125	°C
T _{STG}	Storage Temperature	-40 to +125	°C

^{4.} V_{RRM} and I_F value referenced to TO220-2L Auto Qualified Package Device FFSP3065B_F085

Table 5. ELECTRICAL SPECIFICATIONS OF THE BOOST DIODE (T_J = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Test Cond	itions	Min	Тур	Max	Unit
V_{DC}	DC Blocking Voltage	I _R = 200 μA	T _C = 25°C	650	-	_	V
V _F	Instantaneous Forward Voltage	I _F = 30 A	T _C = 25°C	-	1.38	1.7	V
			T _C = 125°C	-	1.6	2.0	V
			T _C = 175°C	-	1.72	2.4	V
I _R	Instantaneous Reverse Current	V _R = 650 V	T _C = 25°C	-	0.5	40	μΑ
			T _C = 125°C	-	1.0	80	μΑ
			T _C = 175°C	-	2.0	160	μΑ
Q_{C}	Total Capacitive Charge	V _R = 400 V	T _C = 25°C	-	43	_	nC
С	Total Capacitance	V _R = 1 V	f = 100 kHz		1280		pF
		V _R = 200 V	f = 100 kHz		139		
		V _R = 400 V	f = 100 kHz		108		

Table 6. THERMAL RESISTANCE

Parameters			Тур	Max	Unit
R ₀ JC (per MOSFET chip)	Q1,Q2 Thermal Resistance Junction-to-Case (Note 5)	-	0.47	0.66	°C/W
$R_{\theta JS}$ (per MOSFET chip)	Q1,Q2 Thermal Resistance Junction-to-Sink (Note 6)	-	0.95	-	°C/W
R _{θJC} (per DIODE chip)	D1,D2 Thermal Resistance Junction-to-Case (Note 5)	_	1.78	2.3	°C/W
R _{θJS} (per DIODE chip)	D1,D2 Thermal Resistance Junction-to-Sink (Note 6)	_	3.10	Ī	°C/W

^{5.} Test method compliant with MIL STD 883-1012.1, from case temperature under the chip to case temperature measured below the package at the chip center, Cosmetic oxidation and discoloration on the DBC surface allowed

6. Defined by thermal simulation assuming the module is mounted on a 5 mm Al–360 die casting material with 30 um of 1.8 W/mK thermal

Table 7. ISOLATION (Isolation resistance at tested voltage between the base plate and to control pins or power terminals.)

Test	Test Conditions	Isolation Resistance	Unit
Leakage @ Isolation Voltage (Hi-Pot)	$V_{AC} = 5 \text{ kV}, 50 \text{ Hz}$	100M <	Ω

interface material

PARAMETER DEFINITIONS

Reference to Table 3: Parameter of MOSFET Electrical Specifications

Q1, Q2 MOSFET Drain-to-Source Breakdown Voltage
The maximum drain-to-source voltage the MOSFET can endure without the avalanche breakdown of the body- drain P-N junction in off state.
The measurement conditions are to be found in Table 3. The typ. Temperature behavior is described in Figure 13
Q1, Q2 MOSFET Gate to Source Threshold Voltage
The gate-to-source voltage measurement is triggered by a threshold ID current given in conditions at Table 4. The typ. Temperature behavior can be found in Figure 10
Q1, Q2 MOSFET On Resistance
RDS(on) is the total resistance between the source and the drain during the on state.
The measurement conditions are to be found in Table 3.
The typ behavior can be found in Figure 11 and Figure 12 as well as Figure 17
Q1, Q2 MOSFET Forward Transconductance
Transconductance is the gain in the MOSFET, expressed in the Equation below. It describes the change in drain current by the change in the gate–source bias voltage: $g_{fs} = [\Delta I_{DS} / \Delta V_{GS}]_{VDS}$
Q1, Q2 MOSFET Gate-to-Source Leakage Current
The current flowing from Gate to Source at the maximum allowed VGS
The measurement conditions are described in the Table 3.
Q1, Q2 MOSFET Drain-to-Source Leakage Current
Drain – Source current is measured in off state while providing the maximum allowed drain–to-source voltage and the gate is shorted to the source. IDSS has a positive temperature coefficient.

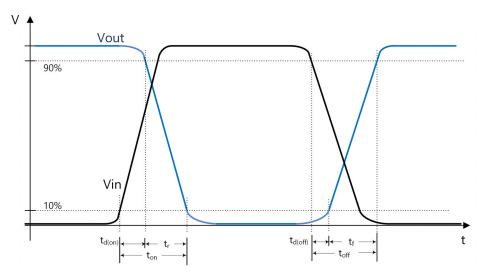


Figure 3. Timing Measurement Variable Definition

Table 8. PARAMETER OF SWITCHING CHARACTERISTICS

Turn-On Delay (t _{d(on)})	This is the time needed to charge the input capacitance, Ciss, before the load current ID starts flowing. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.
Rise Time (t _r)	The rise time is the time to discharge output capacitance, Coss. After that time the MOSFET conducts the given load current ID. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.
Turn-On Time (ton)	Is the sum of turn-on-delay and rise time
Turn-Off Delay (t _{d(off)})	td(off) is the time to discharge Ciss after the MOSFET is turned off. During this time the load current ID is still flowing The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.
Fall Time (t _f)	The fall time, tf, is the time to charge the output capacitance, Coss. During this time the load current drops down and the voltage VDS rises accordingly. The measurement conditions are described in the Table 3. For signal definition please check Figure 3 above.
Turn-Off Time (toff)	Is the sum of turn-off-delay and fall time

TYPICAL CHARACTERISTICS - MOSFETs

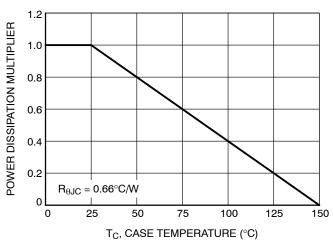


Figure 4. Normalized Power Dissipation vs.

Case Temperature

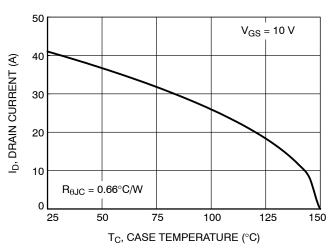


Figure 5. Maximum Continuous I_D vs. Case Temperature

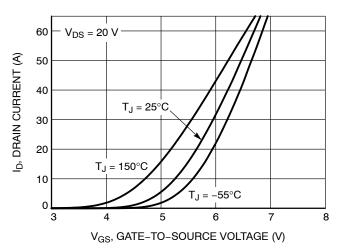


Figure 6. Transfer Characteristics

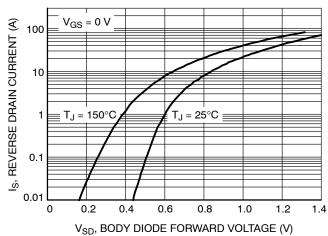


Figure 7. Forward Diode

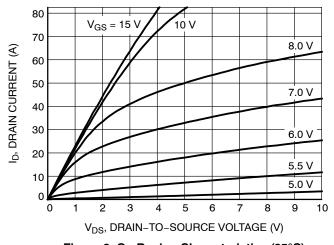


Figure 8. On Region Characteristics (25°C)

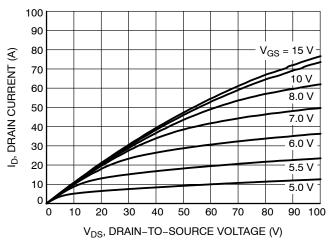
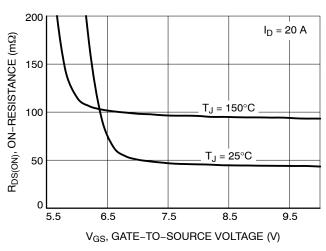
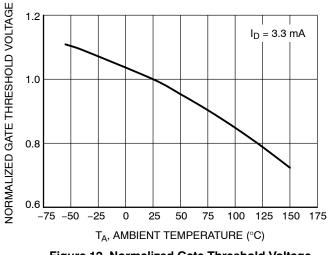



Figure 9. On Region Characteristics (150°C)


TYPICAL CHARACTERISTICS - MOSFETs

I_D = 20 A R_{DS(ON)}, NORMALIZED DRAIN-TO-SOURCE ON-RESISTANCE V_{GS} = 10 V 2.0 1.5 1.0 0.5 -75 -50 -25 25 50 75 100 125 150 175 T_J, JUNCTION TEMPERATURE (°C)

Figure 10. On-Resistance vs. Gate-to-Source Voltage

Figure 11. R_{DS(norm)} vs. Junction Temperature

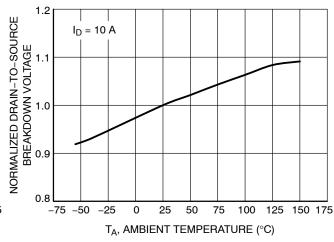
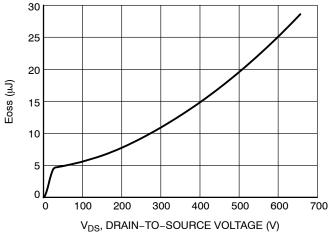



Figure 12. Normalized Gate Threshold Voltage vs. Temperature

Figure 13. Normalized Breakdown Voltage vs. Temperature

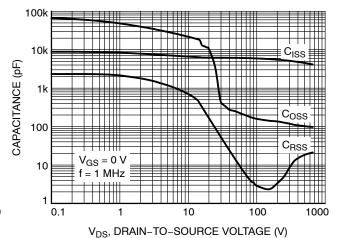


Figure 14. Eoss vs. Drain-to-Source Voltage

Figure 15. Capacitance Variation

TYPICAL CHARACTERISTICS - MOSFETs

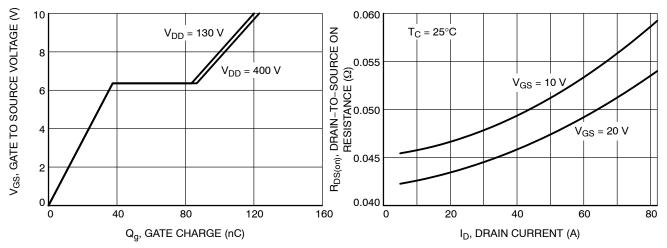


Figure 16. Gate Charge Characteristics

Figure 17. ON-Resistance Variation with Drain Current and Gage Voltage

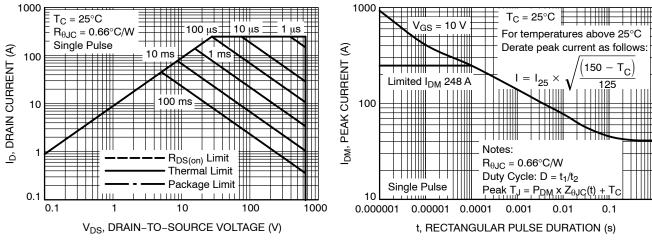


Figure 18. Safe Operating Area

Figure 19. Peak Current Capability

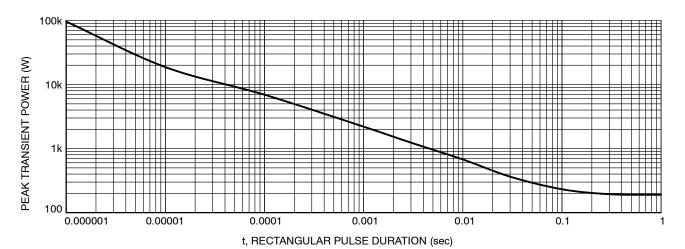
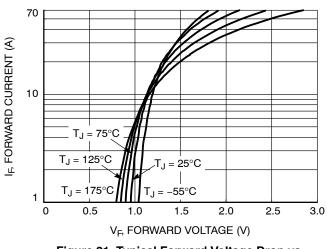



Figure 20. Peak Power

TYPICAL CHARACTERISTICS - DIODES

10 (Y) 11 11 125°C T_J = 175°C T_J = 75°C T_J = 75°C

Figure 21. Typical Forward Voltage Drop vs. Forward Current

Figure 22. Typical Reverse Current vs.
Reverse Voltage

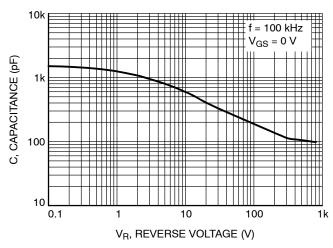


Figure 23. Capacitance

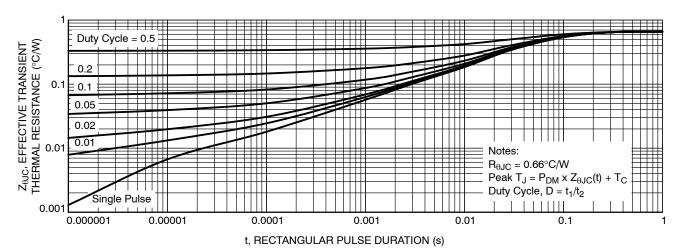
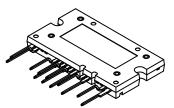
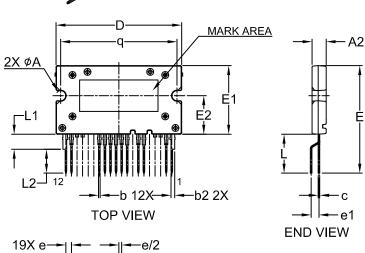
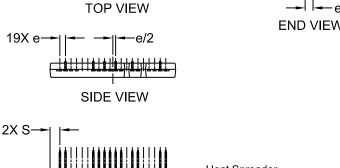
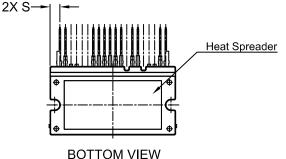



Figure 24. Transient Thermal Impedance






APMCD-A16 / 12LD, AUTOMOTIVE MODULE

CASE MODGG ISSUE C

DATE 03 NOV 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
A2	4.30	4.50	4.70	
b	0.45	0.50	0.60	
b2	1.15	1.20	1.30	
С	0.45	0.50	0.60	
D	39.90	40.10	40.30	
Е	33.80	34.30	34.80	
E1	21.70	21.90	22.10	
E2	12.10	12.30	12.50	
е	1.478	1.778	2.078	
e1	2.20	2.50	2.80	
١	12.10	12.40	12.70	
L1		4.80 REF		
L2	7.30	7.60	7.90	
q	36.85	37.10	37.35	
S		3.159 REF		
ØΑ	3.00	3.20	3.40	

GENERIC MARKING DIAGRAM*

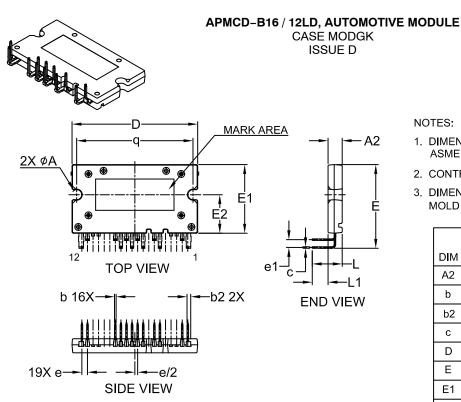
XXXXXXXXXXXXXXXX ZZZ ATYWW NNNNNNN XXXX = Specific Device Code

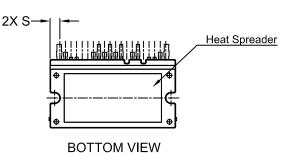
ZZZ = Lot ID

AT = Assembly & Test Location

Y = Year WW = Work Week

NNN = Serial Number


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON94738G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	APMCD-A16 / 12LD, AUTO	2LD, AUTOMOTIVE MODULE		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 04 NOV 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION; MILLIMETERS
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
A2	4.30	4.50	4.70
b	0.45	0.50	0.60
b2	1.15	1.20	1.30
С	0.45	0.50	0.60
D	39.90	40.10	40.30
E	26.20	26.70	27.20
E1	21.70	21.90	22.10
E2	12.10	12.30	12.50
е	1.478	1.778	2.078
e1	2.20	2.50	2.80
L	9.20	9.55	9.90
L1	4.70	5.05	5.40
q	36.85	37.10	37.35
S	3.159 REF		
ØΑ	3.00	3.20	3.40

GENERIC MARKING DIAGRAM*

XXXXXXXXXXXXXXX ZZZ ATYWW NNNNNN

XXXX = Specific Device Code

ZZZ = Lot ID

ΑT = Assembly & Test Location

Υ = Year W = Work Week NNN = Serial Number *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON97134G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DESCRIPTION: APMCD-B16 / 12LD, AUTOMOTIVE MODULE		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

